mirror of
https://github.com/sd-webui/stable-diffusion-webui.git
synced 2025-01-07 14:18:48 +03:00
684 lines
31 KiB
Python
684 lines
31 KiB
Python
# This file is part of stable-diffusion-webui (https://github.com/sd-webui/stable-diffusion-webui/).
|
|
|
|
# Copyright 2022 sd-webui team.
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU Affero General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU Affero General Public License for more details.
|
|
|
|
# You should have received a copy of the GNU Affero General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
# base webui import and utils.
|
|
from sd_utils import *
|
|
|
|
# streamlit imports
|
|
from streamlit import StopException
|
|
|
|
#other imports
|
|
import cv2
|
|
from PIL import Image, ImageOps
|
|
import torch
|
|
import k_diffusion as K
|
|
import numpy as np
|
|
import time
|
|
import torch
|
|
import skimage
|
|
from ldm.models.diffusion.ddim import DDIMSampler
|
|
from ldm.models.diffusion.plms import PLMSSampler
|
|
# Temp imports
|
|
|
|
|
|
# end of imports
|
|
#---------------------------------------------------------------------------------------------------------------
|
|
|
|
|
|
try:
|
|
# this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start.
|
|
from transformers import logging
|
|
|
|
logging.set_verbosity_error()
|
|
except:
|
|
pass
|
|
|
|
def img2img(prompt: str = '', init_info: any = None, init_info_mask: any = None, mask_mode: int = 0, mask_blur_strength: int = 3,
|
|
mask_restore: bool = False, ddim_steps: int = 50, sampler_name: str = 'DDIM',
|
|
n_iter: int = 1, cfg_scale: float = 7.5, denoising_strength: float = 0.8,
|
|
seed: int = -1, noise_mode: int = 0, find_noise_steps: str = "", height: int = 512, width: int = 512, resize_mode: int = 0, fp = None,
|
|
variant_amount: float = None, variant_seed: int = None, ddim_eta:float = 0.0,
|
|
write_info_files:bool = True, separate_prompts:bool = False, normalize_prompt_weights:bool = True,
|
|
save_individual_images: bool = True, save_grid: bool = True, group_by_prompt: bool = True,
|
|
save_as_jpg: bool = True, use_GFPGAN: bool = True, GFPGAN_model: str = 'GFPGANv1.3',
|
|
use_RealESRGAN: bool = True, RealESRGAN_model: str = "RealESRGAN_x4plus_anime_6B",
|
|
use_LDSR: bool = True, LDSR_model: str = "model",
|
|
loopback: bool = False,
|
|
random_seed_loopback: bool = False
|
|
):
|
|
|
|
outpath = st.session_state['defaults'].general.outdir_img2img or st.session_state['defaults'].general.outdir or "outputs/img2img-samples"
|
|
seed = seed_to_int(seed)
|
|
|
|
batch_size = 1
|
|
|
|
if sampler_name == 'PLMS':
|
|
sampler = PLMSSampler(server_state["model"])
|
|
elif sampler_name == 'DDIM':
|
|
sampler = DDIMSampler(server_state["model"])
|
|
elif sampler_name == 'k_dpm_2_a':
|
|
sampler = KDiffusionSampler(server_state["model"],'dpm_2_ancestral')
|
|
elif sampler_name == 'k_dpm_2':
|
|
sampler = KDiffusionSampler(server_state["model"],'dpm_2')
|
|
elif sampler_name == 'k_euler_a':
|
|
sampler = KDiffusionSampler(server_state["model"],'euler_ancestral')
|
|
elif sampler_name == 'k_euler':
|
|
sampler = KDiffusionSampler(server_state["model"],'euler')
|
|
elif sampler_name == 'k_heun':
|
|
sampler = KDiffusionSampler(server_state["model"],'heun')
|
|
elif sampler_name == 'k_lms':
|
|
sampler = KDiffusionSampler(server_state["model"],'lms')
|
|
else:
|
|
raise Exception("Unknown sampler: " + sampler_name)
|
|
|
|
def process_init_mask(init_mask: Image):
|
|
if init_mask.mode == "RGBA":
|
|
init_mask = init_mask.convert('RGBA')
|
|
background = Image.new('RGBA', init_mask.size, (0, 0, 0))
|
|
init_mask = Image.alpha_composite(background, init_mask)
|
|
init_mask = init_mask.convert('RGB')
|
|
return init_mask
|
|
|
|
init_img = init_info
|
|
init_mask = None
|
|
if mask_mode == 0:
|
|
if init_info_mask:
|
|
init_mask = process_init_mask(init_info_mask)
|
|
elif mask_mode == 1:
|
|
if init_info_mask:
|
|
init_mask = process_init_mask(init_info_mask)
|
|
init_mask = ImageOps.invert(init_mask)
|
|
elif mask_mode == 2:
|
|
init_img_transparency = init_img.split()[-1].convert('L')#.point(lambda x: 255 if x > 0 else 0, mode='1')
|
|
init_mask = init_img_transparency
|
|
init_mask = init_mask.convert("RGB")
|
|
init_mask = resize_image(resize_mode, init_mask, width, height)
|
|
init_mask = init_mask.convert("RGB")
|
|
|
|
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
|
t_enc = int(denoising_strength * ddim_steps)
|
|
|
|
if init_mask is not None and (noise_mode == 2 or noise_mode == 3) and init_img is not None:
|
|
noise_q = 0.99
|
|
color_variation = 0.0
|
|
mask_blend_factor = 1.0
|
|
|
|
np_init = (np.asarray(init_img.convert("RGB"))/255.0).astype(np.float64) # annoyingly complex mask fixing
|
|
np_mask_rgb = 1. - (np.asarray(ImageOps.invert(init_mask).convert("RGB"))/255.0).astype(np.float64)
|
|
np_mask_rgb -= np.min(np_mask_rgb)
|
|
np_mask_rgb /= np.max(np_mask_rgb)
|
|
np_mask_rgb = 1. - np_mask_rgb
|
|
np_mask_rgb_hardened = 1. - (np_mask_rgb < 0.99).astype(np.float64)
|
|
blurred = skimage.filters.gaussian(np_mask_rgb_hardened[:], sigma=16., channel_axis=2, truncate=32.)
|
|
blurred2 = skimage.filters.gaussian(np_mask_rgb_hardened[:], sigma=16., channel_axis=2, truncate=32.)
|
|
#np_mask_rgb_dilated = np_mask_rgb + blurred # fixup mask todo: derive magic constants
|
|
#np_mask_rgb = np_mask_rgb + blurred
|
|
np_mask_rgb_dilated = np.clip((np_mask_rgb + blurred2) * 0.7071, 0., 1.)
|
|
np_mask_rgb = np.clip((np_mask_rgb + blurred) * 0.7071, 0., 1.)
|
|
|
|
noise_rgb = get_matched_noise(np_init, np_mask_rgb, noise_q, color_variation)
|
|
blend_mask_rgb = np.clip(np_mask_rgb_dilated,0.,1.) ** (mask_blend_factor)
|
|
noised = noise_rgb[:]
|
|
blend_mask_rgb **= (2.)
|
|
noised = np_init[:] * (1. - blend_mask_rgb) + noised * blend_mask_rgb
|
|
|
|
np_mask_grey = np.sum(np_mask_rgb, axis=2)/3.
|
|
ref_mask = np_mask_grey < 1e-3
|
|
|
|
all_mask = np.ones((height, width), dtype=bool)
|
|
noised[all_mask,:] = skimage.exposure.match_histograms(noised[all_mask,:]**1., noised[ref_mask,:], channel_axis=1)
|
|
|
|
init_img = Image.fromarray(np.clip(noised * 255., 0., 255.).astype(np.uint8), mode="RGB")
|
|
st.session_state["editor_image"].image(init_img) # debug
|
|
|
|
def init():
|
|
image = init_img.convert('RGB')
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
image = image[None].transpose(0, 3, 1, 2)
|
|
image = torch.from_numpy(image)
|
|
|
|
mask_channel = None
|
|
if init_mask:
|
|
alpha = resize_image(resize_mode, init_mask, width // 8, height // 8)
|
|
mask_channel = alpha.split()[-1]
|
|
|
|
mask = None
|
|
if mask_channel is not None:
|
|
mask = np.array(mask_channel).astype(np.float32) / 255.0
|
|
mask = (1 - mask)
|
|
mask = np.tile(mask, (4, 1, 1))
|
|
mask = mask[None].transpose(0, 1, 2, 3)
|
|
mask = torch.from_numpy(mask).to(server_state["device"])
|
|
|
|
if st.session_state['defaults'].general.optimized:
|
|
server_state["modelFS"].to(server_state["device"] )
|
|
|
|
init_image = 2. * image - 1.
|
|
init_image = init_image.to(server_state["device"])
|
|
init_latent = (server_state["model"] if not st.session_state['defaults'].general.optimized else server_state["modelFS"]).get_first_stage_encoding((server_state["model"] if not st.session_state['defaults'].general.optimized else modelFS).encode_first_stage(init_image)) # move to latent space
|
|
|
|
if st.session_state['defaults'].general.optimized:
|
|
mem = torch.cuda.memory_allocated()/1e6
|
|
server_state["modelFS"].to("cpu")
|
|
while(torch.cuda.memory_allocated()/1e6 >= mem):
|
|
time.sleep(1)
|
|
|
|
return init_latent, mask,
|
|
|
|
def sample(init_data, x, conditioning, unconditional_conditioning, sampler_name):
|
|
t_enc_steps = t_enc
|
|
obliterate = False
|
|
if ddim_steps == t_enc_steps:
|
|
t_enc_steps = t_enc_steps - 1
|
|
obliterate = True
|
|
|
|
if sampler_name != 'DDIM':
|
|
x0, z_mask = init_data
|
|
|
|
sigmas = sampler.model_wrap.get_sigmas(ddim_steps)
|
|
noise = x * sigmas[ddim_steps - t_enc_steps - 1]
|
|
|
|
xi = x0 + noise
|
|
|
|
# Obliterate masked image
|
|
if z_mask is not None and obliterate:
|
|
random = torch.randn(z_mask.shape, device=xi.device)
|
|
xi = (z_mask * noise) + ((1-z_mask) * xi)
|
|
|
|
sigma_sched = sigmas[ddim_steps - t_enc_steps - 1:]
|
|
model_wrap_cfg = CFGMaskedDenoiser(sampler.model_wrap)
|
|
samples_ddim = K.sampling.__dict__[f'sample_{sampler.get_sampler_name()}'](model_wrap_cfg, xi, sigma_sched,
|
|
extra_args={'cond': conditioning, 'uncond': unconditional_conditioning,
|
|
'cond_scale': cfg_scale, 'mask': z_mask, 'x0': x0, 'xi': xi}, disable=False,
|
|
callback=generation_callback)
|
|
else:
|
|
|
|
x0, z_mask = init_data
|
|
|
|
sampler.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=0.0, verbose=False)
|
|
z_enc = sampler.stochastic_encode(x0, torch.tensor([t_enc_steps]*batch_size).to(server_state["device"] ))
|
|
|
|
# Obliterate masked image
|
|
if z_mask is not None and obliterate:
|
|
random = torch.randn(z_mask.shape, device=z_enc.device)
|
|
z_enc = (z_mask * random) + ((1-z_mask) * z_enc)
|
|
|
|
# decode it
|
|
samples_ddim = sampler.decode(z_enc, conditioning, t_enc_steps,
|
|
unconditional_guidance_scale=cfg_scale,
|
|
unconditional_conditioning=unconditional_conditioning,
|
|
z_mask=z_mask, x0=x0)
|
|
return samples_ddim
|
|
|
|
|
|
|
|
if loopback:
|
|
output_images, info = None, None
|
|
history = []
|
|
initial_seed = None
|
|
|
|
do_color_correction = False
|
|
try:
|
|
from skimage import exposure
|
|
do_color_correction = True
|
|
except:
|
|
print("Install scikit-image to perform color correction on loopback")
|
|
|
|
for i in range(n_iter):
|
|
if do_color_correction and i == 0:
|
|
correction_target = cv2.cvtColor(np.asarray(init_img.copy()), cv2.COLOR_RGB2LAB)
|
|
|
|
# RealESRGAN can only run on the final iteration
|
|
is_final_iteration = i == n_iter - 1
|
|
|
|
output_images, seed, info, stats = process_images(
|
|
outpath=outpath,
|
|
func_init=init,
|
|
func_sample=sample,
|
|
prompt=prompt,
|
|
seed=seed,
|
|
sampler_name=sampler_name,
|
|
save_grid=save_grid,
|
|
batch_size=1,
|
|
n_iter=1,
|
|
steps=ddim_steps,
|
|
cfg_scale=cfg_scale,
|
|
width=width,
|
|
height=height,
|
|
prompt_matrix=separate_prompts,
|
|
use_GFPGAN=use_GFPGAN,
|
|
GFPGAN_model=GFPGAN_model,
|
|
use_RealESRGAN=use_RealESRGAN and is_final_iteration, # Forcefully disable upscaling when using loopback
|
|
realesrgan_model_name=RealESRGAN_model,
|
|
use_LDSR=use_LDSR,
|
|
LDSR_model_name=LDSR_model,
|
|
normalize_prompt_weights=normalize_prompt_weights,
|
|
save_individual_images=save_individual_images,
|
|
init_img=init_img,
|
|
init_mask=init_mask,
|
|
mask_blur_strength=mask_blur_strength,
|
|
mask_restore=mask_restore,
|
|
denoising_strength=denoising_strength,
|
|
noise_mode=noise_mode,
|
|
find_noise_steps=find_noise_steps,
|
|
resize_mode=resize_mode,
|
|
uses_loopback=loopback,
|
|
uses_random_seed_loopback=random_seed_loopback,
|
|
sort_samples=group_by_prompt,
|
|
write_info_files=write_info_files,
|
|
jpg_sample=save_as_jpg
|
|
)
|
|
|
|
if initial_seed is None:
|
|
initial_seed = seed
|
|
|
|
input_image = init_img
|
|
init_img = output_images[0]
|
|
|
|
if do_color_correction and correction_target is not None:
|
|
init_img = Image.fromarray(cv2.cvtColor(exposure.match_histograms(
|
|
cv2.cvtColor(
|
|
np.asarray(init_img),
|
|
cv2.COLOR_RGB2LAB
|
|
),
|
|
correction_target,
|
|
channel_axis=2
|
|
), cv2.COLOR_LAB2RGB).astype("uint8"))
|
|
if mask_restore is True and init_mask is not None:
|
|
color_mask = init_mask.filter(ImageFilter.GaussianBlur(mask_blur_strength))
|
|
color_mask = color_mask.convert('L')
|
|
source_image = input_image.convert('RGB')
|
|
target_image = init_img.convert('RGB')
|
|
|
|
init_img = Image.composite(source_image, target_image, color_mask)
|
|
|
|
if not random_seed_loopback:
|
|
seed = seed + 1
|
|
else:
|
|
seed = seed_to_int(None)
|
|
|
|
denoising_strength = max(denoising_strength * 0.95, 0.1)
|
|
history.append(init_img)
|
|
|
|
output_images = history
|
|
seed = initial_seed
|
|
|
|
else:
|
|
output_images, seed, info, stats = process_images(
|
|
outpath=outpath,
|
|
func_init=init,
|
|
func_sample=sample,
|
|
prompt=prompt,
|
|
seed=seed,
|
|
sampler_name=sampler_name,
|
|
save_grid=save_grid,
|
|
batch_size=batch_size,
|
|
n_iter=n_iter,
|
|
steps=ddim_steps,
|
|
cfg_scale=cfg_scale,
|
|
width=width,
|
|
height=height,
|
|
prompt_matrix=separate_prompts,
|
|
use_GFPGAN=use_GFPGAN,
|
|
GFPGAN_model=GFPGAN_model,
|
|
use_RealESRGAN=use_RealESRGAN,
|
|
realesrgan_model_name=RealESRGAN_model,
|
|
use_LDSR=use_LDSR,
|
|
LDSR_model_name=LDSR_model,
|
|
normalize_prompt_weights=normalize_prompt_weights,
|
|
save_individual_images=save_individual_images,
|
|
init_img=init_img,
|
|
init_mask=init_mask,
|
|
mask_blur_strength=mask_blur_strength,
|
|
denoising_strength=denoising_strength,
|
|
noise_mode=noise_mode,
|
|
find_noise_steps=find_noise_steps,
|
|
mask_restore=mask_restore,
|
|
resize_mode=resize_mode,
|
|
uses_loopback=loopback,
|
|
sort_samples=group_by_prompt,
|
|
write_info_files=write_info_files,
|
|
jpg_sample=save_as_jpg
|
|
)
|
|
|
|
del sampler
|
|
|
|
return output_images, seed, info, stats
|
|
|
|
#
|
|
def layout():
|
|
with st.form("img2img-inputs"):
|
|
st.session_state["generation_mode"] = "img2img"
|
|
|
|
img2img_input_col, img2img_generate_col = st.columns([10,1])
|
|
with img2img_input_col:
|
|
#prompt = st.text_area("Input Text","")
|
|
prompt = st.text_input("Input Text","", placeholder="A corgi wearing a top hat as an oil painting.")
|
|
|
|
# Every form must have a submit button, the extra blank spaces is a temp way to align it with the input field. Needs to be done in CSS or some other way.
|
|
img2img_generate_col.write("")
|
|
img2img_generate_col.write("")
|
|
generate_button = img2img_generate_col.form_submit_button("Generate")
|
|
|
|
|
|
# creating the page layout using columns
|
|
col1_img2img_layout, col2_img2img_layout, col3_img2img_layout = st.columns([1,2,2], gap="small")
|
|
|
|
with col1_img2img_layout:
|
|
# If we have custom models available on the "models/custom"
|
|
#folder then we show a menu to select which model we want to use, otherwise we use the main model for SD
|
|
custom_models_available()
|
|
if server_state["CustomModel_available"]:
|
|
st.session_state["custom_model"] = st.selectbox("Custom Model:", server_state["custom_models"],
|
|
index=server_state["custom_models"].index(st.session_state['defaults'].general.default_model),
|
|
help="Select the model you want to use. This option is only available if you have custom models \
|
|
on your 'models/custom' folder. The model name that will be shown here is the same as the name\
|
|
the file for the model has on said folder, it is recommended to give the .ckpt file a name that \
|
|
will make it easier for you to distinguish it from other models. Default: Stable Diffusion v1.4")
|
|
else:
|
|
st.session_state["custom_model"] = "Stable Diffusion v1.4"
|
|
|
|
|
|
st.session_state["sampling_steps"] = st.slider("Sampling Steps", value=st.session_state['defaults'].img2img.sampling_steps.value,
|
|
min_value=st.session_state['defaults'].img2img.sampling_steps.min_value,
|
|
max_value=st.session_state['defaults'].img2img.sampling_steps.max_value,
|
|
step=st.session_state['defaults'].img2img.sampling_steps.step)
|
|
|
|
sampler_name_list = ["k_lms", "k_euler", "k_euler_a", "k_dpm_2", "k_dpm_2_a", "k_heun", "PLMS", "DDIM"]
|
|
st.session_state["sampler_name"] = st.selectbox("Sampling method",sampler_name_list,
|
|
index=sampler_name_list.index(st.session_state['defaults'].img2img.sampler_name), help="Sampling method to use.")
|
|
|
|
width = st.slider("Width:", min_value=st.session_state['defaults'].img2img.width.min_value, max_value=st.session_state['defaults'].img2img.width.max_value,
|
|
value=st.session_state['defaults'].img2img.width.value, step=st.session_state['defaults'].img2img.width.step)
|
|
height = st.slider("Height:", min_value=st.session_state['defaults'].img2img.height.min_value, max_value=st.session_state['defaults'].img2img.height.max_value,
|
|
value=st.session_state['defaults'].img2img.height.value, step=st.session_state['defaults'].img2img.height.step)
|
|
seed = st.text_input("Seed:", value=st.session_state['defaults'].img2img.seed, help=" The seed to use, if left blank a random seed will be generated.")
|
|
|
|
cfg_scale = st.slider("CFG (Classifier Free Guidance Scale):", min_value=st.session_state['defaults'].img2img.cfg_scale.min_value,
|
|
max_value=st.session_state['defaults'].img2img.cfg_scale.max_value, value=st.session_state['defaults'].img2img.cfg_scale.value,
|
|
step=st.session_state['defaults'].img2img.cfg_scale.step, help="How strongly the image should follow the prompt.")
|
|
|
|
st.session_state["denoising_strength"] = st.slider("Denoising Strength:", value=st.session_state['defaults'].img2img.denoising_strength.value,
|
|
min_value=st.session_state['defaults'].img2img.denoising_strength.min_value,
|
|
max_value=st.session_state['defaults'].img2img.denoising_strength.max_value,
|
|
step=st.session_state['defaults'].img2img.denoising_strength.step)
|
|
|
|
|
|
mask_expander = st.empty()
|
|
with mask_expander.expander("Mask"):
|
|
mask_mode_list = ["Mask", "Inverted mask", "Image alpha"]
|
|
mask_mode = st.selectbox("Mask Mode", mask_mode_list,
|
|
help="Select how you want your image to be masked.\"Mask\" modifies the image where the mask is white.\n\
|
|
\"Inverted mask\" modifies the image where the mask is black. \"Image alpha\" modifies the image where the image is transparent."
|
|
)
|
|
mask_mode = mask_mode_list.index(mask_mode)
|
|
|
|
|
|
noise_mode_list = ["Seed", "Find Noise", "Matched Noise", "Find+Matched Noise"]
|
|
noise_mode = st.selectbox(
|
|
"Noise Mode", noise_mode_list,
|
|
help=""
|
|
)
|
|
noise_mode = noise_mode_list.index(noise_mode)
|
|
find_noise_steps = st.slider("Find Noise Steps", value=st.session_state['defaults'].img2img.find_noise_steps.value,
|
|
min_value=st.session_state['defaults'].img2img.find_noise_steps.min_value, max_value=st.session_state['defaults'].img2img.find_noise_steps.max_value,
|
|
step=st.session_state['defaults'].img2img.find_noise_steps.step)
|
|
|
|
with st.expander("Batch Options"):
|
|
batch_count = st.slider("Batch count.", min_value=st.session_state['defaults'].img2img.batch_count.min_value, max_value=st.session_state['defaults'].img2img.batch_count.max_value,
|
|
value=st.session_state['defaults'].img2img.batch_count.value, step=st.session_state['defaults'].img2img.batch_count.step,
|
|
help="How many iterations or batches of images to generate in total.")
|
|
|
|
batch_size = st.slider("Batch size", min_value=st.session_state['defaults'].img2img.batch_size.min_value, max_value=st.session_state['defaults'].img2img.batch_size.max_value,
|
|
value=st.session_state['defaults'].img2img.batch_size.value, step=st.session_state['defaults'].img2img.batch_size.step,
|
|
help="How many images are at once in a batch. It increases the VRAM usage a lot but if you have enough VRAM it can reduce the time it takes to finish \
|
|
generation as more images are generated at once.Default: 1")
|
|
|
|
with st.expander("Preview Settings"):
|
|
st.session_state["update_preview"] = st.checkbox("Update Image Preview", value=st.session_state['defaults'].img2img.update_preview,
|
|
help="If enabled the image preview will be updated during the generation instead of at the end. \
|
|
You can use the Update Preview \Frequency option bellow to customize how frequent it's updated. \
|
|
By default this is enabled and the frequency is set to 1 step.")
|
|
|
|
st.session_state["update_preview_frequency"] = st.text_input("Update Image Preview Frequency", value=st.session_state['defaults'].img2img.update_preview_frequency,
|
|
help="Frequency in steps at which the the preview image is updated. By default the frequency \
|
|
is set to 1 step.")
|
|
#
|
|
with st.expander("Advanced"):
|
|
separate_prompts = st.checkbox("Create Prompt Matrix.", value=st.session_state['defaults'].img2img.separate_prompts,
|
|
help="Separate multiple prompts using the `|` character, and get all combinations of them.")
|
|
normalize_prompt_weights = st.checkbox("Normalize Prompt Weights.", value=st.session_state['defaults'].img2img.normalize_prompt_weights,
|
|
help="Ensure the sum of all weights add up to 1.0")
|
|
loopback = st.checkbox("Loopback.", value=st.session_state['defaults'].img2img.loopback, help="Use images from previous batch when creating next batch.")
|
|
random_seed_loopback = st.checkbox("Random loopback seed.", value=st.session_state['defaults'].img2img.random_seed_loopback, help="Random loopback seed")
|
|
img2img_mask_restore = st.checkbox("Only modify regenerated parts of image",
|
|
value=st.session_state['defaults'].img2img.mask_restore,
|
|
help="Enable to restore the unmasked parts of the image with the input, may not blend as well but preserves detail")
|
|
save_individual_images = st.checkbox("Save individual images.", value=st.session_state['defaults'].img2img.save_individual_images,
|
|
help="Save each image generated before any filter or enhancement is applied.")
|
|
save_grid = st.checkbox("Save grid",value=st.session_state['defaults'].img2img.save_grid, help="Save a grid with all the images generated into a single image.")
|
|
group_by_prompt = st.checkbox("Group results by prompt", value=st.session_state['defaults'].img2img.group_by_prompt,
|
|
help="Saves all the images with the same prompt into the same folder. \
|
|
When using a prompt matrix each prompt combination will have its own folder.")
|
|
write_info_files = st.checkbox("Write Info file", value=st.session_state['defaults'].img2img.write_info_files,
|
|
help="Save a file next to the image with informartion about the generation.")
|
|
save_as_jpg = st.checkbox("Save samples as jpg", value=st.session_state['defaults'].img2img.save_as_jpg, help="Saves the images as jpg instead of png.")
|
|
|
|
#
|
|
# check if GFPGAN, RealESRGAN and LDSR are available.
|
|
if "GFPGAN_available" not in st.session_state:
|
|
GFPGAN_available()
|
|
|
|
if "RealESRGAN_available" not in st.session_state:
|
|
RealESRGAN_available()
|
|
|
|
if "LDSR_available" not in st.session_state:
|
|
LDSR_available()
|
|
|
|
if st.session_state["GFPGAN_available"] or st.session_state["RealESRGAN_available"] or st.session_state["LDSR_available"]:
|
|
with st.expander("Post-Processing"):
|
|
face_restoration_tab, upscaling_tab = st.tabs(["Face Restoration", "Upscaling"])
|
|
with face_restoration_tab:
|
|
# GFPGAN used for face restoration
|
|
if st.session_state["GFPGAN_available"]:
|
|
#with st.expander("Face Restoration"):
|
|
#if st.session_state["GFPGAN_available"]:
|
|
#with st.expander("GFPGAN"):
|
|
st.session_state["use_GFPGAN"] = st.checkbox("Use GFPGAN", value=st.session_state['defaults'].txt2img.use_GFPGAN,
|
|
help="Uses the GFPGAN model to improve faces after the generation.\
|
|
This greatly improve the quality and consistency of faces but uses\
|
|
extra VRAM. Disable if you need the extra VRAM.")
|
|
|
|
st.session_state["GFPGAN_model"] = st.selectbox("GFPGAN model", st.session_state["GFPGAN_models"],
|
|
index=st.session_state["GFPGAN_models"].index(st.session_state['defaults'].general.GFPGAN_model))
|
|
|
|
#st.session_state["GFPGAN_strenght"] = st.slider("Effect Strenght", min_value=1, max_value=100, value=1, step=1, help='')
|
|
|
|
else:
|
|
st.session_state["use_GFPGAN"] = False
|
|
|
|
with upscaling_tab:
|
|
#with st.expander("Upscaling"):
|
|
# RealESRGAN and LDSR used for upscaling.
|
|
if st.session_state["RealESRGAN_available"] or st.session_state["LDSR_available"]:
|
|
|
|
upscaling_method_list = []
|
|
if st.session_state["RealESRGAN_available"]:
|
|
upscaling_method_list.append("RealESRGAN")
|
|
if st.session_state["LDSR_available"]:
|
|
upscaling_method_list.append("LDSR")
|
|
|
|
st.session_state["upscaling_method"] = st.selectbox("Upscaling Method", upscaling_method_list,
|
|
index=upscaling_method_list.index(st.session_state['defaults'].general.upscaling_method))
|
|
|
|
if st.session_state["RealESRGAN_available"]:
|
|
# with st.expander("RealESRGAN"):
|
|
st.session_state["use_RealESRGAN"] = st.checkbox("Use RealESRGAN", value=st.session_state['defaults'].txt2img.use_RealESRGAN,
|
|
help="Uses the RealESRGAN model to upscale the images after the generation.\
|
|
This greatly improve the quality and lets you have high resolution images but \
|
|
uses extra VRAM. Disable if you need the extra VRAM.")
|
|
|
|
st.session_state["RealESRGAN_model"] = st.selectbox("RealESRGAN model", st.session_state["RealESRGAN_models"],
|
|
index=st.session_state["RealESRGAN_models"].index(st.session_state['defaults'].general.RealESRGAN_model))
|
|
else:
|
|
st.session_state["use_RealESRGAN"] = False
|
|
st.session_state["RealESRGAN_model"] = "RealESRGAN_x4plus"
|
|
|
|
|
|
#
|
|
if st.session_state["LDSR_available"]:
|
|
#with st.expander("LDSR"):
|
|
st.session_state["use_LDSR"] = st.checkbox("Use LDSR", value=st.session_state['defaults'].txt2img.use_LDSR,
|
|
help="Uses the LDSR model to upscale the images after the generation.\
|
|
This greatly improve the quality and lets you have high resolution images but \
|
|
uses extra VRAM. Disable if you need the extra VRAM.")
|
|
|
|
st.session_state["LDSR_model"] = st.selectbox("LDSR model", st.session_state["LDSR_models"],
|
|
index=st.session_state["LDSR_models"].index(st.session_state['defaults'].general.LDSR_model))
|
|
else:
|
|
st.session_state["use_LDSR"] = False
|
|
st.session_state["LDSR_model"] = "model"
|
|
|
|
with st.expander("Variant"):
|
|
variant_amount = st.slider("Variant Amount:", value=st.session_state['defaults'].img2img.variant_amount, min_value=0.0, max_value=1.0, step=0.01)
|
|
variant_seed = st.text_input("Variant Seed:", value=st.session_state['defaults'].img2img.variant_seed,
|
|
help="The seed to use when generating a variant, if left blank a random seed will be generated.")
|
|
|
|
|
|
with col2_img2img_layout:
|
|
editor_tab = st.tabs(["Editor"])
|
|
|
|
editor_image = st.empty()
|
|
st.session_state["editor_image"] = editor_image
|
|
|
|
st.form_submit_button("Refresh")
|
|
|
|
masked_image_holder = st.empty()
|
|
image_holder = st.empty()
|
|
|
|
uploaded_images = st.file_uploader(
|
|
"Upload Image", accept_multiple_files=False, type=["png", "jpg", "jpeg", "webp"],
|
|
help="Upload an image which will be used for the image to image generation.",
|
|
)
|
|
if uploaded_images:
|
|
image = Image.open(uploaded_images).convert('RGBA')
|
|
new_img = image.resize((width, height))
|
|
image_holder.image(new_img)
|
|
|
|
mask_holder = st.empty()
|
|
|
|
uploaded_masks = st.file_uploader(
|
|
"Upload Mask", accept_multiple_files=False, type=["png", "jpg", "jpeg", "webp"],
|
|
help="Upload an mask image which will be used for masking the image to image generation.",
|
|
)
|
|
if uploaded_masks:
|
|
mask_expander.expander("Mask", expanded=True)
|
|
mask = Image.open(uploaded_masks)
|
|
if mask.mode == "RGBA":
|
|
mask = mask.convert('RGBA')
|
|
background = Image.new('RGBA', mask.size, (0, 0, 0))
|
|
mask = Image.alpha_composite(background, mask)
|
|
mask = mask.resize((width, height))
|
|
mask_holder.image(mask)
|
|
|
|
if uploaded_images and uploaded_masks:
|
|
if mask_mode != 2:
|
|
final_img = new_img.copy()
|
|
alpha_layer = mask.convert('L')
|
|
strength = st.session_state["denoising_strength"]
|
|
if mask_mode == 0:
|
|
alpha_layer = ImageOps.invert(alpha_layer)
|
|
alpha_layer = alpha_layer.point(lambda a: a * strength)
|
|
alpha_layer = ImageOps.invert(alpha_layer)
|
|
elif mask_mode == 1:
|
|
alpha_layer = alpha_layer.point(lambda a: a * strength)
|
|
alpha_layer = ImageOps.invert(alpha_layer)
|
|
|
|
final_img.putalpha(alpha_layer)
|
|
|
|
with masked_image_holder.container():
|
|
st.text("Masked Image Preview")
|
|
st.image(final_img)
|
|
|
|
|
|
with col3_img2img_layout:
|
|
result_tab = st.tabs(["Result"])
|
|
|
|
# create an empty container for the image, progress bar, etc so we can update it later and use session_state to hold them globally.
|
|
preview_image = st.empty()
|
|
st.session_state["preview_image"] = preview_image
|
|
|
|
#st.session_state["loading"] = st.empty()
|
|
|
|
st.session_state["progress_bar_text"] = st.empty()
|
|
st.session_state["progress_bar"] = st.empty()
|
|
|
|
|
|
message = st.empty()
|
|
|
|
#if uploaded_images:
|
|
#image = Image.open(uploaded_images).convert('RGB')
|
|
##img_array = np.array(image) # if you want to pass it to OpenCV
|
|
#new_img = image.resize((width, height))
|
|
#st.image(new_img, use_column_width=True)
|
|
|
|
|
|
if generate_button:
|
|
#print("Loading models")
|
|
# load the models when we hit the generate button for the first time, it wont be loaded after that so dont worry.
|
|
with col3_img2img_layout:
|
|
with hc.HyLoader('Loading Models...', hc.Loaders.standard_loaders,index=[0]):
|
|
load_models(st.session_state["use_LDSR"], st.session_state["LDSR_model"], st.session_state["use_GFPGAN"],
|
|
st.session_state["GFPGAN_model"] , st.session_state["use_RealESRGAN"],
|
|
st.session_state["RealESRGAN_model"], server_state["CustomModel_available"], st.session_state["custom_model"])
|
|
|
|
if uploaded_images:
|
|
image = Image.open(uploaded_images).convert('RGBA')
|
|
new_img = image.resize((width, height))
|
|
#img_array = np.array(image) # if you want to pass it to OpenCV
|
|
new_mask = None
|
|
if uploaded_masks:
|
|
mask = Image.open(uploaded_masks).convert('RGBA')
|
|
new_mask = mask.resize((width, height))
|
|
|
|
try:
|
|
output_images, seed, info, stats = img2img(prompt=prompt, init_info=new_img, init_info_mask=new_mask, mask_mode=mask_mode,
|
|
mask_restore=img2img_mask_restore, ddim_steps=st.session_state["sampling_steps"],
|
|
sampler_name=st.session_state["sampler_name"], n_iter=batch_count,
|
|
cfg_scale=cfg_scale, denoising_strength=st.session_state["denoising_strength"], variant_seed=variant_seed,
|
|
seed=seed, noise_mode=noise_mode, find_noise_steps=find_noise_steps, width=width,
|
|
height=height, variant_amount=variant_amount,
|
|
ddim_eta=st.session_state.defaults.img2img.ddim_eta, write_info_files=write_info_files,
|
|
separate_prompts=separate_prompts, normalize_prompt_weights=normalize_prompt_weights,
|
|
save_individual_images=save_individual_images, save_grid=save_grid,
|
|
group_by_prompt=group_by_prompt, save_as_jpg=save_as_jpg, use_GFPGAN=st.session_state["use_GFPGAN"],
|
|
GFPGAN_model=st.session_state["GFPGAN_model"],
|
|
use_RealESRGAN=st.session_state["use_RealESRGAN"], RealESRGAN_model=st.session_state["RealESRGAN_model"],
|
|
use_LDSR=st.session_state["use_LDSR"], LDSR_model=st.session_state["LDSR_model"],
|
|
loopback=loopback
|
|
)
|
|
|
|
#show a message when the generation is complete.
|
|
message.success('Render Complete: ' + info + '; Stats: ' + stats, icon="✅")
|
|
|
|
except (StopException, KeyError):
|
|
print(f"Received Streamlit StopException")
|
|
|
|
# this will render all the images at the end of the generation but its better if its moved to a second tab inside col2 and shown as a gallery.
|
|
# use the current col2 first tab to show the preview_img and update it as its generated.
|
|
#preview_image.image(output_images, width=750)
|
|
|
|
#on import run init
|