stable-diffusion-webui/scripts/stable_diffusion_pipeline.py

234 lines
9.0 KiB
Python

import inspect
import warnings
from tqdm.auto import tqdm
from typing import List, Optional, Union
import torch
from diffusers import ModelMixin
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import \
StableDiffusionSafetyChecker
from diffusers.schedulers import (DDIMScheduler, LMSDiscreteScheduler,
PNDMScheduler)
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
class StableDiffusionPipeline(DiffusionPipeline):
def __init__(
self,
vae: AutoencoderKL,
text_encoder: CLIPTextModel,
tokenizer: CLIPTokenizer,
unet: UNet2DConditionModel,
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
safety_checker: StableDiffusionSafetyChecker,
feature_extractor: CLIPFeatureExtractor,
):
super().__init__()
scheduler = scheduler.set_format("pt")
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
)
@torch.no_grad()
def __call__(
self,
prompt: Optional[Union[str, List[str]]] = None,
height: Optional[int] = 512,
width: Optional[int] = 512,
num_inference_steps: Optional[int] = 50,
guidance_scale: Optional[float] = 7.5,
eta: Optional[float] = 0.0,
generator: Optional[torch.Generator] = None,
latents: Optional[torch.FloatTensor] = None,
text_embeddings: Optional[torch.FloatTensor] = None,
output_type: Optional[str] = "pil",
**kwargs,
):
if "torch_device" in kwargs:
device = kwargs.pop("torch_device")
warnings.warn(
"`torch_device` is deprecated as an input argument to `__call__` and"
" will be removed in v0.3.0. Consider using `pipe.to(torch_device)`"
" instead."
)
# Set device as before (to be removed in 0.3.0)
if device is None:
device = "cuda" if torch.cuda.is_available() else "cpu"
self.to(device)
if text_embeddings is None:
if isinstance(prompt, str):
batch_size = 1
elif isinstance(prompt, list):
batch_size = len(prompt)
else:
raise ValueError(
f"`prompt` has to be of type `str` or `list` but is {type(prompt)}"
)
if height % 8 != 0 or width % 8 != 0:
raise ValueError(
"`height` and `width` have to be divisible by 8 but are"
f" {height} and {width}."
)
# get prompt text embeddings
text_input = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
text_embeddings = self.text_encoder(text_input.input_ids.to(self.device))[0]
else:
batch_size = text_embeddings.shape[0]
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
# corresponds to doing no classifier free guidance.
do_classifier_free_guidance = guidance_scale > 1.0
# get unconditional embeddings for classifier free guidance
if do_classifier_free_guidance:
# max_length = text_input.input_ids.shape[-1]
max_length = 77 # self.tokenizer.model_max_length
uncond_input = self.tokenizer(
[""] * batch_size,
padding="max_length",
max_length=max_length,
return_tensors="pt",
)
uncond_embeddings = self.text_encoder(
uncond_input.input_ids.to(self.device)
)[0]
# For classifier free guidance, we need to do two forward passes.
# Here we concatenate the unconditional and text embeddings into a single batch
# to avoid doing two forward passes
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
# get the initial random noise unless the user supplied it
latents_shape = (batch_size, self.unet.in_channels, height // 8, width // 8)
if latents is None:
latents = torch.randn(
latents_shape,
generator=generator,
device=self.device,
)
else:
if latents.shape != latents_shape:
raise ValueError(
f"Unexpected latents shape, got {latents.shape}, expected"
f" {latents_shape}"
)
latents = latents.to(self.device)
# set timesteps
accepts_offset = "offset" in set(
inspect.signature(self.scheduler.set_timesteps).parameters.keys()
)
extra_set_kwargs = {}
if accepts_offset:
extra_set_kwargs["offset"] = 1
self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs)
# if we use LMSDiscreteScheduler, let's make sure latents are mulitplied by sigmas
if isinstance(self.scheduler, LMSDiscreteScheduler):
latents = latents * self.scheduler.sigmas[0]
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
# and should be between [0, 1]
accepts_eta = "eta" in set(
inspect.signature(self.scheduler.step).parameters.keys()
)
extra_step_kwargs = {}
if accepts_eta:
extra_step_kwargs["eta"] = eta
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
# expand the latents if we are doing classifier free guidance
latent_model_input = (
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
)
if isinstance(self.scheduler, LMSDiscreteScheduler):
sigma = self.scheduler.sigmas[i]
# the model input needs to be scaled to match the continuous ODE formulation in K-LMS
latent_model_input = latent_model_input / ((sigma**2 + 1) ** 0.5)
# predict the noise residual
noise_pred = self.unet(
latent_model_input, t, encoder_hidden_states=text_embeddings
)["sample"]
# perform guidance
if do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# compute the previous noisy sample x_t -> x_t-1
if isinstance(self.scheduler, LMSDiscreteScheduler):
latents = self.scheduler.step(
noise_pred, i, latents, **extra_step_kwargs
)["prev_sample"]
else:
latents = self.scheduler.step(
noise_pred, t, latents, **extra_step_kwargs
)["prev_sample"]
# scale and decode the image latents with vae
latents = 1 / 0.18215 * latents
image = self.vae.decode(latents).sample
image = (image / 2 + 0.5).clamp(0, 1)
image = image.cpu().permute(0, 2, 3, 1).numpy()
safety_cheker_input = self.feature_extractor(
self.numpy_to_pil(image), return_tensors="pt"
).to(self.device)
image, has_nsfw_concept = self.safety_checker(
images=image, clip_input=safety_cheker_input.pixel_values
)
if output_type == "pil":
image = self.numpy_to_pil(image)
return {"sample": image, "nsfw_content_detected": has_nsfw_concept}
def embed_text(self, text):
"""Helper to embed some text"""
with torch.autocast("cuda"):
text_input = self.tokenizer(
text,
padding="max_length",
max_length=self.tokenizer.model_max_length,
truncation=True,
return_tensors="pt",
)
with torch.no_grad():
embed = self.text_encoder(text_input.input_ids.to(self.device))[0]
return embed
class NoCheck(ModelMixin):
"""Can be used in place of safety checker. Use responsibly and at your own risk."""
def __init__(self):
super().__init__()
self.register_parameter(name='asdf', param=torch.nn.Parameter(torch.randn(3)))
def forward(self, images=None, **kwargs):
return images, [False]