stable-diffusion-webui/scripts/textual_inversion.py
2023-06-23 02:58:24 +00:00

1391 lines
55 KiB
Python

# This file is part of sygil-webui (https://github.com/Sygil-Dev/sygil-webui/).
# Copyright 2022 Sygil-Dev team.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# base webui import and utils.
from sd_utils import st, set_page_title, seed_to_int
# streamlit imports
from streamlit.runtime.scriptrunner import StopException
from streamlit_tensorboard import st_tensorboard
# streamlit components section
from streamlit_server_state import server_state
# other imports
from transformers import CLIPTextModel, CLIPTokenizer
# Temp imports
import itertools
import math
import os
import random
# import datetime
# from pathlib import Path
# from typing import Optional
import numpy as np
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
from torch.utils.data import Dataset
import PIL
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from diffusers import (
AutoencoderKL,
DDPMScheduler,
LMSDiscreteScheduler,
StableDiffusionPipeline,
UNet2DConditionModel,
) # , PNDMScheduler
from diffusers.optimization import get_scheduler
# from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from pipelines.stable_diffusion.no_check import NoCheck
from PIL import Image
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
from slugify import slugify
import json
import os # , subprocess
# from io import StringIO
# end of imports
# ---------------------------------------------------------------------------------------------------------------
logger = get_logger(__name__)
imagenet_templates_small = [
"a photo of a {}",
"a rendering of a {}",
"a cropped photo of the {}",
"the photo of a {}",
"a photo of a clean {}",
"a photo of a dirty {}",
"a dark photo of the {}",
"a photo of my {}",
"a photo of the cool {}",
"a close-up photo of a {}",
"a bright photo of the {}",
"a cropped photo of a {}",
"a photo of the {}",
"a good photo of the {}",
"a photo of one {}",
"a close-up photo of the {}",
"a rendition of the {}",
"a photo of the clean {}",
"a rendition of a {}",
"a photo of a nice {}",
"a good photo of a {}",
"a photo of the nice {}",
"a photo of the small {}",
"a photo of the weird {}",
"a photo of the large {}",
"a photo of a cool {}",
"a photo of a small {}",
]
imagenet_style_templates_small = [
"a painting in the style of {}",
"a rendering in the style of {}",
"a cropped painting in the style of {}",
"the painting in the style of {}",
"a clean painting in the style of {}",
"a dirty painting in the style of {}",
"a dark painting in the style of {}",
"a picture in the style of {}",
"a cool painting in the style of {}",
"a close-up painting in the style of {}",
"a bright painting in the style of {}",
"a cropped painting in the style of {}",
"a good painting in the style of {}",
"a close-up painting in the style of {}",
"a rendition in the style of {}",
"a nice painting in the style of {}",
"a small painting in the style of {}",
"a weird painting in the style of {}",
"a large painting in the style of {}",
]
class TextualInversionDataset(Dataset):
def __init__(
self,
data_root,
tokenizer,
learnable_property="object", # [object, style]
size=512,
repeats=100,
interpolation="bicubic",
set="train",
placeholder_token="*",
center_crop=False,
templates=None,
):
self.data_root = data_root
self.tokenizer = tokenizer
self.learnable_property = learnable_property
self.size = size
self.placeholder_token = placeholder_token
self.center_crop = center_crop
self.image_paths = [
os.path.join(self.data_root, file_path)
for file_path in os.listdir(self.data_root)
if file_path.lower().endswith((".png", ".jpg", ".jpeg"))
]
self.num_images = len(self.image_paths)
self._length = self.num_images
if set == "train":
self._length = self.num_images * repeats
self.interpolation = {
"linear": PIL.Image.LINEAR,
"bilinear": PIL.Image.Resampling.BILINEAR,
"bicubic": PIL.Image.Resampling.BICUBIC,
"lanczos": PIL.Image.Resampling.LANCZOS,
}[interpolation]
self.templates = templates
self.cache = {}
self.tokenized_templates = [
self.tokenizer(
text.format(self.placeholder_token),
padding="max_length",
truncation=True,
max_length=self.tokenizer.model_max_length,
return_tensors="pt",
).input_ids[0]
for text in self.templates
]
def __len__(self):
return self._length
def get_example(self, image_path, flipped):
if image_path in self.cache:
return self.cache[image_path]
example = {}
image = Image.open(image_path)
if not image.mode == "RGB":
image = image.convert("RGB")
# default to score-sde preprocessing
img = np.array(image).astype(np.uint8)
if self.center_crop:
crop = min(img.shape[0], img.shape[1])
(
h,
w,
) = (
img.shape[0],
img.shape[1],
)
img = img[
(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2
]
image = Image.fromarray(img)
image = image.resize((self.size, self.size), resample=self.interpolation)
image = transforms.RandomHorizontalFlip(p=1 if flipped else 0)(image)
image = np.array(image).astype(np.uint8)
image = (image / 127.5 - 1.0).astype(np.float32)
example["key"] = "-".join([image_path, "-", str(flipped)])
example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
self.cache[image_path] = example
return example
def __getitem__(self, i):
flipped = random.choice([False, True])
example = self.get_example(self.image_paths[i % self.num_images], flipped)
example["input_ids"] = random.choice(self.tokenized_templates)
return example
def freeze_params(params):
for param in params:
param.requires_grad = False
def save_resume_file(basepath, extra={}, config=""):
info = {"args": config["args"]}
info["args"].update(extra)
with open(f"{os.path.join(basepath, 'resume.json')}", "w") as f:
# print (info)
json.dump(info, f, indent=4)
with open(f"{basepath}/token_identifier.txt", "w") as f:
f.write(f"{config['args']['placeholder_token']}")
with open(f"{basepath}/type_of_concept.txt", "w") as f:
f.write(f"{config['args']['learnable_property']}")
config["args"] = info["args"]
return config["args"]
class Checkpointer:
def __init__(
self,
accelerator,
vae,
unet,
tokenizer,
placeholder_token,
placeholder_token_id,
templates,
output_dir,
random_sample_batches,
sample_batch_size,
stable_sample_batches,
seed,
):
self.accelerator = accelerator
self.vae = vae
self.unet = unet
self.tokenizer = tokenizer
self.placeholder_token = placeholder_token
self.placeholder_token_id = placeholder_token_id
self.templates = templates
self.output_dir = output_dir
self.seed = seed
self.random_sample_batches = random_sample_batches
self.sample_batch_size = sample_batch_size
self.stable_sample_batches = stable_sample_batches
@torch.no_grad()
def checkpoint(self, step, text_encoder, save_samples=True, path=None):
print("Saving checkpoint for step %d..." % step)
with torch.autocast("cuda"):
if path is None:
checkpoints_path = f"{self.output_dir}/checkpoints"
os.makedirs(checkpoints_path, exist_ok=True)
unwrapped = self.accelerator.unwrap_model(text_encoder)
# Save a checkpoint
learned_embeds = unwrapped.get_input_embeddings().weight[
self.placeholder_token_id
]
learned_embeds_dict = {
self.placeholder_token: learned_embeds.detach().cpu()
}
filename = "%s_%d.bin" % (slugify(self.placeholder_token), step)
if path is not None:
torch.save(learned_embeds_dict, path)
else:
torch.save(learned_embeds_dict, f"{checkpoints_path}/{filename}")
torch.save(learned_embeds_dict, f"{checkpoints_path}/last.bin")
del unwrapped
del learned_embeds
@torch.no_grad()
def save_samples(
self,
step,
text_encoder,
height,
width,
guidance_scale,
eta,
num_inference_steps,
):
samples_path = f"{self.output_dir}/concept_images"
os.makedirs(samples_path, exist_ok=True)
# if "checker" not in server_state['textual_inversion']:
# with server_state_lock['textual_inversion']["checker"]:
server_state["textual_inversion"]["checker"] = NoCheck()
# if "unwrapped" not in server_state['textual_inversion']:
# with server_state_lock['textual_inversion']["unwrapped"]:
server_state["textual_inversion"]["unwrapped"] = self.accelerator.unwrap_model(
text_encoder
)
# if "pipeline" not in server_state['textual_inversion']:
# with server_state_lock['textual_inversion']["pipeline"]:
# Save a sample image
server_state["textual_inversion"]["pipeline"] = StableDiffusionPipeline(
text_encoder=server_state["textual_inversion"]["unwrapped"],
vae=self.vae,
unet=self.unet,
tokenizer=self.tokenizer,
scheduler=LMSDiscreteScheduler(
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear"
),
safety_checker=NoCheck(),
feature_extractor=CLIPFeatureExtractor.from_pretrained(
"openai/clip-vit-base-patch32"
),
).to("cuda")
server_state["textual_inversion"]["pipeline"].enable_attention_slicing()
if self.stable_sample_batches > 0:
stable_latents = torch.randn(
(
self.sample_batch_size,
server_state["textual_inversion"]["pipeline"].unet.in_channels,
height // 8,
width // 8,
),
device=server_state["textual_inversion"]["pipeline"].device,
generator=torch.Generator(
device=server_state["textual_inversion"]["pipeline"].device
).manual_seed(self.seed),
)
stable_prompts = [
choice.format(self.placeholder_token)
for choice in (self.templates * self.sample_batch_size)[
: self.sample_batch_size
]
]
# Generate and save stable samples
for i in range(0, self.stable_sample_batches):
samples = server_state["textual_inversion"]["pipeline"](
prompt=stable_prompts,
height=384,
latents=stable_latents,
width=384,
guidance_scale=guidance_scale,
eta=eta,
num_inference_steps=num_inference_steps,
output_type="pil",
)["sample"]
for idx, im in enumerate(samples):
filename = "stable_sample_%d_%d_step_%d.png" % (
i + 1,
idx + 1,
step,
)
im.save(f"{samples_path}/{filename}")
del samples
del stable_latents
prompts = [
choice.format(self.placeholder_token)
for choice in random.choices(self.templates, k=self.sample_batch_size)
]
# Generate and save random samples
for i in range(0, self.random_sample_batches):
samples = server_state["textual_inversion"]["pipeline"](
prompt=prompts,
height=384,
width=384,
guidance_scale=guidance_scale,
eta=eta,
num_inference_steps=num_inference_steps,
output_type="pil",
)["sample"]
for idx, im in enumerate(samples):
filename = "step_%d_sample_%d_%d.png" % (step, i + 1, idx + 1)
im.save(f"{samples_path}/{filename}")
del samples
del server_state["textual_inversion"]["checker"]
del server_state["textual_inversion"]["unwrapped"]
del server_state["textual_inversion"]["pipeline"]
torch.cuda.empty_cache()
# @retry(RuntimeError, tries=5)
def textual_inversion(config):
print("Running textual inversion.")
# if "pipeline" in server_state["textual_inversion"]:
# del server_state['textual_inversion']["checker"]
# del server_state['textual_inversion']["unwrapped"]
# del server_state['textual_inversion']["pipeline"]
# torch.cuda.empty_cache()
global_step_offset = 0
# print(config['args']['resume_from'])
if config["args"]["resume_from"]:
try:
basepath = f"{config['args']['resume_from']}"
with open(f"{basepath}/resume.json", "r") as f:
state = json.load(f)
global_step_offset = state["args"].get("global_step", 0)
print("Resuming state from %s" % config["args"]["resume_from"])
print("We've trained %d steps so far" % global_step_offset)
except json.decoder.JSONDecodeError:
pass
else:
basepath = f"{config['args']['output_dir']}/{slugify(config['args']['placeholder_token'])}"
os.makedirs(basepath, exist_ok=True)
accelerator = Accelerator(
gradient_accumulation_steps=config["args"]["gradient_accumulation_steps"],
mixed_precision=config["args"]["mixed_precision"],
)
# If passed along, set the training seed.
if config["args"]["seed"]:
set_seed(config["args"]["seed"])
# if "tokenizer" not in server_state["textual_inversion"]:
# Load the tokenizer and add the placeholder token as a additional special token
# with server_state_lock['textual_inversion']["tokenizer"]:
if config["args"]["tokenizer_name"]:
server_state["textual_inversion"]["tokenizer"] = CLIPTokenizer.from_pretrained(
config["args"]["tokenizer_name"]
)
elif config["args"]["pretrained_model_name_or_path"]:
server_state["textual_inversion"]["tokenizer"] = CLIPTokenizer.from_pretrained(
config["args"]["pretrained_model_name_or_path"] + "/tokenizer"
)
# Add the placeholder token in tokenizer
num_added_tokens = server_state["textual_inversion"]["tokenizer"].add_tokens(
config["args"]["placeholder_token"]
)
if num_added_tokens == 0:
st.error(
f"The tokenizer already contains the token {config['args']['placeholder_token']}. Please pass a different"
" `placeholder_token` that is not already in the tokenizer."
)
# Convert the initializer_token, placeholder_token to ids
token_ids = server_state["textual_inversion"]["tokenizer"].encode(
config["args"]["initializer_token"], add_special_tokens=False
)
# Check if initializer_token is a single token or a sequence of tokens
if len(token_ids) > 1:
st.error("The initializer token must be a single token.")
initializer_token_id = token_ids[0]
placeholder_token_id = server_state["textual_inversion"][
"tokenizer"
].convert_tokens_to_ids(config["args"]["placeholder_token"])
# if "text_encoder" not in server_state['textual_inversion']:
# Load models and create wrapper for stable diffusion
# with server_state_lock['textual_inversion']["text_encoder"]:
server_state["textual_inversion"]["text_encoder"] = CLIPTextModel.from_pretrained(
config["args"]["pretrained_model_name_or_path"] + "/text_encoder",
)
# if "vae" not in server_state['textual_inversion']:
# with server_state_lock['textual_inversion']["vae"]:
server_state["textual_inversion"]["vae"] = AutoencoderKL.from_pretrained(
config["args"]["pretrained_model_name_or_path"] + "/vae",
)
# if "unet" not in server_state['textual_inversion']:
# with server_state_lock['textual_inversion']["unet"]:
server_state["textual_inversion"]["unet"] = UNet2DConditionModel.from_pretrained(
config["args"]["pretrained_model_name_or_path"] + "/unet",
)
base_templates = (
imagenet_style_templates_small
if config["args"]["learnable_property"] == "style"
else imagenet_templates_small
)
if config["args"]["custom_templates"]:
templates = config["args"]["custom_templates"].split(";")
else:
templates = base_templates
slice_size = (
server_state["textual_inversion"]["unet"].config.attention_head_dim // 2
)
server_state["textual_inversion"]["unet"].set_attention_slice(slice_size)
# Resize the token embeddings as we are adding new special tokens to the tokenizer
server_state["textual_inversion"]["text_encoder"].resize_token_embeddings(
len(server_state["textual_inversion"]["tokenizer"])
)
# Initialise the newly added placeholder token with the embeddings of the initializer token
token_embeds = (
server_state["textual_inversion"]["text_encoder"]
.get_input_embeddings()
.weight.data
)
if "resume_checkpoint" in config["args"]:
if config["args"]["resume_checkpoint"] is not None:
token_embeds[placeholder_token_id] = torch.load(
config["args"]["resume_checkpoint"]
)[config["args"]["placeholder_token"]]
else:
token_embeds[placeholder_token_id] = token_embeds[initializer_token_id]
# Freeze vae and unet
freeze_params(server_state["textual_inversion"]["vae"].parameters())
freeze_params(server_state["textual_inversion"]["unet"].parameters())
# Freeze all parameters except for the token embeddings in text encoder
params_to_freeze = itertools.chain(
server_state["textual_inversion"][
"text_encoder"
].text_model.encoder.parameters(),
server_state["textual_inversion"][
"text_encoder"
].text_model.final_layer_norm.parameters(),
server_state["textual_inversion"][
"text_encoder"
].text_model.embeddings.position_embedding.parameters(),
)
freeze_params(params_to_freeze)
checkpointer = Checkpointer(
accelerator=accelerator,
vae=server_state["textual_inversion"]["vae"],
unet=server_state["textual_inversion"]["unet"],
tokenizer=server_state["textual_inversion"]["tokenizer"],
placeholder_token=config["args"]["placeholder_token"],
placeholder_token_id=placeholder_token_id,
templates=templates,
output_dir=basepath,
sample_batch_size=config["args"]["sample_batch_size"],
random_sample_batches=config["args"]["random_sample_batches"],
stable_sample_batches=config["args"]["stable_sample_batches"],
seed=config["args"]["seed"],
)
if config["args"]["scale_lr"]:
config["args"]["learning_rate"] = (
config["args"]["learning_rate"]
* config["args"]["gradient_accumulation_steps"]
* config["args"]["train_batch_size"]
* accelerator.num_processes
)
# Initialize the optimizer
optimizer = torch.optim.AdamW(
server_state["textual_inversion"]["text_encoder"]
.get_input_embeddings()
.parameters(), # only optimize the embeddings
lr=config["args"]["learning_rate"],
betas=(config["args"]["adam_beta1"], config["args"]["adam_beta2"]),
weight_decay=config["args"]["adam_weight_decay"],
eps=config["args"]["adam_epsilon"],
)
# TODO (patil-suraj): load scheduler using args
noise_scheduler = DDPMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
num_train_timesteps=1000,
tensor_format="pt",
)
train_dataset = TextualInversionDataset(
data_root=config["args"]["train_data_dir"],
tokenizer=server_state["textual_inversion"]["tokenizer"],
size=config["args"]["resolution"],
placeholder_token=config["args"]["placeholder_token"],
repeats=config["args"]["repeats"],
learnable_property=config["args"]["learnable_property"],
center_crop=config["args"]["center_crop"],
set="train",
templates=templates,
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset, batch_size=config["args"]["train_batch_size"], shuffle=True
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / config["args"]["gradient_accumulation_steps"]
)
if config["args"]["max_train_steps"] is None:
config["args"]["max_train_steps"] = (
config["args"]["num_train_epochs"] * num_update_steps_per_epoch
)
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
config["args"]["lr_scheduler"],
optimizer=optimizer,
num_warmup_steps=config["args"]["lr_warmup_steps"]
* config["args"]["gradient_accumulation_steps"],
num_training_steps=config["args"]["max_train_steps"]
* config["args"]["gradient_accumulation_steps"],
)
(
server_state["textual_inversion"]["text_encoder"],
optimizer,
train_dataloader,
lr_scheduler,
) = accelerator.prepare(
server_state["textual_inversion"]["text_encoder"],
optimizer,
train_dataloader,
lr_scheduler,
)
# Move vae and unet to device
server_state["textual_inversion"]["vae"].to(accelerator.device)
server_state["textual_inversion"]["unet"].to(accelerator.device)
# Keep vae and unet in eval mode as we don't train these
server_state["textual_inversion"]["vae"].eval()
server_state["textual_inversion"]["unet"].eval()
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(
len(train_dataloader) / config["args"]["gradient_accumulation_steps"]
)
if overrode_max_train_steps:
config["args"]["max_train_steps"] = (
config["args"]["num_train_epochs"] * num_update_steps_per_epoch
)
# Afterwards we recalculate our number of training epochs
config["args"]["num_train_epochs"] = math.ceil(
config["args"]["max_train_steps"] / num_update_steps_per_epoch
)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if accelerator.is_main_process:
accelerator.init_trackers("textual_inversion", config=config["args"])
# Train!
total_batch_size = (
config["args"]["train_batch_size"]
* accelerator.num_processes
* st.session_state["textual_inversion"]["args"]["gradient_accumulation_steps"]
)
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {config['args']['num_train_epochs']}")
logger.info(
f" Instantaneous batch size per device = {config['args']['train_batch_size']}"
)
logger.info(
f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}"
)
logger.info(
f" Gradient Accumulation steps = {config['args']['gradient_accumulation_steps']}"
)
logger.info(f" Total optimization steps = {config['args']['max_train_steps']}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(
range(config["args"]["max_train_steps"]),
disable=not accelerator.is_local_main_process,
)
progress_bar.set_description("Steps")
global_step = 0
encoded_pixel_values_cache = {}
try:
for epoch in range(config["args"]["num_train_epochs"]):
server_state["textual_inversion"]["text_encoder"].train()
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(
server_state["textual_inversion"]["text_encoder"]
):
# Convert images to latent space
key = "|".join(batch["key"])
if encoded_pixel_values_cache.get(key, None) is None:
encoded_pixel_values_cache[key] = (
server_state["textual_inversion"]["vae"]
.encode(batch["pixel_values"])
.latent_dist
)
latents = (
encoded_pixel_values_cache[key].sample().detach().half()
* 0.18215
)
# Sample noise that we'll add to the latents
noise = torch.randn(latents.shape).to(latents.device)
bsz = latents.shape[0]
# Sample a random timestep for each image
timesteps = torch.randint(
0,
noise_scheduler.num_train_timesteps,
(bsz,),
device=latents.device,
).long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
encoder_hidden_states = server_state["textual_inversion"][
"text_encoder"
](batch["input_ids"])[0]
# Predict the noise residual
noise_pred = server_state["textual_inversion"]["unet"](
noisy_latents, timesteps, encoder_hidden_states
).sample
loss = (
F.mse_loss(noise_pred, noise, reduction="none")
.mean([1, 2, 3])
.mean()
)
accelerator.backward(loss)
# Zero out the gradients for all token embeddings except the newly added
# embeddings for the concept, as we only want to optimize the concept embeddings
if accelerator.num_processes > 1:
grads = (
server_state["textual_inversion"]["text_encoder"]
.module.get_input_embeddings()
.weight.grad
)
else:
grads = (
server_state["textual_inversion"]["text_encoder"]
.get_input_embeddings()
.weight.grad
)
# Get the index for tokens that we want to zero the grads for
index_grads_to_zero = (
torch.arange(
len(server_state["textual_inversion"]["tokenizer"])
)
!= placeholder_token_id
)
grads.data[index_grads_to_zero, :] = grads.data[
index_grads_to_zero, :
].fill_(0)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# try:
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
if (
global_step % config["args"]["checkpoint_frequency"] == 0
and global_step > 0
and accelerator.is_main_process
):
checkpointer.checkpoint(
global_step + global_step_offset,
server_state["textual_inversion"]["text_encoder"],
)
save_resume_file(
basepath,
{
"global_step": global_step + global_step_offset,
"resume_checkpoint": f"{basepath}/checkpoints/last.bin",
},
config,
)
checkpointer.save_samples(
global_step + global_step_offset,
server_state["textual_inversion"]["text_encoder"],
config["args"]["resolution"],
config["args"]["resolution"],
7.5,
0.0,
config["args"]["sample_steps"],
)
checkpointer.checkpoint(
global_step + global_step_offset,
server_state["textual_inversion"]["text_encoder"],
path=f"{basepath}/learned_embeds.bin",
)
# except KeyError:
# raise StopException
logs = {
"loss": loss.detach().item(),
"lr": lr_scheduler.get_last_lr()[0],
}
progress_bar.set_postfix(**logs)
# accelerator.log(logs, step=global_step)
# try:
if global_step >= config["args"]["max_train_steps"]:
break
# except:
# pass
accelerator.wait_for_everyone()
# Create the pipeline using the trained modules and save it.
if accelerator.is_main_process:
print("Finished! Saving final checkpoint and resume state.")
checkpointer.checkpoint(
global_step + global_step_offset,
server_state["textual_inversion"]["text_encoder"],
path=f"{basepath}/learned_embeds.bin",
)
save_resume_file(
basepath,
{
"global_step": global_step + global_step_offset,
"resume_checkpoint": f"{basepath}/checkpoints/last.bin",
},
config,
)
accelerator.end_training()
except (KeyboardInterrupt, StopException):
print("Received Streamlit StopException or KeyboardInterrupt")
if accelerator.is_main_process:
print("Interrupted, saving checkpoint and resume state...")
checkpointer.checkpoint(
global_step + global_step_offset,
server_state["textual_inversion"]["text_encoder"],
)
config["args"] = save_resume_file(
basepath,
{
"global_step": global_step + global_step_offset,
"resume_checkpoint": f"{basepath}/checkpoints/last.bin",
},
config,
)
checkpointer.checkpoint(
global_step + global_step_offset,
server_state["textual_inversion"]["text_encoder"],
path=f"{basepath}/learned_embeds.bin",
)
quit()
def layout():
with st.form("textual-inversion"):
# st.info("Under Construction. :construction_worker:")
# parser = argparse.ArgumentParser(description="Simple example of a training script.")
set_page_title("Textual Inversion - Stable Diffusion Playground")
config_tab, output_tab, tensorboard_tab = st.tabs(
["Textual Inversion Config", "Ouput", "TensorBoard"]
)
with config_tab:
col1, col2, col3, col4, col5 = st.columns(5, gap="large")
if "textual_inversion" not in st.session_state:
st.session_state["textual_inversion"] = {}
if "textual_inversion" not in server_state:
server_state["textual_inversion"] = {}
if "args" not in st.session_state["textual_inversion"]:
st.session_state["textual_inversion"]["args"] = {}
with col1:
st.session_state["textual_inversion"]["args"][
"pretrained_model_name_or_path"
] = st.text_input(
"Pretrained Model Path",
value=st.session_state[
"defaults"
].textual_inversion.pretrained_model_name_or_path,
help="Path to pretrained model or model identifier from huggingface.co/models.",
)
st.session_state["textual_inversion"]["args"][
"tokenizer_name"
] = st.text_input(
"Tokenizer Name",
value=st.session_state["defaults"].textual_inversion.tokenizer_name,
help="Pretrained tokenizer name or path if not the same as model_name",
)
st.session_state["textual_inversion"]["args"][
"train_data_dir"
] = st.text_input(
"train_data_dir",
value="",
help="A folder containing the training data.",
)
st.session_state["textual_inversion"]["args"][
"placeholder_token"
] = st.text_input(
"Placeholder Token",
value="",
help="A token to use as a placeholder for the concept.",
)
st.session_state["textual_inversion"]["args"][
"initializer_token"
] = st.text_input(
"Initializer Token",
value="",
help="A token to use as initializer word.",
)
st.session_state["textual_inversion"]["args"][
"learnable_property"
] = st.selectbox(
"Learnable Property",
["object", "style"],
index=0,
help="Choose between 'object' and 'style'",
)
st.session_state["textual_inversion"]["args"]["repeats"] = int(
st.text_input(
"Number of times to Repeat",
value=100,
help="How many times to repeat the training data.",
)
)
with col2:
st.session_state["textual_inversion"]["args"][
"output_dir"
] = st.text_input(
"Output Directory",
value=str(os.path.join("outputs", "textual_inversion")),
help="The output directory where the model predictions and checkpoints will be written.",
)
st.session_state["textual_inversion"]["args"]["seed"] = seed_to_int(
st.text_input(
"Seed",
value=0,
help="A seed for reproducible training, if left empty a random one will be generated. Default: 0",
)
)
st.session_state["textual_inversion"]["args"]["resolution"] = int(
st.text_input(
"Resolution",
value=512,
help="The resolution for input images, all the images in the train/validation dataset will be resized to this resolution",
)
)
st.session_state["textual_inversion"]["args"][
"center_crop"
] = st.checkbox(
"Center Image",
value=True,
help="Whether to center crop images before resizing to resolution",
)
st.session_state["textual_inversion"]["args"][
"train_batch_size"
] = int(
st.text_input(
"Train Batch Size",
value=1,
help="Batch size (per device) for the training dataloader.",
)
)
st.session_state["textual_inversion"]["args"][
"num_train_epochs"
] = int(
st.text_input(
"Number of Steps to Train",
value=100,
help="Number of steps to train.",
)
)
st.session_state["textual_inversion"]["args"][
"max_train_steps"
] = int(
st.text_input(
"Max Number of Steps to Train",
value=5000,
help="Total number of training steps to perform. If provided, overrides 'Number of Steps to Train'.",
)
)
with col3:
st.session_state["textual_inversion"]["args"][
"gradient_accumulation_steps"
] = int(
st.text_input(
"Gradient Accumulation Steps",
value=1,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
)
st.session_state["textual_inversion"]["args"][
"learning_rate"
] = float(
st.text_input(
"Learning Rate",
value=5.0e-04,
help="Initial learning rate (after the potential warmup period) to use.",
)
)
st.session_state["textual_inversion"]["args"][
"scale_lr"
] = st.checkbox(
"Scale Learning Rate",
value=True,
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
)
st.session_state["textual_inversion"]["args"][
"lr_scheduler"
] = st.text_input(
"Learning Rate Scheduler",
value="constant",
help=(
"The scheduler type to use. Choose between ['linear', 'cosine', 'cosine_with_restarts', 'polynomial',"
" 'constant', 'constant_with_warmup']"
),
)
st.session_state["textual_inversion"]["args"][
"lr_warmup_steps"
] = int(
st.text_input(
"Learning Rate Warmup Steps",
value=500,
help="Number of steps for the warmup in the lr scheduler.",
)
)
st.session_state["textual_inversion"]["args"][
"adam_beta1"
] = float(
st.text_input(
"Adam Beta 1",
value=0.9,
help="The beta1 parameter for the Adam optimizer.",
)
)
st.session_state["textual_inversion"]["args"][
"adam_beta2"
] = float(
st.text_input(
"Adam Beta 2",
value=0.999,
help="The beta2 parameter for the Adam optimizer.",
)
)
st.session_state["textual_inversion"]["args"][
"adam_weight_decay"
] = float(
st.text_input(
"Adam Weight Decay",
value=1e-2,
help="Weight decay to use.",
)
)
st.session_state["textual_inversion"]["args"][
"adam_epsilon"
] = float(
st.text_input(
"Adam Epsilon",
value=1e-08,
help="Epsilon value for the Adam optimizer",
)
)
with col4:
st.session_state["textual_inversion"]["args"][
"mixed_precision"
] = st.selectbox(
"Mixed Precision",
["no", "fp16", "bf16"],
index=1,
help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU.",
)
st.session_state["textual_inversion"]["args"][
"local_rank"
] = int(
st.text_input(
"Local Rank",
value=1,
help="For distributed training: local_rank",
)
)
st.session_state["textual_inversion"]["args"][
"checkpoint_frequency"
] = int(
st.text_input(
"Checkpoint Frequency",
value=500,
help="How often to save a checkpoint and sample image",
)
)
# stable_sample_batches is crashing when saving the samples so for now I will disable it util its fixed.
# st.session_state["textual_inversion"]["args"]["stable_sample_batches"] = int(st.text_input("Stable Sample Batches", value=0,
# help="Number of fixed seed sample batches to generate per checkpoint"))
st.session_state["textual_inversion"]["args"][
"stable_sample_batches"
] = 0
st.session_state["textual_inversion"]["args"][
"random_sample_batches"
] = int(
st.text_input(
"Random Sample Batches",
value=2,
help="Number of random seed sample batches to generate per checkpoint",
)
)
st.session_state["textual_inversion"]["args"][
"sample_batch_size"
] = int(
st.text_input(
"Sample Batch Size",
value=1,
help="Number of samples to generate per batch",
)
)
st.session_state["textual_inversion"]["args"][
"sample_steps"
] = int(
st.text_input(
"Sample Steps",
value=100,
help="Number of steps for sample generation. Higher values will result in more detailed samples, but longer runtimes.",
)
)
st.session_state["textual_inversion"]["args"][
"custom_templates"
] = st.text_input(
"Custom Templates",
value="",
help="A semicolon-delimited list of custom template to use for samples, using {} as a placeholder for the concept.",
)
with col5:
st.session_state["textual_inversion"]["args"][
"resume"
] = st.checkbox(
label="Resume Previous Run?",
value=False,
help="Resume previous run, if a valid resume.json file is on the output dir \
it will be used, otherwise if the 'Resume From' field bellow contains a valid resume.json file \
that one will be used.",
)
st.session_state["textual_inversion"]["args"][
"resume_from"
] = st.text_input(
label="Resume From",
help="Path to a directory to resume training from (ie, logs/token_name)",
)
# st.session_state["textual_inversion"]["args"]["resume_checkpoint"] = st.file_uploader("Resume Checkpoint", type=["bin"],
# help="Path to a specific checkpoint to resume training from (ie, logs/token_name/checkpoints/something.bin).")
# st.session_state["textual_inversion"]["args"]["st.session_state["textual_inversion"]"] = st.file_uploader("st.session_state["textual_inversion"] File", type=["json"],
# help="Path to a JSON st.session_state["textual_inversion"]uration file containing arguments for invoking this script."
# "If resume_from is given, its resume.json takes priority over this.")
#
# print (os.path.join(st.session_state["textual_inversion"]["args"]["output_dir"],st.session_state["textual_inversion"]["args"]["placeholder_token"].strip("<>"),"resume.json"))
# print (os.path.exists(os.path.join(st.session_state["textual_inversion"]["args"]["output_dir"],st.session_state["textual_inversion"]["args"]["placeholder_token"].strip("<>"),"resume.json")))
if os.path.exists(
os.path.join(
st.session_state["textual_inversion"]["args"]["output_dir"],
st.session_state["textual_inversion"]["args"][
"placeholder_token"
].strip("<>"),
"resume.json",
)
):
st.session_state["textual_inversion"]["args"][
"resume_from"
] = os.path.join(
st.session_state["textual_inversion"]["args"]["output_dir"],
st.session_state["textual_inversion"]["args"][
"placeholder_token"
].strip("<>"),
)
# print (st.session_state["textual_inversion"]["args"]["resume_from"])
if os.path.exists(
os.path.join(
st.session_state["textual_inversion"]["args"]["output_dir"],
st.session_state["textual_inversion"]["args"][
"placeholder_token"
].strip("<>"),
"checkpoints",
"last.bin",
)
):
st.session_state["textual_inversion"]["args"][
"resume_checkpoint"
] = os.path.join(
st.session_state["textual_inversion"]["args"]["output_dir"],
st.session_state["textual_inversion"]["args"][
"placeholder_token"
].strip("<>"),
"checkpoints",
"last.bin",
)
# if "resume_from" in st.session_state["textual_inversion"]["args"]:
# if st.session_state["textual_inversion"]["args"]["resume_from"]:
# if os.path.exists(os.path.join(st.session_state["textual_inversion"]['args']['resume_from'], "resume.json")):
# with open(os.path.join(st.session_state["textual_inversion"]['args']['resume_from'], "resume.json"), 'rt') as f:
# try:
# resume_json = json.load(f)["args"]
# st.session_state["textual_inversion"]["args"] = OmegaConf.merge(st.session_state["textual_inversion"]["args"], resume_json)
# st.session_state["textual_inversion"]["args"]["resume_from"] = os.path.join(
# st.session_state["textual_inversion"]["args"]["output_dir"], st.session_state["textual_inversion"]["args"]["placeholder_token"].strip("<>"))
# except json.decoder.JSONDecodeError:
# pass
# print(st.session_state["textual_inversion"]["args"])
# print(st.session_state["textual_inversion"]["args"]['resume_from'])
# elif st.session_state["textual_inversion"]["args"]["st.session_state["textual_inversion"]"] is not None:
# with open(st.session_state["textual_inversion"]["args"]["st.session_state["textual_inversion"]"], 'rt') as f:
# args = parser.parse_args(namespace=argparse.Namespace(**json.load(f)["args"]))
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
if (
env_local_rank != -1
and env_local_rank
!= st.session_state["textual_inversion"]["args"]["local_rank"]
):
st.session_state["textual_inversion"]["args"][
"local_rank"
] = env_local_rank
if st.session_state["textual_inversion"]["args"]["train_data_dir"] is None:
st.error("You must specify --train_data_dir")
if (
st.session_state["textual_inversion"]["args"][
"pretrained_model_name_or_path"
]
is None
):
st.error("You must specify --pretrained_model_name_or_path")
if (
st.session_state["textual_inversion"]["args"]["placeholder_token"]
is None
):
st.error("You must specify --placeholder_token")
if (
st.session_state["textual_inversion"]["args"]["initializer_token"]
is None
):
st.error("You must specify --initializer_token")
if st.session_state["textual_inversion"]["args"]["output_dir"] is None:
st.error("You must specify --output_dir")
# add a spacer and the submit button for the form.
st.session_state["textual_inversion"]["message"] = st.empty()
st.session_state["textual_inversion"]["progress_bar"] = st.empty()
st.write("---")
submit = st.form_submit_button("Run", help="")
if submit:
if "pipe" in st.session_state:
del st.session_state["pipe"]
if "model" in st.session_state:
del st.session_state["model"]
set_page_title("Running Textual Inversion - Stable Diffusion WebUI")
# st.session_state["textual_inversion"]["message"].info("Textual Inversion Running. For more info check the progress on your console or the Ouput Tab.")
try:
# try:
# run textual inversion.
config = st.session_state["textual_inversion"]
textual_inversion(config)
# except RuntimeError:
# if "pipeline" in server_state["textual_inversion"]:
# del server_state['textual_inversion']["checker"]
# del server_state['textual_inversion']["unwrapped"]
# del server_state['textual_inversion']["pipeline"]
# run textual inversion.
# config = st.session_state['textual_inversion']
# textual_inversion(config)
set_page_title("Textual Inversion - Stable Diffusion WebUI")
except StopException:
set_page_title("Textual Inversion - Stable Diffusion WebUI")
print("Received Streamlit StopException")
st.session_state["textual_inversion"]["message"].empty()
#
with output_tab:
st.info("Under Construction. :construction_worker:")
# st.info("Nothing to show yet. Maybe try running some training first.")
# st.session_state["textual_inversion"]["preview_image"] = st.empty()
# st.session_state["textual_inversion"]["progress_bar"] = st.empty()
with tensorboard_tab:
# st.info("Under Construction. :construction_worker:")
# Start TensorBoard
st_tensorboard(
logdir=os.path.join("outputs", "textual_inversion"), port=8888
)