swc/crates/swc_bundler/tests/fixture/deno-9220/case1/output/entry.inlined.ts
2022-06-15 14:36:57 +00:00

958 lines
39 KiB
TypeScript

class Image {
getPixel(x, y) {
const index = x + y * this.width;
const rntVal = {
r: this.data[index * 4],
g: this.data[index * 4 + 1],
b: this.data[index * 4 + 2],
a: this.data[index * 4 + 3]
};
return rntVal;
}
setPixel(x, y, pix) {
const index = x + y * this.width;
this.data[index * 4] = pix.r;
this.data[index * 4 + 1] = pix.g;
this.data[index * 4 + 2] = pix.b;
this.data[index * 4 + 3] = pix.a;
}
}
const JpegImage = function jpegImage() {
"use strict";
const dctZigZag = new Int32Array([
0,
1,
8,
16,
9,
2,
3,
10,
17,
24,
32,
25,
18,
11,
4,
5,
12,
19,
26,
33,
40,
48,
41,
34,
27,
20,
13,
6,
7,
14,
21,
28,
35,
42,
49,
56,
57,
50,
43,
36,
29,
22,
15,
23,
30,
37,
44,
51,
58,
59,
52,
45,
38,
31,
39,
46,
53,
60,
61,
54,
47,
55,
62,
63
]);
const dctCos1 = 4017;
const dctSin1 = 799;
const dctCos3 = 3406;
const dctSin3 = 2276;
const dctCos6 = 1567;
const dctSin6 = 3784;
const dctSqrt2 = 5793;
const dctSqrt1d2 = 2896;
function constructor() {}
function buildHuffmanTable(codeLengths, values) {
let k = 0;
const code = [];
let i, j, length = 16;
while(length > 0 && !codeLengths[length - 1]){
length--;
}
code.push({
children: [],
index: 0
});
let p = code[0], q;
for(i = 0; i < length; i++){
for(j = 0; j < codeLengths[i]; j++){
p = code.pop();
p.children[p.index] = values[k];
while(p.index > 0){
p = code.pop();
}
p.index++;
code.push(p);
while(code.length <= i){
code.push(q = {
children: [],
index: 0
});
p.children[p.index] = q.children;
p = q;
}
k++;
}
if (i + 1 < length) {
code.push(q = {
children: [],
index: 0
});
p.children[p.index] = q.children;
p = q;
}
}
return code[0].children;
}
function decodeScan(data, offset, frame, components, resetInterval, spectralStart, spectralEnd, successivePrev, successive) {
const mcusPerLine = frame.mcusPerLine;
const progressive = frame.progressive;
const startOffset = offset;
let bitsData = 0, bitsCount = 0;
function readBit() {
if (bitsCount > 0) {
bitsCount--;
return bitsData >> bitsCount & 1;
}
bitsData = data[offset++];
if (bitsData === 0xFF) {
const nextByte = data[offset++];
if (nextByte) {
throw new Error("unexpected marker: " + (bitsData << 8 | nextByte).toString(16));
}
}
bitsCount = 7;
return bitsData >>> 7;
}
function decodeHuffman(tree) {
let node = tree, bit;
while((bit = readBit()) !== null){
node = node[bit];
if (typeof node === "number") {
return node;
}
if (typeof node !== "object") {
throw new Error("invalid huffman sequence");
}
}
return null;
}
function receive(length) {
let n = 0;
while(length > 0){
const bit = readBit();
if (bit === null) {
return;
}
n = n << 1 | bit;
length--;
}
return n;
}
function receiveAndExtend(length) {
const n = receive(length);
if (n >= 1 << length - 1) {
return n;
}
return n + (-1 << length) + 1;
}
function decodeBaseline(component, zz) {
const t = decodeHuffman(component.huffmanTableDC);
const diff = t === 0 ? 0 : receiveAndExtend(t);
zz[0] = component.pred += diff;
let k = 1;
while(k < 64){
const rs = decodeHuffman(component.huffmanTableAC);
const s = rs & 15, r = rs >> 4;
if (s === 0) {
if (r < 15) {
break;
}
k += 16;
continue;
}
k += r;
const z = dctZigZag[k];
zz[z] = receiveAndExtend(s);
k++;
}
}
function decodeDCFirst(component, zz) {
const t = decodeHuffman(component.huffmanTableDC);
const diff = t === 0 ? 0 : receiveAndExtend(t) << successive;
zz[0] = component.pred += diff;
}
function decodeDCSuccessive(component, zz) {
zz[0] |= readBit() << successive;
}
let eobrun = 0;
function decodeACFirst(component, zz) {
if (eobrun > 0) {
eobrun--;
return;
}
let k = spectralStart, e = spectralEnd;
while(k <= e){
const rs = decodeHuffman(component.huffmanTableAC);
const s = rs & 15, r = rs >> 4;
if (s === 0) {
if (r < 15) {
eobrun = receive(r) + (1 << r) - 1;
break;
}
k += 16;
continue;
}
k += r;
const z = dctZigZag[k];
zz[z] = receiveAndExtend(s) * (1 << successive);
k++;
}
}
let successiveACState = 0, successiveACNextValue;
function decodeACSuccessive(component, zz) {
let k = spectralStart, e = spectralEnd, r = 0;
while(k <= e){
const z = dctZigZag[k];
const direction = zz[z] < 0 ? -1 : 1;
switch(successiveACState){
case 0:
const rs = decodeHuffman(component.huffmanTableAC);
const s = rs & 15;
r = rs >> 4;
if (s === 0) {
if (r < 15) {
eobrun = receive(r) + (1 << r);
successiveACState = 4;
} else {
r = 16;
successiveACState = 1;
}
} else {
if (s !== 1) {
throw new Error("invalid ACn encoding");
}
successiveACNextValue = receiveAndExtend(s);
successiveACState = r ? 2 : 3;
}
continue;
case 1:
case 2:
if (zz[z]) {
zz[z] += (readBit() << successive) * direction;
} else {
r--;
if (r === 0) {
successiveACState = successiveACState == 2 ? 3 : 0;
}
}
break;
case 3:
if (zz[z]) {
zz[z] += (readBit() << successive) * direction;
} else {
zz[z] = successiveACNextValue << successive;
successiveACState = 0;
}
break;
case 4:
if (zz[z]) {
zz[z] += (readBit() << successive) * direction;
}
break;
}
k++;
}
if (successiveACState === 4) {
eobrun--;
if (eobrun === 0) {
successiveACState = 0;
}
}
}
function decodeMcu(component, decode, mcu, row, col) {
const mcuRow = mcu / mcusPerLine | 0;
const mcuCol = mcu % mcusPerLine;
const blockRow = mcuRow * component.v + row;
const blockCol = mcuCol * component.h + col;
decode(component, component.blocks[blockRow][blockCol]);
}
function decodeBlock(component, decode, mcu) {
const blockRow = mcu / component.blocksPerLine | 0;
const blockCol = mcu % component.blocksPerLine;
decode(component, component.blocks[blockRow][blockCol]);
}
const componentsLength = components.length;
let component, i, j, k, n;
let decodeFn;
if (progressive) {
if (spectralStart === 0) {
decodeFn = successivePrev === 0 ? decodeDCFirst : decodeDCSuccessive;
} else {
decodeFn = successivePrev === 0 ? decodeACFirst : decodeACSuccessive;
}
} else {
decodeFn = decodeBaseline;
}
let mcu = 0, marker;
let mcuExpected;
if (componentsLength == 1) {
mcuExpected = components[0].blocksPerLine * components[0].blocksPerColumn;
} else {
mcuExpected = mcusPerLine * frame.mcusPerColumn;
}
if (!resetInterval) {
resetInterval = mcuExpected;
}
let h, v;
while(mcu < mcuExpected){
for(i = 0; i < componentsLength; i++){
components[i].pred = 0;
}
eobrun = 0;
if (componentsLength == 1) {
component = components[0];
for(n = 0; n < resetInterval; n++){
decodeBlock(component, decodeFn, mcu);
mcu++;
}
} else {
for(n = 0; n < resetInterval; n++){
for(i = 0; i < componentsLength; i++){
component = components[i];
h = component.h;
v = component.v;
for(j = 0; j < v; j++){
for(k = 0; k < h; k++){
decodeMcu(component, decodeFn, mcu, j, k);
}
}
}
mcu++;
if (mcu === mcuExpected) {
break;
}
}
}
bitsCount = 0;
marker = data[offset] << 8 | data[offset + 1];
if (marker < 0xFF00) {
throw new Error("marker was not found");
}
if (marker >= 0xFFD0 && marker <= 0xFFD7) {
offset += 2;
} else {
break;
}
}
return offset - startOffset;
}
function buildComponentData(frame, component) {
const lines = [];
const blocksPerLine = component.blocksPerLine;
const blocksPerColumn = component.blocksPerColumn;
const samplesPerLine = blocksPerLine << 3;
const R = new Int32Array(64), r = new Uint8Array(64);
function quantizeAndInverse(zz, dataOut, dataIn) {
const qt = component.quantizationTable;
let v0, v1, v2, v3, v4, v5, v6, v7, t;
const p = dataIn;
let i;
for(i = 0; i < 64; i++){
p[i] = zz[i] * qt[i];
}
for(i = 0; i < 8; ++i){
const row = 8 * i;
if (p[1 + row] == 0 && p[2 + row] == 0 && p[3 + row] == 0 && p[4 + row] == 0 && p[5 + row] == 0 && p[6 + row] == 0 && p[7 + row] == 0) {
t = dctSqrt2 * p[0 + row] + 512 >> 10;
p[0 + row] = t;
p[1 + row] = t;
p[2 + row] = t;
p[3 + row] = t;
p[4 + row] = t;
p[5 + row] = t;
p[6 + row] = t;
p[7 + row] = t;
continue;
}
v0 = dctSqrt2 * p[0 + row] + 128 >> 8;
v1 = dctSqrt2 * p[4 + row] + 128 >> 8;
v2 = p[2 + row];
v3 = p[6 + row];
v4 = dctSqrt1d2 * (p[1 + row] - p[7 + row]) + 128 >> 8;
v7 = dctSqrt1d2 * (p[1 + row] + p[7 + row]) + 128 >> 8;
v5 = p[3 + row] << 4;
v6 = p[5 + row] << 4;
t = v0 - v1 + 1 >> 1;
v0 = v0 + v1 + 1 >> 1;
v1 = t;
t = v2 * dctSin6 + v3 * dctCos6 + 128 >> 8;
v2 = v2 * dctCos6 - v3 * dctSin6 + 128 >> 8;
v3 = t;
t = v4 - v6 + 1 >> 1;
v4 = v4 + v6 + 1 >> 1;
v6 = t;
t = v7 + v5 + 1 >> 1;
v5 = v7 - v5 + 1 >> 1;
v7 = t;
t = v0 - v3 + 1 >> 1;
v0 = v0 + v3 + 1 >> 1;
v3 = t;
t = v1 - v2 + 1 >> 1;
v1 = v1 + v2 + 1 >> 1;
v2 = t;
t = v4 * dctSin3 + v7 * dctCos3 + 2048 >> 12;
v4 = v4 * dctCos3 - v7 * dctSin3 + 2048 >> 12;
v7 = t;
t = v5 * dctSin1 + v6 * dctCos1 + 2048 >> 12;
v5 = v5 * dctCos1 - v6 * dctSin1 + 2048 >> 12;
v6 = t;
p[0 + row] = v0 + v7;
p[7 + row] = v0 - v7;
p[1 + row] = v1 + v6;
p[6 + row] = v1 - v6;
p[2 + row] = v2 + v5;
p[5 + row] = v2 - v5;
p[3 + row] = v3 + v4;
p[4 + row] = v3 - v4;
}
for(i = 0; i < 8; ++i){
const col = i;
if (p[1 * 8 + col] == 0 && p[2 * 8 + col] == 0 && p[3 * 8 + col] == 0 && p[4 * 8 + col] == 0 && p[5 * 8 + col] == 0 && p[6 * 8 + col] == 0 && p[7 * 8 + col] == 0) {
t = dctSqrt2 * dataIn[i + 0] + 8192 >> 14;
p[0 * 8 + col] = t;
p[1 * 8 + col] = t;
p[2 * 8 + col] = t;
p[3 * 8 + col] = t;
p[4 * 8 + col] = t;
p[5 * 8 + col] = t;
p[6 * 8 + col] = t;
p[7 * 8 + col] = t;
continue;
}
v0 = dctSqrt2 * p[0 * 8 + col] + 2048 >> 12;
v1 = dctSqrt2 * p[4 * 8 + col] + 2048 >> 12;
v2 = p[2 * 8 + col];
v3 = p[6 * 8 + col];
v4 = dctSqrt1d2 * (p[1 * 8 + col] - p[7 * 8 + col]) + 2048 >> 12;
v7 = dctSqrt1d2 * (p[1 * 8 + col] + p[7 * 8 + col]) + 2048 >> 12;
v5 = p[3 * 8 + col];
v6 = p[5 * 8 + col];
t = v0 - v1 + 1 >> 1;
v0 = v0 + v1 + 1 >> 1;
v1 = t;
t = v2 * dctSin6 + v3 * dctCos6 + 2048 >> 12;
v2 = v2 * dctCos6 - v3 * dctSin6 + 2048 >> 12;
v3 = t;
t = v4 - v6 + 1 >> 1;
v4 = v4 + v6 + 1 >> 1;
v6 = t;
t = v7 + v5 + 1 >> 1;
v5 = v7 - v5 + 1 >> 1;
v7 = t;
t = v0 - v3 + 1 >> 1;
v0 = v0 + v3 + 1 >> 1;
v3 = t;
t = v1 - v2 + 1 >> 1;
v1 = v1 + v2 + 1 >> 1;
v2 = t;
t = v4 * dctSin3 + v7 * dctCos3 + 2048 >> 12;
v4 = v4 * dctCos3 - v7 * dctSin3 + 2048 >> 12;
v7 = t;
t = v5 * dctSin1 + v6 * dctCos1 + 2048 >> 12;
v5 = v5 * dctCos1 - v6 * dctSin1 + 2048 >> 12;
v6 = t;
p[0 * 8 + col] = v0 + v7;
p[7 * 8 + col] = v0 - v7;
p[1 * 8 + col] = v1 + v6;
p[6 * 8 + col] = v1 - v6;
p[2 * 8 + col] = v2 + v5;
p[5 * 8 + col] = v2 - v5;
p[3 * 8 + col] = v3 + v4;
p[4 * 8 + col] = v3 - v4;
}
for(i = 0; i < 64; ++i){
const sample = 128 + (p[i] + 8 >> 4);
dataOut[i] = sample < 0 ? 0 : sample > 0xFF ? 0xFF : sample;
}
}
let i, j;
for(let blockRow = 0; blockRow < blocksPerColumn; blockRow++){
const scanLine = blockRow << 3;
for(i = 0; i < 8; i++){
lines.push(new Uint8Array(samplesPerLine));
}
for(let blockCol = 0; blockCol < blocksPerLine; blockCol++){
quantizeAndInverse(component.blocks[blockRow][blockCol], r, R);
let offset = 0, sample = blockCol << 3;
for(j = 0; j < 8; j++){
const line = lines[scanLine + j];
for(i = 0; i < 8; i++){
line[sample + i] = r[offset++];
}
}
}
}
return lines;
}
function clampTo8bit(a) {
return a < 0 ? 0 : a > 255 ? 255 : a;
}
constructor.prototype = {
load: function load(path) {},
parse: function parse(data) {
let offset = 0;
function readUint16() {
const value = data[offset] << 8 | data[offset + 1];
offset += 2;
return value;
}
function readDataBlock() {
const length = readUint16();
const array = data.subarray(offset, offset + length - 2);
offset += array.length;
return array;
}
function prepareComponents(frame) {
let maxH = 0, maxV = 0;
let component, componentId;
for(componentId in frame.components){
if (frame.components.hasOwnProperty(componentId)) {
component = frame.components[componentId];
if (maxH < component.h) {
maxH = component.h;
}
if (maxV < component.v) {
maxV = component.v;
}
}
}
const mcusPerLine = Math.ceil(frame.samplesPerLine / 8 / maxH);
const mcusPerColumn = Math.ceil(frame.scanLines / 8 / maxV);
for(componentId in frame.components){
if (frame.components.hasOwnProperty(componentId)) {
component = frame.components[componentId];
const blocksPerLine = Math.ceil(Math.ceil(frame.samplesPerLine / 8) * component.h / maxH);
const blocksPerColumn = Math.ceil(Math.ceil(frame.scanLines / 8) * component.v / maxV);
const blocksPerLineForMcu = mcusPerLine * component.h;
const blocksPerColumnForMcu = mcusPerColumn * component.v;
const blocks = [];
for(let i = 0; i < blocksPerColumnForMcu; i++){
const row = [];
for(let j = 0; j < blocksPerLineForMcu; j++){
row.push(new Int32Array(64));
}
blocks.push(row);
}
component.blocksPerLine = blocksPerLine;
component.blocksPerColumn = blocksPerColumn;
component.blocks = blocks;
}
}
frame.maxH = maxH;
frame.maxV = maxV;
frame.mcusPerLine = mcusPerLine;
frame.mcusPerColumn = mcusPerColumn;
}
let jfif = null;
let adobe = null;
let frame, resetInterval;
const quantizationTables = [], frames = [];
const huffmanTablesAC = [], huffmanTablesDC = [];
let fileMarker = readUint16();
if (fileMarker != 0xFFD8) {
throw new Error("SOI not found");
}
fileMarker = readUint16();
while(fileMarker != 0xFFD9){
let i, j;
switch(fileMarker){
case 0xFF00:
break;
case 0xFFE0:
case 0xFFE1:
case 0xFFE2:
case 0xFFE3:
case 0xFFE4:
case 0xFFE5:
case 0xFFE6:
case 0xFFE7:
case 0xFFE8:
case 0xFFE9:
case 0xFFEA:
case 0xFFEB:
case 0xFFEC:
case 0xFFED:
case 0xFFEE:
case 0xFFEF:
case 0xFFFE:
const appData = readDataBlock();
if (fileMarker === 0xFFE0) {
if (appData[0] === 0x4A && appData[1] === 0x46 && appData[2] === 0x49 && appData[3] === 0x46 && appData[4] === 0) {
jfif = {
version: {
major: appData[5],
minor: appData[6]
},
densityUnits: appData[7],
xDensity: appData[8] << 8 | appData[9],
yDensity: appData[10] << 8 | appData[11],
thumbWidth: appData[12],
thumbHeight: appData[13],
thumbData: appData.subarray(14, 14 + 3 * appData[12] * appData[13])
};
}
}
if (fileMarker === 0xFFEE) {
if (appData[0] === 0x41 && appData[1] === 0x64 && appData[2] === 0x6F && appData[3] === 0x62 && appData[4] === 0x65 && appData[5] === 0) {
adobe = {
version: appData[6],
flags0: appData[7] << 8 | appData[8],
flags1: appData[9] << 8 | appData[10],
transformCode: appData[11]
};
}
}
break;
case 0xFFDB:
const quantizationTablesLength = readUint16();
const quantizationTablesEnd = quantizationTablesLength + offset - 2;
while(offset < quantizationTablesEnd){
const quantizationTableSpec = data[offset++];
const tableData = new Int32Array(64);
if (quantizationTableSpec >> 4 === 0) {
for(j = 0; j < 64; j++){
const z = dctZigZag[j];
tableData[z] = data[offset++];
}
} else if (quantizationTableSpec >> 4 === 1) {
for(j = 0; j < 64; j++){
const z1 = dctZigZag[j];
tableData[z1] = readUint16();
}
} else {
throw new Error("DQT: invalid table spec");
}
quantizationTables[quantizationTableSpec & 15] = tableData;
}
break;
case 0xFFC0:
case 0xFFC1:
case 0xFFC2:
readUint16();
frame = {};
frame.extended = fileMarker === 0xFFC1;
frame.progressive = fileMarker === 0xFFC2;
frame.precision = data[offset++];
frame.scanLines = readUint16();
frame.samplesPerLine = readUint16();
frame.components = {};
frame.componentsOrder = [];
let componentsCount = data[offset++], componentId;
for(i = 0; i < componentsCount; i++){
componentId = data[offset];
const h = data[offset + 1] >> 4;
const v = data[offset + 1] & 15;
const qId = data[offset + 2];
frame.componentsOrder.push(componentId);
frame.components[componentId] = {
h: h,
v: v,
quantizationIdx: qId
};
offset += 3;
}
prepareComponents(frame);
frames.push(frame);
break;
case 0xFFC4:
const huffmanLength = readUint16();
for(i = 2; i < huffmanLength;){
const huffmanTableSpec = data[offset++];
const codeLengths = new Uint8Array(16);
let codeLengthSum = 0;
for(j = 0; j < 16; j++, offset++){
codeLengthSum += codeLengths[j] = data[offset];
}
const huffmanValues = new Uint8Array(codeLengthSum);
for(j = 0; j < codeLengthSum; j++, offset++){
huffmanValues[j] = data[offset];
}
i += 17 + codeLengthSum;
(huffmanTableSpec >> 4 === 0 ? huffmanTablesDC : huffmanTablesAC)[huffmanTableSpec & 15] = buildHuffmanTable(codeLengths, huffmanValues);
}
break;
case 0xFFDD:
readUint16();
resetInterval = readUint16();
break;
case 0xFFDA:
readUint16();
const selectorsCount = data[offset++];
let components = [], component;
for(i = 0; i < selectorsCount; i++){
component = frame.components[data[offset++]];
const tableSpec = data[offset++];
component.huffmanTableDC = huffmanTablesDC[tableSpec >> 4];
component.huffmanTableAC = huffmanTablesAC[tableSpec & 15];
components.push(component);
}
const spectralStart = data[offset++];
const spectralEnd = data[offset++];
const successiveApproximation = data[offset++];
const processed = decodeScan(data, offset, frame, components, resetInterval, spectralStart, spectralEnd, successiveApproximation >> 4, successiveApproximation & 15);
offset += processed;
break;
case 0xFFFF:
if (data[offset] !== 0xFF) {
offset--;
}
break;
default:
if (data[offset - 3] == 0xFF && data[offset - 2] >= 0xC0 && data[offset - 2] <= 0xFE) {
offset -= 3;
break;
}
throw new Error("unknown JPEG marker " + fileMarker.toString(16));
}
fileMarker = readUint16();
}
if (frames.length != 1) {
throw new Error("only single frame JPEGs supported");
}
for(let i1 = 0; i1 < frames.length; i1++){
const cp = frames[i1].components;
for(const j1 in cp){
cp[j1].quantizationTable = quantizationTables[cp[j1].quantizationIdx];
delete cp[j1].quantizationIdx;
}
}
this.width = frame.samplesPerLine;
this.height = frame.scanLines;
this.jfif = jfif;
this.adobe = adobe;
this.components = [];
for(let i2 = 0; i2 < frame.componentsOrder.length; i2++){
const component1 = frame.components[frame.componentsOrder[i2]];
this.components.push({
lines: buildComponentData(frame, component1),
scaleX: component1.h / frame.maxH,
scaleY: component1.v / frame.maxV
});
}
},
getData: function getData(width, height) {
const scaleX = this.width / width, scaleY = this.height / height;
let component1, component2, component3, component4;
let component1Line, component2Line, component3Line, component4Line;
let x, y;
let offset = 0;
let Y, Cb, Cr, K, C, M, Ye, R, G, B;
let colorTransform;
const dataLength = width * height * this.components.length;
const data = new Uint8Array(dataLength);
switch(this.components.length){
case 1:
component1 = this.components[0];
for(y = 0; y < height; y++){
component1Line = component1.lines[0 | y * component1.scaleY * scaleY];
for(x = 0; x < width; x++){
Y = component1Line[0 | x * component1.scaleX * scaleX];
data[offset++] = Y;
}
}
break;
case 2:
component1 = this.components[0];
component2 = this.components[1];
for(y = 0; y < height; y++){
component1Line = component1.lines[0 | y * component1.scaleY * scaleY];
component2Line = component2.lines[0 | y * component2.scaleY * scaleY];
for(x = 0; x < width; x++){
Y = component1Line[0 | x * component1.scaleX * scaleX];
data[offset++] = Y;
Y = component2Line[0 | x * component2.scaleX * scaleX];
data[offset++] = Y;
}
}
break;
case 3:
colorTransform = true;
if (this.adobe && this.adobe.transformCode) {
colorTransform = true;
} else if (typeof this.colorTransform !== "undefined") {
colorTransform = !!this.colorTransform;
}
component1 = this.components[0];
component2 = this.components[1];
component3 = this.components[2];
for(y = 0; y < height; y++){
component1Line = component1.lines[0 | y * component1.scaleY * scaleY];
component2Line = component2.lines[0 | y * component2.scaleY * scaleY];
component3Line = component3.lines[0 | y * component3.scaleY * scaleY];
for(x = 0; x < width; x++){
if (!colorTransform) {
R = component1Line[0 | x * component1.scaleX * scaleX];
G = component2Line[0 | x * component2.scaleX * scaleX];
B = component3Line[0 | x * component3.scaleX * scaleX];
} else {
Y = component1Line[0 | x * component1.scaleX * scaleX];
Cb = component2Line[0 | x * component2.scaleX * scaleX];
Cr = component3Line[0 | x * component3.scaleX * scaleX];
R = clampTo8bit(Y + 1.402 * (Cr - 128));
G = clampTo8bit(Y - 0.3441363 * (Cb - 128) - 0.71413636 * (Cr - 128));
B = clampTo8bit(Y + 1.772 * (Cb - 128));
}
data[offset++] = R;
data[offset++] = G;
data[offset++] = B;
}
}
break;
case 4:
if (!this.adobe) {
throw new Error("Unsupported color mode (4 components)");
}
colorTransform = false;
if (this.adobe && this.adobe.transformCode) {
colorTransform = true;
} else if (typeof this.colorTransform !== "undefined") {
colorTransform = !!this.colorTransform;
}
component1 = this.components[0];
component2 = this.components[1];
component3 = this.components[2];
component4 = this.components[3];
for(y = 0; y < height; y++){
component1Line = component1.lines[0 | y * component1.scaleY * scaleY];
component2Line = component2.lines[0 | y * component2.scaleY * scaleY];
component3Line = component3.lines[0 | y * component3.scaleY * scaleY];
component4Line = component4.lines[0 | y * component4.scaleY * scaleY];
for(x = 0; x < width; x++){
if (!colorTransform) {
C = component1Line[0 | x * component1.scaleX * scaleX];
M = component2Line[0 | x * component2.scaleX * scaleX];
Ye = component3Line[0 | x * component3.scaleX * scaleX];
K = component4Line[0 | x * component4.scaleX * scaleX];
} else {
Y = component1Line[0 | x * component1.scaleX * scaleX];
Cb = component2Line[0 | x * component2.scaleX * scaleX];
Cr = component3Line[0 | x * component3.scaleX * scaleX];
K = component4Line[0 | x * component4.scaleX * scaleX];
C = 255 - clampTo8bit(Y + 1.402 * (Cr - 128));
M = 255 - clampTo8bit(Y - 0.3441363 * (Cb - 128) - 0.71413636 * (Cr - 128));
Ye = 255 - clampTo8bit(Y + 1.772 * (Cb - 128));
}
data[offset++] = 255 - C;
data[offset++] = 255 - M;
data[offset++] = 255 - Ye;
data[offset++] = 255 - K;
}
}
break;
default:
throw new Error("Unsupported color mode");
}
return data;
},
copyToImageData: function copyToImageData(imageData) {
const width = imageData.width, height = imageData.height;
const imageDataArray = imageData.data;
const data = this.getData(width, height);
let i = 0, j = 0, x, y;
let Y, K, C, M, R, G, B;
switch(this.components.length){
case 1:
for(y = 0; y < height; y++){
for(x = 0; x < width; x++){
Y = data[i++];
imageDataArray[j++] = Y;
imageDataArray[j++] = Y;
imageDataArray[j++] = Y;
imageDataArray[j++] = 255;
}
}
break;
case 3:
for(y = 0; y < height; y++){
for(x = 0; x < width; x++){
R = data[i++];
G = data[i++];
B = data[i++];
imageDataArray[j++] = R;
imageDataArray[j++] = G;
imageDataArray[j++] = B;
imageDataArray[j++] = 255;
}
}
break;
case 4:
for(y = 0; y < height; y++){
for(x = 0; x < width; x++){
C = data[i++];
M = data[i++];
Y = data[i++];
K = data[i++];
R = 255 - clampTo8bit(C * (1 - K / 255) + K);
G = 255 - clampTo8bit(M * (1 - K / 255) + K);
B = 255 - clampTo8bit(Y * (1 - K / 255) + K);
imageDataArray[j++] = R;
imageDataArray[j++] = G;
imageDataArray[j++] = B;
imageDataArray[j++] = 255;
}
}
break;
default:
throw new Error("Unsupported color mode");
}
}
};
return constructor;
}();
const decode = function(jpegData, colorTransform = true) {
const arr = new Uint8Array(jpegData);
const decoder = new JpegImage();
decoder.parse(arr);
decoder.colorTransform = colorTransform;
const image = new Image();
image.height = decoder.height;
image.width = decoder.width;
image.data = new Uint8Array(decoder.width * decoder.height * 4);
decoder.copyToImageData(image);
return image;
};
export { decode as decode };