diff --git a/example/recursive-containers.sw b/example/recursive-containers.sw index 4fd56252..697cccd2 100644 --- a/example/recursive-containers.sw +++ b/example/recursive-containers.sw @@ -9,26 +9,94 @@ // only first element of tuple). It is based on Haskell code in: // https://abhiroop.github.io/Haskell-Red-Black-Tree/ +/*******************************************************************/ +/* (TYPE) DECLARATIONS */ +/*******************************************************************/ + tydef Maybe a = Unit + a end + +tydef List a = rec l. Maybe (a * l) end + +tydef RBTree k = rec b. Maybe [red: Bool, k: k, l: b, r: b] end + +tydef ISet s a = + [ empty: s + , insert: a -> s -> s + , delete: a -> s -> s + , contains: a -> s -> Bool + , from_list: List a -> s + , pretty: s -> Text + ] +end + +def undefined_set : any -> ISet any s =\empty. + [empty=empty, insert=\x.undefined, delete=\x.undefined, contains=\x.undefined, from_list=\x.undefined, pretty=\x.undefined] +end + +tydef IDict d k v = + [ empty: d + , insert: k -> v -> d -> d + , delete: k -> d -> d + , get: k -> d -> Maybe v + , contains: k -> d -> Bool + , pretty: d -> Text + ] +end + +def undefined_dict : any -> IDict any k v =\empty. + [empty=empty, insert=\x.undefined, delete=\x.undefined, get=\x.undefined, contains=\x.undefined, pretty=\x.undefined] +end + +tydef FlatSet a = List a end +def flat_set : ISet (FlatSet a) a = undefined_set (inl ()) end + +tydef FlatDict k v = List (k * v) end +def flat_dict : IDict (FlatDict k v) k v = undefined_dict (inl ()) end + +tydef Set k = RBTree k end +def tree_set : ISet (Set a) a = undefined_set (inl ()) end + +tydef Dict k v = RBTree (k * v) end +def tree_dict : IDict (Dict k v) k v = undefined_dict (inl ()) end + +/*******************************************************************/ +/* MAYBE */ +/*******************************************************************/ + def mmap : (a -> b) -> Maybe a -> Maybe b = \f.\m. case m (\_. inl ()) (\a. inr (f a)) end + /*******************************************************************/ /* LISTS */ /*******************************************************************/ -tydef List a = rec l. Maybe (a * l) end - def emptyL : List a = inl () end -def insertL : a -> List a -> List a = \a.\l. inr (a, l) end -def pureL : a -> List a = \a. insertL a emptyL end +def cons : a -> List a -> List a = \a.\l. inr (a, l) end +def pureL : a -> List a = \a. cons a emptyL end -def appendL : List a -> List a -> List a = \l.\r. - case l (\_. r) (\ln. inr (fst ln, appendL (snd ln) r)) +def foldr : (a -> b -> b) -> b -> List a -> b = \f. \z. \xs. + case xs + (\_. z) + (\c. f (fst c) (foldr f z (snd c))) end -def lengthL : List a -> Int = - let len: Int -> List a -> Int = \a.\l. case l (\_. a) (\ln. len (a + 1) (snd ln)) in len 0 -end +def foldl : (b -> a -> b) -> b -> List a -> b = \f. \z. \xs. + case xs + (\_. z) + (\c. (foldl f (f z $ fst c) (snd c))) +end + +def flip : (a -> b -> c) -> (b -> a -> c) = \f. (\b.\a.f a b) end + +def map : (a -> b) -> List a -> List b = \f. + foldr (\y. cons (f y)) emptyL +end + +def appendL : List a -> List a -> List a = \xs. \ys. + foldr cons ys xs +end + +def lengthL : List a -> Int = foldl (\acc.\_. acc + 1) 0 end def safeGetL : Int -> List a -> Maybe a = \i.\l. case l (\_. inl ()) (\n. if (i <= 0) {inr $ fst n} {safeGetL (i - 1) (snd n)}) @@ -38,24 +106,33 @@ def getL : Int -> List a -> a = \i.\l. case (safeGetL i l) (\_. fail $ "INDEX " ++ format i ++ " OUT OF BOUNDS!") (\a. a) end +def formatL : List a -> Text = \l. + let f : List a -> Text = \l. case l (\_. "]") (\n. ", " ++ format (fst n) ++ f (snd n)) + in case l (\_. "[]") (\n. "[" ++ format (fst n) ++ f (snd n)) +end + +/*******************************************************************/ +/* ORDERED LISTS */ +/*******************************************************************/ + // get from ordered list def getKeyL : (a -> k) -> k -> List a -> Maybe a = \p.\x.\l. case l (\_. inl ()) (\n. let nx = p (fst n) in - if (nx == x) { - inr $ fst n + if (nx < x) { + getKeyL p x $ snd n } { - if (nx < x) { + if (nx > x) { inl () } { - getKeyL p x $ snd n + inr $ fst n } } ) end def containsKeyL : (a -> k) -> k -> List a -> Bool = \p.\x.\l. - case (getKeyL p x l) (\_. true) (\_. false) + case (getKeyL p x l) (\_. false) (\_. true) end // insert into ordered list - replaces elements, like set @@ -67,40 +144,78 @@ def insertKeyL : (a -> k) -> a -> List a -> List a = \p.\y.\l. inr (y, snd n) } { if (nx > x) { - insertL y l + cons y l } { - inr (fst n, insertKeyL p y $ snd n) + cons (fst n) (insertKeyL p y $ snd n) } } ) end -def formatL : List a -> Text = \l. - let f : List a -> Text = \l. case l (\_. "]") (\n. ", " ++ format (fst n) ++ f (snd n)) - in case l (\_. "[]") (\n. "[" ++ format (fst n) ++ f (snd n)) +// delete in ordered list +def deleteKeyL : (a -> k) -> k -> List a -> List a = \p.\x.\l. + case l (\_. emptyL) (\n. + let nx = p (fst n) in + if (nx == x) { + snd n + } { + if (nx > x) { + l + } { + cons (fst n) (deleteKeyL p x $ snd n) + } + } + ) +end + +tydef FlatSet a = List a end + +def flat_set : ISet (FlatSet a) a = + [ empty=emptyL + , insert=insertKeyL (\x.x) + , delete=deleteKeyL (\x.x) + , contains=containsKeyL (\x.x) + , from_list=foldl (flip $ insertKeyL (\x.x)) emptyL + , pretty=formatL + ] +end + +tydef FlatDict k v = List (k * v) end + +def flat_dict : IDict (FlatDict k v) k v = + [ empty=emptyL + , insert=\k.\v. insertKeyL fst (k,v) + , delete=deleteKeyL fst + , get=\k.\d. mmap snd (getKeyL fst k d) + , contains=containsKeyL fst + , pretty=\d. + let p : (k * v) -> Text = \kv. format (fst kv) ++ ": " ++ format (snd kv) in + let f : List (k * v) -> Text = \l. case l (\_. "}") (\n. ", " ++ p (fst n) ++ f (snd n)) + in case d (\_. "{}") (\n. "{" ++ p (fst n) ++ f (snd n)) + ] end /*******************************************************************/ /* RED BLACK TREE */ /*******************************************************************/ -tydef RBTree k = rec b. Maybe [red: Bool, k: k, l: b, r: b] end // equirecursive types allow us to get the node type without mutual recursion tydef RBNode k = rec n. [red: Bool, k: k, l: Maybe n, r: Maybe n] end def emptyT : RBTree k = inl () end -def isEmptyT : RBTree k -> Bool = \d. d == emptyT end - def getT : (k -> a) -> a -> RBTree k -> Maybe k = \p.\x.\t. case t (\_. inl ()) (\n. - if (x == p n.k) { inr n.k } { - if (x < p n.k) { - getT p x n.l - } { - getT p x n.r - } + let nx = p n.k in + if (x < nx) { + getT p x n.l + } { + if (x > nx) { + getT p x n.r + } { + inr n.k + } } ) end @@ -377,17 +492,14 @@ end tydef Dict k v = RBTree (k * v) end -def emptyD : Dict k v = emptyT end -def isEmptyD : Dict k v -> Bool = isEmptyT end -def getD : k -> Dict k v -> Maybe v = \k.\d. mmap snd (getT fst k d) end -def containsD : k -> Dict k v -> Bool = containsT fst end -def insertD : k -> v -> Dict k v -> Dict k v = \k.\v. insertT fst (k, v) end -def deleteD : k -> Dict k v -> Dict k v = \k. deleteT fst k end - -def formatD : Dict k v -> Text = \d. - let p : (k * v) -> Text = \kv. format (fst kv) ++ ": " ++ format (snd kv) in - let f : List (k * v) -> Text = \l. case l (\_. "}") (\n. ", " ++ p (fst n) ++ f (snd n)) - in case (inorder d) (\_. "{}") (\n. "{" ++ p (fst n) ++ f (snd n)) +def tree_dict : IDict (Dict k v) k v = + [ empty = emptyT + , get = \k.\d. mmap snd (getT fst k d) + , contains = containsT fst + , insert = \k.\v. insertT fst (k, v) + , delete = \k. deleteT fst k + , pretty = \d. flat_dict.pretty (inorder d) + ] end /*******************************************************************/ @@ -396,12 +508,15 @@ end tydef Set k = RBTree k end -def emptyS : Set k = emptyT end -def isEmptyS : Set k -> Bool = isEmptyT end -def containsS : k -> Set k -> Bool = containsT (\x.x) end -def insertS : k -> Set k -> Set k = insertT (\x.x) end -def deleteS : k -> Set k -> Set k = \k. deleteT (\x.x) k end -def formatS : Set k -> Text = \s. formatL $ inorder s end +def tree_set : ISet (Set a) a = + [ empty=emptyT + , insert=insertT (\x.x) + , delete=deleteT (\x.x) + , contains=containsT (\x.x) + , from_list=foldl (flip $ insertT (\x.x)) emptyT + , pretty=\s. formatL $ inorder s + ] +end /*******************************************************************/ /* UNIT TESTS */ @@ -424,77 +539,91 @@ def group = \i. \m. \tests. end def test_empty: Int -> Cmd Unit = \i. + let d = tree_dict in group i "EMPTY TESTS" (\i. - assert i (isEmptyD emptyD) "empty tree should be empty"; - assert_eq i (inl ()) (getD 0 $ emptyD) "no element should be present in an empty tree"; - assert i (not $ containsD 0 $ emptyD) "empty tree should not contain any elements"; + assert_eq i (inl ()) (d.get 0 $ d.empty) "no element should be present in an empty tree"; + assert i (not $ d.contains 0 $ d.empty) "empty tree should not contain any elements"; ) end +def test_insert_1235: ISet s Int -> Int -> Cmd Unit =\s.\i. + let expected = cons 1 $ cons 2 $ cons 3 $ cons 5 emptyL in + let actual = s.insert 2 $ s.insert 5 $ s.insert 1 $ s.insert 3 s.empty in + assert_eq i (formatL expected) (formatL actual) "insertKeyL should insert in order"; + assert i (not $ s.contains 0 actual) "not contains 0 [1,2,3,5]"; + assert i (s.contains 1 actual) "contains 1 [1,2,3,5]"; + assert i (s.contains 2 actual) "contains 2 [1,2,3,5]"; + assert i (s.contains 3 actual) "contains 3 [1,2,3,5]"; + assert i (not $ s.contains 4 actual) "not contains 4 [1,2,3,5]"; + assert i (s.contains 5 actual) "contains 5 [1,2,3,5]"; + assert i (not $ s.contains 6 actual) "not contains 6 [1,2,3,5]"; +end + def test_ordered_list : Int -> Cmd Unit = \i. - let s = [insert=insertKeyL (\x.x), contains=containsKeyL (\x.x)] in - group i "ORDERED LIST TESTS" (\i. - let expected = insertL 1 $ insertL 2 $ insertL 3 emptyL in - let actual = s.insert 2 $ s.insert 1 $ s.insert 3 emptyL in - assert_eq i (formatL expected) (formatL actual) "insertKeyL should insert in order"; - ) + let s = flat_set in + group i "ORDERED LIST TESTS" (test_insert_1235 flat_set) end def test_insert: Int -> Cmd Unit = \i. + let d = tree_dict in + let s = tree_set in group i "INSERT TESTS" (\i. group i "test {0: 1}" (\i. - let tree0 = insertD 0 1 emptyD in - assert i (not $ isEmptyD tree0) "nonempty tree should not be empty"; - assert_eq i (inr 1) (getD 0 $ tree0) "one element should be present in a one element tree"; - assert i (containsD 0 $ tree0) "one element tree should contain that elements"; - assert i (not $ containsD 1 $ tree0) "one element tree should contain only that elements"; + let tree0 = d.insert 0 1 d.empty in + assert i (d.empty != tree0) "nonempty tree should not be empty"; + assert_eq i (inr 1) (d.get 0 $ tree0) "one element should be present in a one element tree"; + assert i (d.contains 0 $ tree0) "one element tree should contain that elements"; + assert i (not $ d.contains 1 $ tree0) "one element tree should contain only that elements"; ); group i "test {0: 1, 2: 3}" (\i. - let tree02 = insertD 2 3 $ insertD 0 1 emptyD in - assert_eq i (inr 1) (getD 0 $ tree02) "get 0 {0: 1, 2: 3} == 1"; - assert_eq i (inr 3) (getD 2 $ tree02) "get 2 {0: 1, 2: 3} == 3"; + let tree02 = d.insert 2 3 $ d.insert 0 1 d.empty in + assert_eq i (inr 1) (d.get 0 $ tree02) "get 0 {0: 1, 2: 3} == 1"; + assert_eq i (inr 3) (d.get 2 $ tree02) "get 2 {0: 1, 2: 3} == 3"; ); + group i "test {1,2,3,5}" (test_insert_1235 tree_set) ); end -def randomTestS = \i.\s.\test. +def randomTestS: Int -> Set Int -> (Set Int -> Cmd a) -> Cmd (Set Int) = \i.\s.\test. if (i <= 0) {return s} { x <- random 20; - let ns = insertS x s in + let ns = tree_set.insert x s in test ns; randomTestS (i - 1) ns test } end -def delete_insert_prop = \i.\t. +def delete_insert_prop: Int -> Set Int -> Cmd Unit = \i.\t. + let s = tree_set in x <- random 20; let i_t = inorder t in - let f_t = formatS t in - if (not $ containsS x t) { - log $ format x; + let f_t = s.pretty t in + if (not $ s.contains x t) { + // log $ format x; assert_eq i (formatL i_t) - (formatS $ deleteS x $ insertS x t) + (s.pretty $ s.delete x $ s.insert x t) (f_t ++ " == delete " ++ format x ++ " $ insert " ++ format x ++ " " ++ f_t) } { delete_insert_prop i t /* reroll */} end -def delete_delete_prop = \i.\t. +def delete_delete_prop: Int -> Set a -> Cmd Unit = \i.\t. + let s = tree_set in let i_t = inorder t in - i <- random (lengthL i_t); - let x = getL i i_t in - let ds = deleteS x t in - let dds = deleteS x ds in - let f_t = formatS t in + ix <- random (lengthL i_t); + let x = getL ix i_t in + let ds = s.delete x t in + let dds = s.delete x ds in + let f_t = s.pretty t in let f_dx = "delete " ++ format x in - assert_eq i (formatS ds) (formatS dds) + assert_eq i (s.pretty ds) (s.pretty dds) (f_dx ++ f_t ++ " == " ++ f_dx ++ " $ " ++ f_dx ++ " " ++ f_t) end def test_delete: Int -> Cmd Unit = \i. group i "DELETE TESTS" (\i. - randomTestS 15 emptyS (\s. - group i (formatS s) (\i. + randomTestS 15 tree_set.empty (\s. + group i (tree_set.pretty s) (\i. delete_insert_prop i s; delete_delete_prop i s; ) @@ -510,4 +639,140 @@ def test_tree: Cmd Unit = test_delete i; ); log "ALL TREE TESTS PASSED!" +end + +/*******************************************************************/ +/* BENCHMARKS */ +/*******************************************************************/ + +def benchmark: Int -> s -> (s -> s) -> Cmd (Int * (Int * Int)) = \times.\s.\act. + let min = \x.\y. if (x > y) {y} {x} in + let max = \x.\y. if (x > y) {x} {y} in + let runM: (Int * Maybe (Int * Int)) -> s -> Int -> Cmd (Int * Maybe (Int * Int)) = \acc.\s.\n. + if (n <= 0) { + return acc + } { + t0 <- time; + //log $ "START " ++ format t0; + let ns = act s in + t1 <- time; + //log $ "END " ++ format t1; + let t = t1 - t0 in + //log $ format s ++ " " ++ format t ++ " ticks"; + let lim = case (snd acc) (\_. (t, t)) (\l. (min t $ fst l, max t $ snd l)) in + runM ((fst acc + t), inr lim) ns (n - 1) + } in + //log "start run"; + res <- runM (0, inl ()) s times; + //log "end run"; + let avg = fst res / times in + let lim = case (snd res) (\_. fail "BENCHMARK NOT RUN") (\l.l) in + return (avg, lim) +end + +def cmp_bench : Int -> Text -> (Int * (Int * Int)) -> Text -> (Int * (Int * Int)) -> Cmd Unit + = \i.\base_name.\base_res.\new_name.\new_res. + let formatLim = \l. "(min " ++ format (fst l) ++ ", max " ++ format (snd l) ++ ")" in + log $ indent i ++ "* " ++ base_name ++ ": " + ++ format (fst base_res) ++ " ticks " ++ formatLim (snd base_res); + + let d = (fst new_res * 100) / fst base_res in + let cmp = if (d > 100) { + format (d - 100) ++ "% slower" + } { + format (100 - d) ++ "% faster" + } in + + log $ indent i ++ "* " ++ new_name ++ ": " + ++ format (fst new_res) ++ " ticks " ++ formatLim (snd new_res) + ++ " <- " ++ cmp; +end + +// Get a list of random integers of given length and maximum element number +def gen_random_list: Int -> Int -> Cmd (List Int) = + let gen = \acc.\n.\rlim. + if (n <= 0) { return acc } { + x <- random rlim; + gen (cons x acc) (n - 1) rlim + } + in gen emptyL +end + +// Get a number of lists of random integers of given length and maximum element number +def gen_random_lists: Int -> Int -> Int -> Cmd (List (List Int)) = \m.\n.\rlim. + let gen = \acc.\m. + if (m <= 0) { return acc } { + l <- gen_random_list n rlim; + gen (cons l acc) (m - 1) + } + in gen emptyL m +end + + +def bench_insert = \i. + // Use the given function to construct (Flat)Set from the head of provided list of lists and return the tail + let set_from_first_list : (List a -> s) -> List (List a) -> List (List a) =\from_list.\lls. + case lls (\_. lls) (\ls_nlls. + let ns = from_list (fst ls_nlls) in + snd ls_nlls + ) + in + + group i "INSERT BENCHMARK" (\i. + group i "INSERT 10" (\i. + let n = 10 in + let m = 5 in + lls10 <- gen_random_lists m n (3 * n); + flat_res <- benchmark m lls10 (set_from_first_list flat_set.from_list); + tree_res <- benchmark m lls10 (set_from_first_list tree_set.from_list); + cmp_bench i "flat set" flat_res "tree set" tree_res + ); + group i "INSERT 100" (\i. + let n = 100 in + let m = 3 in + lls100 <- gen_random_lists m n (3 * n); + flat_res <- benchmark m lls100 (set_from_first_list flat_set.from_list); + tree_res <- benchmark m lls100 (set_from_first_list tree_set.from_list); + cmp_bench i "flat set" flat_res "tree set" tree_res + ) + ) +end + +def bench_contains = \i. + let contains_int : s -> (Int -> s -> Bool) -> Int -> Int = \s.\contains.\n. + let _ = contains n s in n + 1 + in + group i "CONTAINS BENCHMARK" (\i. + group i "CONTAINS 10" (\i. + let n = 10 in + let m = 3 * n in + ls10 <- gen_random_list n m; + let fls = flat_set.from_list ls10 in + flat_res <- benchmark m 0 (contains_int fls flat_set.contains); + let tls = tree_set.from_list ls10 in + tree_res <- benchmark m 0 (contains_int tls tree_set.contains); + cmp_bench i "flat set" flat_res "tree set" tree_res + ); + group i "CONTAINS 100" (\i. + let n = 100 in + let m = 3 * n in + ls100 <- gen_random_list n m; + //log $ formatL ls100; + let fls = flat_set.from_list ls100 in + //log $ formatL fls; + flat_res <- benchmark m 0 (contains_int fls flat_set.contains); + let tls = tree_set.from_list ls100 in + //log $ formatS tls; + tree_res <- benchmark m 0 (contains_int tls tree_set.contains); + cmp_bench i "flat set" flat_res "tree set" tree_res + ) + ) +end + +def benchmark_tree: Cmd Unit = + group 0 "TREE BENCHMARKS" (\i. + bench_insert i; + bench_contains i; + ); + log "ALL BENCHMARKS DONE!" end \ No newline at end of file