mirror of
https://github.com/sd-webui/stable-diffusion-webui.git
synced 2024-12-14 23:02:00 +03:00
461 lines
22 KiB
Python
461 lines
22 KiB
Python
# This file is part of sygil-webui (https://github.com/Sygil-Dev/sygil-webui/).
|
|
|
|
# Copyright 2022 Sygil-Dev team.
|
|
# This program is free software: you can redistribute it and/or modify
|
|
# it under the terms of the GNU Affero General Public License as published by
|
|
# the Free Software Foundation, either version 3 of the License, or
|
|
# (at your option) any later version.
|
|
|
|
# This program is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
# GNU Affero General Public License for more details.
|
|
|
|
# You should have received a copy of the GNU Affero General Public License
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
# ---------------------------------------------------------------------------------------------------------------------------------------------------
|
|
"""
|
|
CLIP Interrogator made by @pharmapsychotic modified to work with our WebUI.
|
|
|
|
# CLIP Interrogator by @pharmapsychotic
|
|
Twitter: https://twitter.com/pharmapsychotic
|
|
Github: https://github.com/pharmapsychotic/clip-interrogator
|
|
|
|
Description:
|
|
What do the different OpenAI CLIP models see in an image? What might be a good text prompt to create similar images using CLIP guided diffusion
|
|
or another text to image model? The CLIP Interrogator is here to get you answers!
|
|
|
|
Please consider buying him a coffee via [ko-fi](https://ko-fi.com/pharmapsychotic) or following him on [twitter](https://twitter.com/pharmapsychotic).
|
|
|
|
And if you're looking for more Ai art tools check out my [Ai generative art tools list](https://pharmapsychotic.com/tools.html).
|
|
|
|
"""
|
|
# ---------------------------------------------------------------------------------------------------------------------------------------------------
|
|
|
|
# base webui import and utils.
|
|
from sd_utils import st, logger, server_state, server_state_lock, random
|
|
|
|
# streamlit imports
|
|
|
|
# streamlit components section
|
|
import streamlit_nested_layout
|
|
|
|
# other imports
|
|
|
|
import clip
|
|
import open_clip
|
|
import gc
|
|
import os
|
|
import pandas as pd
|
|
#import requests
|
|
import torch
|
|
from PIL import Image
|
|
from torchvision import transforms
|
|
from torchvision.transforms.functional import InterpolationMode
|
|
from ldm.models.blip import blip_decoder
|
|
#import hashlib
|
|
|
|
# end of imports
|
|
# ---------------------------------------------------------------------------------------------------------------
|
|
|
|
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
|
blip_image_eval_size = 512
|
|
|
|
st.session_state["log"] = []
|
|
|
|
def load_blip_model():
|
|
logger.info("Loading BLIP Model")
|
|
if "log" not in st.session_state:
|
|
st.session_state["log"] = []
|
|
|
|
st.session_state["log"].append("Loading BLIP Model")
|
|
st.session_state["log_message"].code('\n'.join(st.session_state["log"]), language='')
|
|
|
|
if "blip_model" not in server_state:
|
|
with server_state_lock['blip_model']:
|
|
server_state["blip_model"] = blip_decoder(pretrained="models/blip/model__base_caption.pth",
|
|
image_size=blip_image_eval_size, vit='base', med_config="configs/blip/med_config.json")
|
|
|
|
server_state["blip_model"] = server_state["blip_model"].eval()
|
|
|
|
server_state["blip_model"] = server_state["blip_model"].to(device).half()
|
|
|
|
logger.info("BLIP Model Loaded")
|
|
st.session_state["log"].append("BLIP Model Loaded")
|
|
st.session_state["log_message"].code('\n'.join(st.session_state["log"]), language='')
|
|
else:
|
|
logger.info("BLIP Model already loaded")
|
|
st.session_state["log"].append("BLIP Model already loaded")
|
|
st.session_state["log_message"].code('\n'.join(st.session_state["log"]), language='')
|
|
|
|
|
|
def generate_caption(pil_image):
|
|
|
|
load_blip_model()
|
|
|
|
gpu_image = transforms.Compose([ # type: ignore
|
|
transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC), # type: ignore
|
|
transforms.ToTensor(), # type: ignore
|
|
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) # type: ignore
|
|
])(pil_image).unsqueeze(0).to(device).half()
|
|
|
|
with torch.no_grad():
|
|
caption = server_state["blip_model"].generate(gpu_image, sample=False, num_beams=3, max_length=20, min_length=5)
|
|
|
|
return caption[0]
|
|
|
|
def load_list(filename):
|
|
with open(filename, 'r', encoding='utf-8', errors='replace') as f:
|
|
items = [line.strip() for line in f.readlines()]
|
|
return items
|
|
|
|
def rank(model, image_features, text_array, top_count=1):
|
|
top_count = min(top_count, len(text_array))
|
|
text_tokens = clip.tokenize([text for text in text_array]).cuda()
|
|
with torch.no_grad():
|
|
text_features = model.encode_text(text_tokens).float()
|
|
text_features /= text_features.norm(dim=-1, keepdim=True)
|
|
|
|
similarity = torch.zeros((1, len(text_array))).to(device)
|
|
for i in range(image_features.shape[0]):
|
|
similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
|
|
similarity /= image_features.shape[0]
|
|
|
|
top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1)
|
|
return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)]
|
|
|
|
|
|
def clear_cuda():
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
|
|
def batch_rank(model, image_features, text_array, batch_size=st.session_state["defaults"].img2txt.batch_size):
|
|
batch_size = min(batch_size, len(text_array))
|
|
batch_count = int(len(text_array) / batch_size)
|
|
batches = [text_array[i*batch_size:(i+1)*batch_size] for i in range(batch_count)]
|
|
ranks = []
|
|
for batch in batches:
|
|
ranks += rank(model, image_features, batch)
|
|
return ranks
|
|
|
|
def interrogate(image, models):
|
|
load_blip_model()
|
|
|
|
logger.info("Generating Caption")
|
|
st.session_state["log"].append("Generating Caption")
|
|
st.session_state["log_message"].code('\n'.join(st.session_state["log"]), language='')
|
|
caption = generate_caption(image)
|
|
|
|
if st.session_state["defaults"].general.optimized:
|
|
del server_state["blip_model"]
|
|
clear_cuda()
|
|
|
|
logger.info("Caption Generated")
|
|
st.session_state["log"].append("Caption Generated")
|
|
st.session_state["log_message"].code('\n'.join(st.session_state["log"]), language='')
|
|
|
|
if len(models) == 0:
|
|
logger.info(f"\n\n{caption}")
|
|
return
|
|
|
|
table = []
|
|
bests = [[('', 0)]]*7
|
|
|
|
logger.info("Ranking Text")
|
|
st.session_state["log"].append("Ranking Text")
|
|
st.session_state["log_message"].code('\n'.join(st.session_state["log"]), language='')
|
|
|
|
for model_name in models:
|
|
with torch.no_grad(), torch.autocast('cuda', dtype=torch.float16):
|
|
logger.info(f"Interrogating with {model_name}...")
|
|
st.session_state["log"].append(f"Interrogating with {model_name}...")
|
|
st.session_state["log_message"].code('\n'.join(st.session_state["log"]), language='')
|
|
|
|
if model_name not in server_state["clip_models"]:
|
|
if not st.session_state["defaults"].img2txt.keep_all_models_loaded:
|
|
model_to_delete = []
|
|
for model in server_state["clip_models"]:
|
|
if model != model_name:
|
|
model_to_delete.append(model)
|
|
for model in model_to_delete:
|
|
del server_state["clip_models"][model]
|
|
del server_state["preprocesses"][model]
|
|
clear_cuda()
|
|
if model_name == 'ViT-H-14':
|
|
server_state["clip_models"][model_name], _, server_state["preprocesses"][model_name] = \
|
|
open_clip.create_model_and_transforms(model_name, pretrained='laion2b_s32b_b79k', cache_dir='models/clip')
|
|
elif model_name == 'ViT-g-14':
|
|
server_state["clip_models"][model_name], _, server_state["preprocesses"][model_name] = \
|
|
open_clip.create_model_and_transforms(model_name, pretrained='laion2b_s12b_b42k', cache_dir='models/clip')
|
|
else:
|
|
server_state["clip_models"][model_name], server_state["preprocesses"][model_name] = \
|
|
clip.load(model_name, device=device, download_root='models/clip')
|
|
server_state["clip_models"][model_name] = server_state["clip_models"][model_name].cuda().eval()
|
|
|
|
images = server_state["preprocesses"][model_name](image).unsqueeze(0).cuda()
|
|
|
|
|
|
image_features = server_state["clip_models"][model_name].encode_image(images).float()
|
|
|
|
image_features /= image_features.norm(dim=-1, keepdim=True)
|
|
|
|
if st.session_state["defaults"].general.optimized:
|
|
clear_cuda()
|
|
|
|
ranks = []
|
|
ranks.append(batch_rank(server_state["clip_models"][model_name], image_features, server_state["mediums"]))
|
|
ranks.append(batch_rank(server_state["clip_models"][model_name], image_features, ["by "+artist for artist in server_state["artists"]]))
|
|
ranks.append(batch_rank(server_state["clip_models"][model_name], image_features, server_state["trending_list"]))
|
|
ranks.append(batch_rank(server_state["clip_models"][model_name], image_features, server_state["movements"]))
|
|
ranks.append(batch_rank(server_state["clip_models"][model_name], image_features, server_state["flavors"]))
|
|
#ranks.append(batch_rank(server_state["clip_models"][model_name], image_features, server_state["domains"]))
|
|
#ranks.append(batch_rank(server_state["clip_models"][model_name], image_features, server_state["subreddits"]))
|
|
ranks.append(batch_rank(server_state["clip_models"][model_name], image_features, server_state["techniques"]))
|
|
ranks.append(batch_rank(server_state["clip_models"][model_name], image_features, server_state["tags"]))
|
|
|
|
# ranks.append(batch_rank(server_state["clip_models"][model_name], image_features, server_state["genres"]))
|
|
# ranks.append(batch_rank(server_state["clip_models"][model_name], image_features, server_state["styles"]))
|
|
# ranks.append(batch_rank(server_state["clip_models"][model_name], image_features, server_state["subjects"]))
|
|
# ranks.append(batch_rank(server_state["clip_models"][model_name], image_features, server_state["colors"]))
|
|
# ranks.append(batch_rank(server_state["clip_models"][model_name], image_features, server_state["moods"]))
|
|
# ranks.append(batch_rank(server_state["clip_models"][model_name], image_features, server_state["themes"]))
|
|
# ranks.append(batch_rank(server_state["clip_models"][model_name], image_features, server_state["keywords"]))
|
|
|
|
#print (bests)
|
|
#print (ranks)
|
|
|
|
for i in range(len(ranks)):
|
|
confidence_sum = 0
|
|
for ci in range(len(ranks[i])):
|
|
confidence_sum += ranks[i][ci][1]
|
|
if confidence_sum > sum(bests[i][t][1] for t in range(len(bests[i]))):
|
|
bests[i] = ranks[i]
|
|
|
|
for best in bests:
|
|
best.sort(key=lambda x: x[1], reverse=True)
|
|
# prune to 3
|
|
best = best[:3]
|
|
|
|
row = [model_name]
|
|
|
|
for r in ranks:
|
|
row.append(', '.join([f"{x[0]} ({x[1]:0.1f}%)" for x in r]))
|
|
|
|
#for rank in ranks:
|
|
# rank.sort(key=lambda x: x[1], reverse=True)
|
|
# row.append(f'{rank[0][0]} {rank[0][1]:.2f}%')
|
|
|
|
table.append(row)
|
|
|
|
if st.session_state["defaults"].general.optimized:
|
|
del server_state["clip_models"][model_name]
|
|
gc.collect()
|
|
|
|
st.session_state["prediction_table"][st.session_state["processed_image_count"]].dataframe(pd.DataFrame(
|
|
table, columns=["Model", "Medium", "Artist", "Trending", "Movement", "Flavors", "Techniques", "Tags"]))
|
|
|
|
medium = bests[0][0][0]
|
|
artist = bests[1][0][0]
|
|
trending = bests[2][0][0]
|
|
movement = bests[3][0][0]
|
|
flavors = bests[4][0][0]
|
|
#domains = bests[5][0][0]
|
|
#subreddits = bests[6][0][0]
|
|
techniques = bests[5][0][0]
|
|
tags = bests[6][0][0]
|
|
|
|
|
|
if caption.startswith(medium):
|
|
st.session_state["text_result"][st.session_state["processed_image_count"]].code(
|
|
f"\n\n{caption} {artist}, {trending}, {movement}, {techniques}, {flavors}, {tags}", language="")
|
|
else:
|
|
st.session_state["text_result"][st.session_state["processed_image_count"]].code(
|
|
f"\n\n{caption}, {medium} {artist}, {trending}, {movement}, {techniques}, {flavors}, {tags}", language="")
|
|
|
|
logger.info("Finished Interrogating.")
|
|
st.session_state["log"].append("Finished Interrogating.")
|
|
st.session_state["log_message"].code('\n'.join(st.session_state["log"]), language='')
|
|
|
|
|
|
def img2txt():
|
|
models = []
|
|
|
|
if st.session_state["ViT-L/14"]:
|
|
models.append('ViT-L/14')
|
|
if st.session_state["ViT-H-14"]:
|
|
models.append('ViT-H-14')
|
|
if st.session_state["ViT-g-14"]:
|
|
models.append('ViT-g-14')
|
|
|
|
if st.session_state["ViTB32"]:
|
|
models.append('ViT-B/32')
|
|
if st.session_state['ViTB16']:
|
|
models.append('ViT-B/16')
|
|
|
|
if st.session_state["ViTL14_336px"]:
|
|
models.append('ViT-L/14@336px')
|
|
if st.session_state["RN101"]:
|
|
models.append('RN101')
|
|
if st.session_state["RN50"]:
|
|
models.append('RN50')
|
|
if st.session_state["RN50x4"]:
|
|
models.append('RN50x4')
|
|
if st.session_state["RN50x16"]:
|
|
models.append('RN50x16')
|
|
if st.session_state["RN50x64"]:
|
|
models.append('RN50x64')
|
|
|
|
# if str(image_path_or_url).startswith('http://') or str(image_path_or_url).startswith('https://'):
|
|
#image = Image.open(requests.get(image_path_or_url, stream=True).raw).convert('RGB')
|
|
# else:
|
|
#image = Image.open(image_path_or_url).convert('RGB')
|
|
|
|
#thumb = st.session_state["uploaded_image"].image.copy()
|
|
#thumb.thumbnail([blip_image_eval_size, blip_image_eval_size])
|
|
# display(thumb)
|
|
|
|
st.session_state["processed_image_count"] = 0
|
|
|
|
for i in range(len(st.session_state["uploaded_image"])):
|
|
|
|
interrogate(st.session_state["uploaded_image"][i].pil_image, models=models)
|
|
# increase counter.
|
|
st.session_state["processed_image_count"] += 1
|
|
#
|
|
|
|
|
|
def layout():
|
|
#set_page_title("Image-to-Text - Stable Diffusion WebUI")
|
|
#st.info("Under Construction. :construction_worker:")
|
|
#
|
|
if "clip_models" not in server_state:
|
|
server_state["clip_models"] = {}
|
|
if "preprocesses" not in server_state:
|
|
server_state["preprocesses"] = {}
|
|
data_path = "data/"
|
|
if "artists" not in server_state:
|
|
server_state["artists"] = load_list(os.path.join(data_path, 'img2txt', 'artists.txt'))
|
|
if "flavors" not in server_state:
|
|
server_state["flavors"] = random.choices(load_list(os.path.join(data_path, 'img2txt', 'flavors.txt')), k=2000)
|
|
if "mediums" not in server_state:
|
|
server_state["mediums"] = load_list(os.path.join(data_path, 'img2txt', 'mediums.txt'))
|
|
if "movements" not in server_state:
|
|
server_state["movements"] = load_list(os.path.join(data_path, 'img2txt', 'movements.txt'))
|
|
if "sites" not in server_state:
|
|
server_state["sites"] = load_list(os.path.join(data_path, 'img2txt', 'sites.txt'))
|
|
#server_state["domains"] = load_list(os.path.join(data_path, 'img2txt', 'domains.txt'))
|
|
#server_state["subreddits"] = load_list(os.path.join(data_path, 'img2txt', 'subreddits.txt'))
|
|
if "techniques" not in server_state:
|
|
server_state["techniques"] = load_list(os.path.join(data_path, 'img2txt', 'techniques.txt'))
|
|
if "tags" not in server_state:
|
|
server_state["tags"] = load_list(os.path.join(data_path, 'img2txt', 'tags.txt'))
|
|
#server_state["genres"] = load_list(os.path.join(data_path, 'img2txt', 'genres.txt'))
|
|
# server_state["styles"] = load_list(os.path.join(data_path, 'img2txt', 'styles.txt'))
|
|
# server_state["subjects"] = load_list(os.path.join(data_path, 'img2txt', 'subjects.txt'))
|
|
if "trending_list" not in server_state:
|
|
server_state["trending_list"] = [site for site in server_state["sites"]]
|
|
server_state["trending_list"].extend(["trending on "+site for site in server_state["sites"]])
|
|
server_state["trending_list"].extend(["featured on "+site for site in server_state["sites"]])
|
|
server_state["trending_list"].extend([site+" contest winner" for site in server_state["sites"]])
|
|
with st.form("img2txt-inputs"):
|
|
st.session_state["generation_mode"] = "img2txt"
|
|
|
|
# st.write("---")
|
|
# creating the page layout using columns
|
|
col1, col2 = st.columns([1, 4], gap="large")
|
|
|
|
with col1:
|
|
st.session_state["uploaded_image"] = st.file_uploader('Input Image', type=['png', 'jpg', 'jpeg', 'jfif', 'webp'], accept_multiple_files=True)
|
|
|
|
with st.expander("CLIP models", expanded=True):
|
|
st.session_state["ViT-L/14"] = st.checkbox("ViT-L/14", value=True, help="ViT-L/14 model.")
|
|
st.session_state["ViT-H-14"] = st.checkbox("ViT-H-14", value=False, help="ViT-H-14 model.")
|
|
st.session_state["ViT-g-14"] = st.checkbox("ViT-g-14", value=False, help="ViT-g-14 model.")
|
|
|
|
|
|
|
|
with st.expander("Others"):
|
|
st.info("For DiscoDiffusion and JAX enable all the same models here as you intend to use when generating your images.")
|
|
|
|
st.session_state["ViTL14_336px"] = st.checkbox("ViTL14_336px", value=False, help="ViTL14_336px model.")
|
|
st.session_state["ViTB16"] = st.checkbox("ViTB16", value=False, help="ViTB16 model.")
|
|
st.session_state["ViTB32"] = st.checkbox("ViTB32", value=False, help="ViTB32 model.")
|
|
st.session_state["RN50"] = st.checkbox("RN50", value=False, help="RN50 model.")
|
|
st.session_state["RN50x4"] = st.checkbox("RN50x4", value=False, help="RN50x4 model.")
|
|
st.session_state["RN50x16"] = st.checkbox("RN50x16", value=False, help="RN50x16 model.")
|
|
st.session_state["RN50x64"] = st.checkbox("RN50x64", value=False, help="RN50x64 model.")
|
|
st.session_state["RN101"] = st.checkbox("RN101", value=False, help="RN101 model.")
|
|
|
|
#
|
|
# st.subheader("Logs:")
|
|
|
|
st.session_state["log_message"] = st.empty()
|
|
st.session_state["log_message"].code('', language="")
|
|
|
|
with col2:
|
|
st.subheader("Image")
|
|
|
|
image_col1, image_col2 = st.columns([10,25])
|
|
with image_col1:
|
|
refresh = st.form_submit_button("Update Preview Image", help='Refresh the image preview to show your uploaded image instead of the default placeholder.')
|
|
|
|
if st.session_state["uploaded_image"]:
|
|
#print (type(st.session_state["uploaded_image"]))
|
|
# if len(st.session_state["uploaded_image"]) == 1:
|
|
st.session_state["input_image_preview"] = []
|
|
st.session_state["input_image_preview_container"] = []
|
|
st.session_state["prediction_table"] = []
|
|
st.session_state["text_result"] = []
|
|
|
|
for i in range(len(st.session_state["uploaded_image"])):
|
|
st.session_state["input_image_preview_container"].append(i)
|
|
st.session_state["input_image_preview_container"][i] = st.empty()
|
|
|
|
with st.session_state["input_image_preview_container"][i].container():
|
|
col1_output, col2_output = st.columns([2, 10], gap="medium")
|
|
with col1_output:
|
|
st.session_state["input_image_preview"].append(i)
|
|
st.session_state["input_image_preview"][i] = st.empty()
|
|
st.session_state["uploaded_image"][i].pil_image = Image.open(st.session_state["uploaded_image"][i]).convert('RGB')
|
|
|
|
st.session_state["input_image_preview"][i].image(st.session_state["uploaded_image"][i].pil_image, use_column_width=True, clamp=True)
|
|
|
|
with st.session_state["input_image_preview_container"][i].container():
|
|
|
|
with col2_output:
|
|
|
|
st.session_state["prediction_table"].append(i)
|
|
st.session_state["prediction_table"][i] = st.empty()
|
|
st.session_state["prediction_table"][i].table()
|
|
|
|
st.session_state["text_result"].append(i)
|
|
st.session_state["text_result"][i] = st.empty()
|
|
st.session_state["text_result"][i].code("", language="")
|
|
|
|
else:
|
|
#st.session_state["input_image_preview"].code('', language="")
|
|
st.image("images/streamlit/img2txt_placeholder.png", clamp=True)
|
|
|
|
with image_col2:
|
|
#
|
|
# Every form must have a submit button, the extra blank spaces is a temp way to align it with the input field. Needs to be done in CSS or some other way.
|
|
# generate_col1.title("")
|
|
# generate_col1.title("")
|
|
generate_button = st.form_submit_button("Generate!", help="Start interrogating the images to generate a prompt from each of the selected images")
|
|
|
|
if generate_button:
|
|
# if model, pipe, RealESRGAN or GFPGAN is in st.session_state remove the model and pipe form session_state so that they are reloaded.
|
|
if "model" in server_state and st.session_state["defaults"].general.optimized:
|
|
del server_state["model"]
|
|
if "pipe" in server_state and st.session_state["defaults"].general.optimized:
|
|
del server_state["pipe"]
|
|
if "RealESRGAN" in server_state and st.session_state["defaults"].general.optimized:
|
|
del server_state["RealESRGAN"]
|
|
if "GFPGAN" in server_state and st.session_state["defaults"].general.optimized:
|
|
del server_state["GFPGAN"]
|
|
|
|
# run clip interrogator
|
|
img2txt()
|