stable-diffusion-webui/scripts/clip_interrogator.py
2023-06-23 02:58:24 +00:00

243 lines
7.2 KiB
Python

# @title Setup
#!pip3 install ftfy regex tqdm transformers==4.15.0 timm==0.4.12 fairscale==0.4.4
#!pip3 install git+https://github.com/openai/CLIP.git
#!git clone https://github.com/pharmapsychotic/clip-interrogator.git
#!git clone https://github.com/salesforce/BLIP
# %cd /content/BLIP
import clip
import gc
# import numpy as np
import os
import pandas as pd
import requests
import torch
# import torchvision.transforms as T
# import torchvision.transforms.functional as TF
from IPython.display import display
from PIL import Image
# from torch import nn
# from torch.nn import functional as F
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from ldm.models.blip import blip_decoder
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
blip_image_eval_size = 384
blip_model_url = "https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base_caption.pth"
blip_model = blip_decoder(
pretrained=blip_model_url, image_size=blip_image_eval_size, vit="base"
)
blip_model.eval()
blip_model = blip_model.to(device)
def generate_caption(pil_image):
gpu_image = (
transforms.Compose(
[
transforms.Resize(
(blip_image_eval_size, blip_image_eval_size),
interpolation=InterpolationMode.BICUBIC,
),
transforms.ToTensor(),
transforms.Normalize(
(0.48145466, 0.4578275, 0.40821073),
(0.26862954, 0.26130258, 0.27577711),
),
]
)(image)
.unsqueeze(0)
.to(device)
)
with torch.no_grad():
caption = blip_model.generate(
gpu_image, sample=False, num_beams=3, max_length=20, min_length=5
)
return caption[0]
def load_list(filename):
with open(filename, "r", encoding="utf-8", errors="replace") as f:
items = [line.strip() for line in f.readlines()]
return items
def rank(model, image_features, text_array, top_count=1):
top_count = min(top_count, len(text_array))
text_tokens = clip.tokenize([text for text in text_array]).cuda()
with torch.no_grad():
text_features = model.encode_text(text_tokens).float()
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = torch.zeros((1, len(text_array))).to(device)
for i in range(image_features.shape[0]):
similarity += (
100.0 * image_features[i].unsqueeze(0) @ text_features.T
).softmax(dim=-1)
similarity /= image_features.shape[0]
top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1)
return [
(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy() * 100))
for i in range(top_count)
]
def interrogate(image, models):
caption = generate_caption(image)
if len(models) == 0:
print(f"\n\n{caption}")
return
table = []
bests = [[("", 0)]] * 5
for model_name in models:
print(f"Interrogating with {model_name}...")
model, preprocess = clip.load(model_name)
model.cuda().eval()
images = preprocess(image).unsqueeze(0).cuda()
with torch.no_grad():
image_features = model.encode_image(images).float()
image_features /= image_features.norm(dim=-1, keepdim=True)
ranks = [
rank(model, image_features, mediums),
rank(model, image_features, ["by " + artist for artist in artists]),
rank(model, image_features, trending_list),
rank(model, image_features, movements),
rank(model, image_features, flavors, top_count=3),
]
for i in range(len(ranks)):
confidence_sum = 0
for ci in range(len(ranks[i])):
confidence_sum += ranks[i][ci][1]
if confidence_sum > sum(bests[i][t][1] for t in range(len(bests[i]))):
bests[i] = ranks[i]
row = [model_name]
for r in ranks:
row.append(", ".join([f"{x[0]} ({x[1]:0.1f}%)" for x in r]))
table.append(row)
del model
gc.collect()
display(
pd.DataFrame(
table,
columns=["Model", "Medium", "Artist", "Trending", "Movement", "Flavors"],
)
)
flaves = ", ".join([f"{x[0]}" for x in bests[4]])
medium = bests[0][0][0]
if caption.startswith(medium):
print(
f"\n\n{caption} {bests[1][0][0]}, {bests[2][0][0]}, {bests[3][0][0]}, {flaves}"
)
else:
print(
f"\n\n{caption}, {medium} {bests[1][0][0]}, {bests[2][0][0]}, {bests[3][0][0]}, {flaves}"
)
data_path = "../clip-interrogator/data/"
artists = load_list(os.path.join(data_path, "artists.txt"))
flavors = load_list(os.path.join(data_path, "flavors.txt"))
mediums = load_list(os.path.join(data_path, "mediums.txt"))
movements = load_list(os.path.join(data_path, "movements.txt"))
sites = [
"Artstation",
"behance",
"cg society",
"cgsociety",
"deviantart",
"dribble",
"flickr",
"instagram",
"pexels",
"pinterest",
"pixabay",
"pixiv",
"polycount",
"reddit",
"shutterstock",
"tumblr",
"unsplash",
"zbrush central",
]
trending_list = [site for site in sites]
trending_list.extend(["trending on " + site for site in sites])
trending_list.extend(["featured on " + site for site in sites])
trending_list.extend([site + " contest winner" for site in sites])
# @title Interrogate!
# @markdown
# @markdown #####**Image:**
image_path_or_url = "https://i.redd.it/e2e8gimigjq91.jpg" # @param {type:"string"}
# @markdown
# @markdown #####**CLIP models:**
# @markdown For [StableDiffusion](https://stability.ai/blog/stable-diffusion-announcement) you can just use ViTL14<br>
# @markdown For [DiscoDiffusion](https://colab.research.google.com/github/alembics/disco-diffusion/blob/main/Disco_Diffusion.ipynb) and
# @markdown [JAX](https://colab.research.google.com/github/huemin-art/jax-guided-diffusion/blob/v2.7/Huemin_Jax_Diffusion_2_7.ipynb) enable all the same models here as you intend to use when generating your images
ViTB32 = True # @param{type:"boolean"}
ViTB16 = True # @param{type:"boolean"}
ViTL14 = False # @param{type:"boolean"}
ViTL14_336px = False # @param{type:"boolean"}
RN101 = False # @param{type:"boolean"}
RN50 = True # @param{type:"boolean"}
RN50x4 = False # @param{type:"boolean"}
RN50x16 = False # @param{type:"boolean"}
RN50x64 = False # @param{type:"boolean"}
models = []
if ViTB32:
models.append("ViT-B/32")
if ViTB16:
models.append("ViT-B/16")
if ViTL14:
models.append("ViT-L/14")
if ViTL14_336px:
models.append("ViT-L/14@336px")
if RN101:
models.append("RN101")
if RN50:
models.append("RN50")
if RN50x4:
models.append("RN50x4")
if RN50x16:
models.append("RN50x16")
if RN50x64:
models.append("RN50x64")
if str(image_path_or_url).startswith("http://") or str(image_path_or_url).startswith(
"https://"
):
image = Image.open(requests.get(image_path_or_url, stream=True).raw).convert("RGB")
else:
image = Image.open(image_path_or_url).convert("RGB")
thumb = image.copy()
thumb.thumbnail([blip_image_eval_size, blip_image_eval_size])
display(thumb)
interrogate(image, models=models)