mirror of
https://github.com/srid/ema.git
synced 2024-11-29 09:25:14 +03:00
Remove Ema.Helpers.PathTree (see *pathtree* on Hackage)
This commit is contained in:
parent
2761aa60d9
commit
32b51222d6
@ -3,6 +3,8 @@
|
||||
## Unreleased
|
||||
|
||||
- Websocket API: Add `ema.switchRoute` to switch to other routes in live server.
|
||||
- Helpers
|
||||
- `Ema.Helpers.PathTree` moved to separate package *pathtree*.
|
||||
|
||||
## 0.4.0.0 -- 2022-01-19
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
cabal-version: 2.4
|
||||
name: ema
|
||||
version: 0.5.0.0
|
||||
version: 0.5.1.0
|
||||
license: AGPL-3.0-only
|
||||
copyright: 2021 Sridhar Ratnakumar
|
||||
maintainer: srid@srid.ca
|
||||
@ -141,7 +141,6 @@ library
|
||||
Ema.Helper.Blaze
|
||||
Ema.Helper.FileSystem
|
||||
Ema.Helper.Markdown
|
||||
Ema.Helper.PathTree
|
||||
|
||||
other-modules:
|
||||
Ema.App
|
||||
|
@ -1,77 +0,0 @@
|
||||
-- | Helper to deal with slug trees
|
||||
--
|
||||
-- TODO: Move to a separate package
|
||||
module Ema.Helper.PathTree where
|
||||
|
||||
import Data.List qualified as List
|
||||
import Data.List.NonEmpty qualified as NE
|
||||
import Data.Tree (Tree (Node))
|
||||
import Data.Tree qualified as Tree
|
||||
|
||||
-- -------------------
|
||||
-- Data.Tree helpers
|
||||
-- -------------------
|
||||
|
||||
treeInsertPath :: Eq a => NonEmpty a -> [Tree a] -> [Tree a]
|
||||
treeInsertPath =
|
||||
treeInsertPathMaintainingOrder void
|
||||
|
||||
-- | Insert a node by path into a tree with descendants that are ordered.
|
||||
--
|
||||
-- Insertion will guarantee that descendants continue to be ordered as expected.
|
||||
--
|
||||
-- The order of descendents is determined by the given order function, which
|
||||
-- takes the path to a node and return that node's order. The intention is to
|
||||
-- lookup the actual order value which exists *outside* of the tree
|
||||
-- datastructure itself.
|
||||
treeInsertPathMaintainingOrder :: (Eq a, Ord ord) => (NonEmpty a -> ord) -> NonEmpty a -> [Tree a] -> [Tree a]
|
||||
treeInsertPathMaintainingOrder ordF path t =
|
||||
orderedTreeInsertPath ordF (toList path) t []
|
||||
where
|
||||
orderedTreeInsertPath :: (Eq a, Ord b) => (NonEmpty a -> b) -> [a] -> [Tree a] -> [a] -> [Tree a]
|
||||
orderedTreeInsertPath _ [] trees _ =
|
||||
trees
|
||||
orderedTreeInsertPath pathOrder (top : rest) trees ancestors =
|
||||
case treeFindChild top trees of
|
||||
Nothing ->
|
||||
let newChild = Node top $ orderedTreeInsertPath pathOrder rest [] (top : ancestors)
|
||||
in sortChildrenOn pathOrder (trees <> one newChild)
|
||||
Just (Node _match grandChildren) ->
|
||||
let oneDead = treeDeleteChild top trees
|
||||
newChild = Node top $ orderedTreeInsertPath pathOrder rest grandChildren (top : ancestors)
|
||||
in sortChildrenOn pathOrder (oneDead <> one newChild)
|
||||
where
|
||||
treeFindChild x xs =
|
||||
List.find (\n -> Tree.rootLabel n == x) xs
|
||||
sortChildrenOn f =
|
||||
sortOn $ (\s -> f $ NE.reverse $ s :| ancestors) . Tree.rootLabel
|
||||
|
||||
treeDeletePath :: Eq a => NonEmpty a -> [Tree a] -> [Tree a]
|
||||
treeDeletePath =
|
||||
treeDeletePathWithLastBehavingAs $ \lastInPath ts ->
|
||||
List.deleteBy (\x y -> Tree.rootLabel x == Tree.rootLabel y) (Node lastInPath []) ts
|
||||
|
||||
treeDeleteLeafPath :: Eq a => NonEmpty a -> [Tree a] -> [Tree a]
|
||||
treeDeleteLeafPath =
|
||||
treeDeletePathWithLastBehavingAs $ \lastInPath ts ->
|
||||
case ts of
|
||||
[t] -> [t | Tree.rootLabel t /= lastInPath]
|
||||
_ -> ts
|
||||
|
||||
treeDeletePathWithLastBehavingAs :: forall a. Eq a => (a -> [Tree a] -> [Tree a]) -> NonEmpty a -> [Tree a] -> [Tree a]
|
||||
treeDeletePathWithLastBehavingAs f slugs =
|
||||
go (toList slugs)
|
||||
where
|
||||
go :: [a] -> [Tree a] -> [Tree a]
|
||||
go [] t = t
|
||||
go [p] ts =
|
||||
f p ts
|
||||
go (p : ps) t =
|
||||
t <&> \node@(Node x xs) ->
|
||||
if x == p
|
||||
then Node x $ go ps xs
|
||||
else node
|
||||
|
||||
treeDeleteChild :: Eq a => a -> [Tree a] -> [Tree a]
|
||||
treeDeleteChild x =
|
||||
List.deleteBy (\p q -> Tree.rootLabel p == Tree.rootLabel q) (Node x [])
|
Loading…
Reference in New Issue
Block a user