mirror of
https://github.com/sd-webui/stable-diffusion-webui.git
synced 2025-01-07 14:18:48 +03:00
234 lines
9.0 KiB
Python
234 lines
9.0 KiB
Python
import inspect
|
|
import warnings
|
|
from tqdm.auto import tqdm
|
|
from typing import List, Optional, Union
|
|
|
|
import torch
|
|
from diffusers import ModelMixin
|
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
from diffusers.pipeline_utils import DiffusionPipeline
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import \
|
|
StableDiffusionSafetyChecker
|
|
from diffusers.schedulers import (DDIMScheduler, LMSDiscreteScheduler,
|
|
PNDMScheduler)
|
|
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
|
|
|
|
|
class StableDiffusionPipeline(DiffusionPipeline):
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
tokenizer: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
|
safety_checker: StableDiffusionSafetyChecker,
|
|
feature_extractor: CLIPFeatureExtractor,
|
|
):
|
|
super().__init__()
|
|
scheduler = scheduler.set_format("pt")
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
safety_checker=safety_checker,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
prompt: Optional[Union[str, List[str]]] = None,
|
|
height: Optional[int] = 512,
|
|
width: Optional[int] = 512,
|
|
num_inference_steps: Optional[int] = 50,
|
|
guidance_scale: Optional[float] = 7.5,
|
|
eta: Optional[float] = 0.0,
|
|
generator: Optional[torch.Generator] = None,
|
|
latents: Optional[torch.FloatTensor] = None,
|
|
text_embeddings: Optional[torch.FloatTensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
**kwargs,
|
|
):
|
|
if "torch_device" in kwargs:
|
|
device = kwargs.pop("torch_device")
|
|
warnings.warn(
|
|
"`torch_device` is deprecated as an input argument to `__call__` and"
|
|
" will be removed in v0.3.0. Consider using `pipe.to(torch_device)`"
|
|
" instead."
|
|
)
|
|
|
|
# Set device as before (to be removed in 0.3.0)
|
|
if device is None:
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
self.to(device)
|
|
|
|
if text_embeddings is None:
|
|
if isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
raise ValueError(
|
|
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
|
|
)
|
|
|
|
if height % 8 != 0 or width % 8 != 0:
|
|
raise ValueError(
|
|
"`height` and `width` have to be divisible by 8 but are"
|
|
f" {height} and {width}."
|
|
)
|
|
|
|
# get prompt text embeddings
|
|
text_input = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
|
else:
|
|
batch_size = text_embeddings.shape[0]
|
|
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
# get unconditional embeddings for classifier free guidance
|
|
if do_classifier_free_guidance:
|
|
# max_length = text_input.input_ids.shape[-1]
|
|
max_length = 77 # self.tokenizer.model_max_length
|
|
uncond_input = self.tokenizer(
|
|
[""] * batch_size,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
return_tensors="pt",
|
|
)
|
|
uncond_embeddings = self.text_encoder(
|
|
uncond_input.input_ids.to(self.device)
|
|
)[0]
|
|
|
|
# For classifier free guidance, we need to do two forward passes.
|
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
|
# to avoid doing two forward passes
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
|
|
|
# get the initial random noise unless the user supplied it
|
|
latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8)
|
|
if latents is None:
|
|
latents = torch.randn(
|
|
latents_shape,
|
|
generator=generator,
|
|
device=self.device,
|
|
)
|
|
else:
|
|
if latents.shape != latents_shape:
|
|
raise ValueError(
|
|
f"Unexpected latents shape, got {latents.shape}, expected"
|
|
f" {latents_shape}"
|
|
)
|
|
latents = latents.to(self.device)
|
|
|
|
# set timesteps
|
|
accepts_offset = "offset" in set(
|
|
inspect.signature(self.scheduler.set_timesteps).parameters.keys()
|
|
)
|
|
extra_set_kwargs = {}
|
|
if accepts_offset:
|
|
extra_set_kwargs["offset"] = 1
|
|
|
|
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
|
|
|
|
# if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas
|
|
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
|
latents = latents * self.scheduler.sigmas[0]
|
|
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
|
# and should be between [0, 1]
|
|
accepts_eta = "eta" in set(
|
|
inspect.signature(self.scheduler.step).parameters.keys()
|
|
)
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = (
|
|
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
)
|
|
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
|
sigma = self.scheduler.sigmas[i]
|
|
# the model input needs to be scaled to match the continuous ODE formulation in K-LMS
|
|
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)
|
|
|
|
# predict the noise residual
|
|
noise_pred = self.unet(
|
|
latent_model_input, t, encoder_hidden_states=text_embeddings
|
|
)["sample"]
|
|
|
|
# perform guidance
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (
|
|
noise_pred_text - noise_pred_uncond
|
|
)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
if isinstance(self.scheduler, LMSDiscreteScheduler):
|
|
latents = self.scheduler.step(
|
|
noise_pred, i, latents, **extra_step_kwargs
|
|
)["prev_sample"]
|
|
else:
|
|
latents = self.scheduler.step(
|
|
noise_pred, t, latents, **extra_step_kwargs
|
|
)["prev_sample"]
|
|
|
|
# scale and decode the image latents with vae
|
|
latents = 1 / 0.18215 * latents
|
|
image = self.vae.decode(latents).sample
|
|
|
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|
image = image.cpu().permute(0, 2, 3, 1).numpy()
|
|
|
|
safety_cheker_input = self.feature_extractor(
|
|
self.numpy_to_pil(image), return_tensors="pt"
|
|
).to(self.device)
|
|
image, has_nsfw_concept = self.safety_checker(
|
|
images=image, clip_input=safety_cheker_input.pixel_values
|
|
)
|
|
|
|
if output_type == "pil":
|
|
image = self.numpy_to_pil(image)
|
|
|
|
return {"sample": image, "nsfw_content_detected": has_nsfw_concept}
|
|
|
|
def embed_text(self, text):
|
|
"""Helper to embed some text"""
|
|
with torch.autocast("cuda"):
|
|
text_input = self.tokenizer(
|
|
text,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
with torch.no_grad():
|
|
embed = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
|
return embed
|
|
|
|
|
|
class NoCheck(ModelMixin):
|
|
"""Can be used in place of safety checker. Use responsibly and at your own risk."""
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.register_parameter(name='asdf', param=torch.nn.Parameter(torch.randn(3)))
|
|
|
|
def forward(self, images=None, **kwargs):
|
|
return images, [False]
|