stable-diffusion-webui/optimizedSD/optimized_txt2img.py
hlky 010b27ce9a
Repo merge (#712)
* repo-merge

* cutdown size

* Create setup.py

* webui.cmd

* ldm

* Update environment.yaml

* Update environment.yaml
2022-09-06 23:50:14 +01:00

297 lines
8.2 KiB
Python

import argparse, os, sys, glob, random
import torch
import numpy as np
import copy
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange
from torchvision.utils import make_grid
import time
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import contextmanager, nullcontext
from ldm.util import instantiate_from_config
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
def load_model_from_config(ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
sd = pl_sd["state_dict"]
return sd
config = "optimizedSD/v1-inference.yaml"
ckpt = "models/ldm/stable-diffusion-v1/model.ckpt"
device = "cuda"
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt",
type=str,
nargs="?",
default="a painting of a virus monster playing guitar",
help="the prompt to render"
)
parser.add_argument(
"--outdir",
type=str,
nargs="?",
help="dir to write results to",
default="outputs/txt2img-samples"
)
parser.add_argument(
"--skip_grid",
action='store_true',
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
)
parser.add_argument(
"--skip_save",
action='store_true',
help="do not save individual samples. For speed measurements.",
)
parser.add_argument(
"--ddim_steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--fixed_code",
action='store_true',
help="if enabled, uses the same starting code across samples ",
)
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
default=1,
help="sample this often",
)
parser.add_argument(
"--H",
type=int,
default=512,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=512,
help="image width, in pixel space",
)
parser.add_argument(
"--C",
type=int,
default=4,
help="latent channels",
)
parser.add_argument(
"--f",
type=int,
default=8,
help="downsampling factor",
)
parser.add_argument(
"--n_samples",
type=int,
default=5,
help="how many samples to produce for each given prompt. A.k.a. batch size",
)
parser.add_argument(
"--n_rows",
type=int,
default=0,
help="rows in the grid (default: n_samples)",
)
parser.add_argument(
"--scale",
type=float,
default=7.5,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
parser.add_argument(
"--from-file",
type=str,
help="if specified, load prompts from this file",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="the seed (for reproducible sampling)",
)
parser.add_argument(
"--small_batch",
action='store_true',
help="Reduce inference time when generate a smaller batch of images",
)
parser.add_argument(
"--precision",
type=str,
help="evaluate at this precision",
choices=["full", "autocast"],
default="autocast"
)
opt = parser.parse_args()
tic = time.time()
os.makedirs(opt.outdir, exist_ok=True)
outpath = opt.outdir
sample_path = os.path.join(outpath, "samples", "_".join(opt.prompt.split())[:255])
os.makedirs(sample_path, exist_ok=True)
base_count = len(os.listdir(sample_path))
grid_count = len(os.listdir(outpath)) - 1
seed_everything(opt.seed)
sd = load_model_from_config(f"{ckpt}")
li = []
lo = []
for key, value in sd.items():
sp = key.split('.')
if(sp[0]) == 'model':
if('input_blocks' in sp):
li.append(key)
elif('middle_block' in sp):
li.append(key)
elif('time_embed' in sp):
li.append(key)
else:
lo.append(key)
for key in li:
sd['model1.' + key[6:]] = sd.pop(key)
for key in lo:
sd['model2.' + key[6:]] = sd.pop(key)
config = OmegaConf.load(f"{config}")
config.modelUNet.params.ddim_steps = opt.ddim_steps
if opt.small_batch:
config.modelUNet.params.small_batch = True
else:
config.modelUNet.params.small_batch = False
model = instantiate_from_config(config.modelUNet)
_, _ = model.load_state_dict(sd, strict=False)
model.eval()
modelCS = instantiate_from_config(config.modelCondStage)
_, _ = modelCS.load_state_dict(sd, strict=False)
modelCS.eval()
modelFS = instantiate_from_config(config.modelFirstStage)
_, _ = modelFS.load_state_dict(sd, strict=False)
modelFS.eval()
if opt.precision == "autocast":
model.half()
modelCS.half()
start_code = None
if opt.fixed_code:
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
batch_size = opt.n_samples
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
if not opt.from_file:
prompt = opt.prompt
assert prompt is not None
data = [batch_size * [prompt]]
else:
print(f"reading prompts from {opt.from_file}")
with open(opt.from_file, "r") as f:
data = f.read().splitlines()
data = list(chunk(data, batch_size))
precision_scope = autocast if opt.precision=="autocast" else nullcontext
with torch.no_grad():
all_samples = list()
for n in trange(opt.n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
with precision_scope("cuda"):
modelCS.to(device)
uc = None
if opt.scale != 1.0:
uc = modelCS.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
c = modelCS.get_learned_conditioning(prompts)
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
mem = torch.cuda.memory_allocated()/1e6
modelCS.to("cpu")
while(torch.cuda.memory_allocated()/1e6 >= mem):
time.sleep(1)
samples_ddim = model.sample(S=opt.ddim_steps,
conditioning=c,
batch_size=opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
x_T=start_code)
modelFS.to(device)
print("saving images")
for i in range(batch_size):
x_samples_ddim = modelFS.decode_first_stage(samples_ddim[i].unsqueeze(0))
x_sample = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
# for x_sample in x_samples_ddim:
x_sample = 255. * rearrange(x_sample[0].cpu().numpy(), 'c h w -> h w c')
Image.fromarray(x_sample.astype(np.uint8)).save(
os.path.join(sample_path, f"{base_count:05}.png"))
base_count += 1
mem = torch.cuda.memory_allocated()/1e6
modelFS.to("cpu")
while(torch.cuda.memory_allocated()/1e6 >= mem):
time.sleep(1)
# if not opt.skip_grid:
# all_samples.append(x_samples_ddim)
del samples_ddim
print("memory_final = ", torch.cuda.memory_allocated()/1e6)
# if not skip_grid:
# # additionally, save as grid
# grid = torch.stack(all_samples, 0)
# grid = rearrange(grid, 'n b c h w -> (n b) c h w')
# grid = make_grid(grid, nrow=n_rows)
# # to image
# grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
# Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
# grid_count += 1
toc = time.time()
time_taken = (toc-tic)/60.0
print(("Your samples are ready in {0:.2f} minutes and waiting for you here \n" + sample_path).format(time_taken))