stable-diffusion-webui/scripts/img2txt.py

357 lines
16 KiB
Python

# This file is part of stable-diffusion-webui (https://github.com/sd-webui/stable-diffusion-webui/).
# Copyright 2022 sd-webui team.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
# You should have received a copy of the GNU Affero General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
"""
CLIP Interrogator made by @pharmapsychotic modified to work with our WebUI.
# CLIP Interrogator by @pharmapsychotic
Twitter: https://twitter.com/pharmapsychotic
Github: https://github.com/pharmapsychotic/clip-interrogator
Description:
What do the different OpenAI CLIP models see in an image? What might be a good text prompt to create similar images using CLIP guided diffusion
or another text to image model? The CLIP Interrogator is here to get you answers!
Please consider buying him a coffee via [ko-fi](https://ko-fi.com/pharmapsychotic) or following him on [twitter](https://twitter.com/pharmapsychotic).
And if you're looking for more Ai art tools check out my [Ai generative art tools list](https://pharmapsychotic.com/tools.html).
"""
#
# base webui import and utils.
from sd_utils import *
# streamlit imports
import streamlit_nested_layout
#streamlit components section
#other imports
import clip, open_clip
import gc
import os
import pandas as pd
#import requests
import torch
import torchvision.transforms as T
import torchvision.transforms.functional as TF
from PIL import Image
from torch import nn
from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from ldm.models.blip import blip_decoder
# end of imports
#---------------------------------------------------------------------------------------------------------------
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
blip_image_eval_size = 512
blip_model = None
#blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base_caption.pth'
def load_blip_model():
st.session_state["log_message"].code("Loading BLIP Model", language='')
with server_state_lock['blip_model']:
if "blip_model" not in server_state:
blip_model = blip_decoder(pretrained="models/blip/model__base_caption.pth", image_size=blip_image_eval_size, vit='base', med_config="configs/blip/med_config.json")
blip_model.eval()
blip_model = blip_model.to(device).half()
st.session_state["log_message"].code("BLIP Model Loaded", language='')
else:
st.session_state["log_message"].code("BLIP Model Already Loaded", language='')
return blip_model
def generate_caption(pil_image):
global blip_model
width, height = pil_image.size
gpu_image = transforms.Compose([
transforms.Resize((width, height), interpolation=InterpolationMode.BICUBIC),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
])(pil_image).unsqueeze(0).to(device).half()
with torch.no_grad():
caption = blip_model.generate(gpu_image, sample=False, num_beams=3, max_length=20, min_length=5)
#print (caption)
return caption[0]
def load_list(filename):
with open(filename, 'r', encoding='utf-8', errors='replace') as f:
items = [line.strip() for line in f.readlines()]
return items
def rank(model, image_features, text_array, top_count=1):
top_count = min(top_count, len(text_array))
text_tokens = clip.tokenize([text for text in text_array]).cuda()
with torch.no_grad():
text_features = model.encode_text(text_tokens).float()
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = torch.zeros((1, len(text_array))).to(device)
for i in range(image_features.shape[0]):
similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
similarity /= image_features.shape[0]
top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1)
return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)]
def clear_cuda():
torch.cuda.empty_cache()
gc.collect()
def interrogate(image, models):
global blip_model
blip_model = load_blip_model()
print ("Generating Caption")
st.session_state["log_message"].code("Generating Caption", language='')
caption = generate_caption(image)
del blip_model
clear_cuda()
print ("Caption Generated")
if len(models) == 0:
print(f"\n\n{caption}")
return
table = []
bests = [[('',0)]]*5
for model_name in models:
print(f"Interrogating with {model_name}")
st.session_state["log_message"].code(f"Interrogating with {model_name}...", language='')
if model_name == 'ViT-H-14':
model, _, preprocess = open_clip.create_model_and_transforms(model_name, pretrained='laion2b_s32b_b79k')
elif model_name == 'ViT-g-14':
model, _, preprocess = open_clip.create_model_and_transforms(model_name, pretrained='laion2b_s12b_b42k')
else:
model, preprocess = clip.load(model_name, device=device)
#model, preprocess = clip.load(model_name)
model.cuda().eval()
images = preprocess(image).unsqueeze(0).cuda()
with torch.no_grad():
image_features = model.encode_image(images).float()
image_features /= image_features.norm(dim=-1, keepdim=True)
clear_cuda()
ranks = []
ranks.append(rank(model, image_features, server_state["mediums"]))
clear_cuda()
artists = []
for batch in range(int(len(server_state["artists"])/1000)):
artist_rank = rank(model, image_features, server_state["artists"][batch*1000:(batch+1)*1000])
artists.extend(artist_rank)
clear_cuda()
ranks.append(artists)
ranks.append(rank(model, image_features, server_state["trending_list"]))
clear_cuda()
ranks.append(rank(model, image_features, server_state["movements"]))
clear_cuda()
ranks.append(rank(model, image_features, server_state["flavors"], top_count=3))
clear_cuda()
for i in range(len(ranks)):
confidence_sum = 0
for ci in range(len(ranks[i])):
confidence_sum += ranks[i][ci][1]
if confidence_sum > sum(bests[i][t][1] for t in range(len(bests[i]))):
bests[i] = ranks[i]
row = [model_name]
for r in ranks:
row.append(', '.join([f"{x[0]} ({x[1]:0.1f}%)" for x in r]))
table.append(row)
#del model
gc.collect()
st.session_state["prediction_table"].dataframe(pd.DataFrame(table, columns=["Model", "Medium", "Artist", "Trending", "Movement", "Flavors"]))
flaves = ', '.join([f"{x[0]}" for x in bests[4]])
medium = bests[0][0][0]
for items in caption:
if items.startswith(medium):
st.session_state["text_result"].code(f"\n\n{caption} {bests[1][0][0]}, {bests[2][0][0]}, {bests[3][0][0]}, {flaves}", language="")
else:
st.session_state["text_result"].code(f"\n\n{caption}, {medium} {bests[1][0][0]}, {bests[2][0][0]}, {bests[3][0][0]}, {flaves}", language="")
st.session_state["log_message"].code("Finished Interrogating.", language="")
#
def img2txt():
data_path = "data/"
server_state["artists"] = load_list(os.path.join(data_path, 'img2txt', 'artists.txt'))
server_state["flavors"] = load_list(os.path.join(data_path, 'img2txt', 'flavors.txt'))
server_state["mediums"] = load_list(os.path.join(data_path, 'img2txt', 'mediums.txt'))
server_state["movements"] = load_list(os.path.join(data_path, 'img2txt', 'movements.txt'))
server_state["sites"] = load_list(os.path.join(data_path, 'img2txt', 'sites.txt'))
server_state["trending_list"] = [site for site in server_state["sites"]]
server_state["trending_list"].extend(["trending on "+site for site in server_state["sites"]])
server_state["trending_list"].extend(["featured on "+site for site in server_state["sites"]])
server_state["trending_list"].extend([site+" contest winner" for site in server_state["sites"]])
#image_path_or_url = "https://i.redd.it/e2e8gimigjq91.jpg"
models = []
if st.session_state["ViTB32"]:
models.append('ViT-B/32')
if st.session_state['ViTB16']:
models.append('ViT-B/16')
if st.session_state["ViTL14"]:
models.append('ViT-L/14')
if st.session_state["ViTL14_336px"]:
models.append('ViT-L/14@336px')
if st.session_state["RN101"]:
models.append('RN101')
if st.session_state["RN50"]:
models.append('RN50')
if st.session_state["RN50x4"]:
models.append('RN50x4')
if st.session_state["RN50x16"]:
models.append('RN50x16')
if st.session_state["RN50x64"]:
models.append('RN50x64')
#if str(image_path_or_url).startswith('http://') or str(image_path_or_url).startswith('https://'):
#image = Image.open(requests.get(image_path_or_url, stream=True).raw).convert('RGB')
#else:
#image = Image.open(image_path_or_url).convert('RGB')
#thumb = st.session_state["uploaded_image"].image.copy()
#thumb.thumbnail([blip_image_eval_size, blip_image_eval_size])
#display(thumb)
interrogate(st.session_state["uploaded_image"].pil_image, models=models)
#
def layout():
#set_page_title("Image-to-Text - Stable Diffusion WebUI")
#st.info("Under Construction. :construction_worker:")
with st.form("img2txt-inputs"):
st.session_state["generation_mode"] = "img2txt"
#st.write("---")
# creating the page layout using columns
col1, col2 = st.columns([1,4], gap="large")
with col1:
#url = st.text_area("Input Text","")
#url = st.text_input("Input Text","", placeholder="A corgi wearing a top hat as an oil painting.")
#st.subheader("Input Image")
st.session_state["uploaded_image"] = st.file_uploader('Input Image', type=['png', 'jpg', 'jpeg'], accept_multiple_files=True)
st.subheader("CLIP models")
with st.expander("Stable Diffusion", expanded=True):
st.session_state["ViTL14"] = st.checkbox("ViTL14", value=True, help="For StableDiffusion you can just use ViTL14.")
with st.expander("Others"):
st.info("For DiscoDiffusion and JAX enable all the same models here as you intend to use when generating your images.")
st.session_state["ViTL14_336px"] = st.checkbox("ViTL14_336px", value=False, help="ViTL14_336px model.")
st.session_state["ViTB16"] = st.checkbox("ViTB16", value=False, help="ViTB16 model.")
st.session_state["ViTB32"] = st.checkbox("ViTB32", value=False, help="ViTB32 model.")
st.session_state["RN50"] = st.checkbox("RN50", value=False, help="RN50 model.")
st.session_state["RN50x4"] = st.checkbox("RN50x4", value=False, help="RN50x4 model.")
st.session_state["RN50x16"] = st.checkbox("RN50x16", value=False, help="RN50x16 model.")
st.session_state["RN50x64"] = st.checkbox("RN50x64", value=False, help="RN50x64 model.")
st.session_state["RN101"] = st.checkbox("RN101", value=False, help="RN101 model.")
#
#st.subheader("Logs:")
st.session_state["log_message"] = st.empty() if not st.session_state["log_message"] else st.session_state["log_message"]
st.session_state["log_message"].code('', language="")
with col2:
st.subheader("Image")
refresh = st.form_submit_button("Refresh", help='Refresh the image preview to show your uploaded image instead of the default placeholder.')
col1_output, col2_output = st.columns([2,10], gap="medium")
if st.session_state["uploaded_image"]:
if type(st.session_state["uploaded_image"]) != list:
with col1_output:
st.session_state["input_image_preview"] = st.empty()
st.session_state["uploaded_image"].pil_image = Image.open(st.session_state["uploaded_image"]).convert('RGB')
st.session_state["input_image_preview"].image(st.session_state["uploaded_image"].pil_image, use_column_width=True, clamp=True)
with col2_output:
#with st.container():
##st.subheader("Image To Text Result")
st.session_state["prediction_table"] = st.empty() if not st.session_state["prediction_table"] or refresh else st.session_state["prediction_table"]
st.session_state["prediction_table"].table() if not st.session_state["prediction_table"].table() or refresh else st.session_state["prediction_table"].table()
st.session_state["text_result"] = st.empty() if not st.session_state["text_result"] or refresh else st.session_state["text_result"]
st.session_state["text_result"].code('', language="") if not st.session_state["text_result"].code('', language=""
) or refresh else st.session_state["text_result"].code('', language="")
else:
for i in range(st.session_state["uploaded_image"]):
#for image in st.session_state["uploaded_image"]:
#st.session_state["uploaded_image"].pil_image[i] = []
st.session_state["uploaded_image"].pil_image[i] = Image.open(st.session_state["uploaded_image"][i]).convert('RGB')
#
#st.write("---")
with col1_output:
st.session_state["input_image_preview"] = st.empty()
st.session_state["uploaded_image"].pil_image = Image.open(st.session_state["uploaded_image"]).convert('RGB')
st.session_state["input_image_preview"].image(st.session_state["uploaded_image"].pil_image, use_column_width=True, clamp=True)
with col2_output:
#with st.container():
##st.subheader("Image To Text Result")
st.session_state["prediction_table"] = st.empty() if not st.session_state["prediction_table"] or refresh else st.session_state["prediction_table"]
st.session_state["prediction_table"].table() if not st.session_state["prediction_table"].table() or refresh else st.session_state["prediction_table"].table()
st.session_state["text_result"] = st.empty() if not st.session_state["text_result"] or refresh else st.session_state["text_result"]
st.session_state["text_result"].code('', language="") if not st.session_state["text_result"].code('', language=""
) or refresh else st.session_state["text_result"].code('', language="")
else:
#st.session_state["input_image_preview"].code('', language="")
st.image("images/streamlit/img2txt_placeholder.png", clamp=True)
#
# Every form must have a submit button, the extra blank spaces is a temp way to align it with the input field. Needs to be done in CSS or some other way.
#generate_col1.title("")
#generate_col1.title("")
generate_button = st.form_submit_button("Generate!")
if generate_button:
# run clip interrogator
img2txt()