mirror of
https://github.com/sd-webui/stable-diffusion-webui.git
synced 2024-12-15 15:22:55 +03:00
48 lines
1.5 KiB
Python
48 lines
1.5 KiB
Python
import numpy as np
|
|
|
|
def perlin(x, y, seed=0):
|
|
# permutation table
|
|
np.random.seed(seed)
|
|
p = np.arange(256, dtype=int)
|
|
np.random.shuffle(p)
|
|
p = np.stack([p, p]).flatten()
|
|
# coordinates of the top-left
|
|
xi, yi = x.astype(int), y.astype(int)
|
|
# internal coordinates
|
|
xf, yf = x - xi, y - yi
|
|
# fade factors
|
|
u, v = fade(xf), fade(yf)
|
|
# noise components
|
|
n00 = gradient(p[p[xi] + yi], xf, yf)
|
|
n01 = gradient(p[p[xi] + yi + 1], xf, yf - 1)
|
|
n11 = gradient(p[p[xi + 1] + yi + 1], xf - 1, yf - 1)
|
|
n10 = gradient(p[p[xi + 1] + yi], xf - 1, yf)
|
|
# combine noises
|
|
x1 = lerp(n00, n10, u)
|
|
x2 = lerp(n01, n11, u) # FIX1: I was using n10 instead of n01
|
|
return lerp(x1, x2, v) # FIX2: I also had to reverse x1 and x2 here
|
|
|
|
def lerp(a, b, x):
|
|
"linear interpolation"
|
|
return a + x * (b - a)
|
|
|
|
def fade(t):
|
|
"6t^5 - 15t^4 + 10t^3"
|
|
return 6 * t**5 - 15 * t**4 + 10 * t**3
|
|
|
|
def gradient(h, x, y):
|
|
"grad converts h to the right gradient vector and return the dot product with (x,y)"
|
|
vectors = np.array([[0, 1], [0, -1], [1, 0], [-1, 0]])
|
|
g = vectors[h % 4]
|
|
return g[:, :, 0] * x + g[:, :, 1] * y
|
|
|
|
lin = np.linspace(0, 5, 100, endpoint=False)
|
|
x, y = np.meshgrid(lin, lin)
|
|
|
|
|
|
|
|
def perlinNoise(height,width,octavesx=5,octavesy=5,seed=None):
|
|
linx = np.linspace(0,octavesx,width,endpoint=False)
|
|
liny = np.linspace(0,octavesy,height,endpoint=False)
|
|
x,y = np.meshgrid(linx,liny)
|
|
return perlin(x,y,seed=seed) |