swc/bundler/tests/.cache/deno/f23b63af8d11297d01a07776c5436bc350feb168.ts
강동윤 bbaf619f63
fix(bundler): Fix bugs (#1437)
swc_bundler:
 - [x] Fix wrapped esms. (denoland/deno#9307)
 - [x] Make test secure.
2021-03-02 17:33:03 +09:00

1043 lines
34 KiB
TypeScript

// Loaded from https://deno.land/x/jpegts@1.1/lib/decoder.ts
/* tslint:disable */
import { Image } from "./image.ts"
const JpegImage = (function jpegImage() {
"use strict";
const dctZigZag = new Int32Array([
0,
1, 8,
16, 9, 2,
3, 10, 17, 24,
32, 25, 18, 11, 4,
5, 12, 19, 26, 33, 40,
48, 41, 34, 27, 20, 13, 6,
7, 14, 21, 28, 35, 42, 49, 56,
57, 50, 43, 36, 29, 22, 15,
23, 30, 37, 44, 51, 58,
59, 52, 45, 38, 31,
39, 46, 53, 60,
61, 54, 47,
55, 62,
63
]);
const dctCos1 = 4017 // cos(pi/16)
const dctSin1 = 799 // sin(pi/16)
const dctCos3 = 3406 // cos(3*pi/16)
const dctSin3 = 2276 // sin(3*pi/16)
const dctCos6 = 1567 // cos(6*pi/16)
const dctSin6 = 3784 // sin(6*pi/16)
const dctSqrt2 = 5793 // sqrt(2)
const dctSqrt1d2 = 2896 // sqrt(2) / 2
function constructor() {
}
// @ts-ignore
function buildHuffmanTable(codeLengths, values) {
let k = 0
const code = []
let i, j, length = 16;
while (length > 0 && !codeLengths[length - 1]) {
length--;
}
code.push({children: [], index: 0});
let p = code[0], q;
for (i = 0; i < length; i++) {
for (j = 0; j < codeLengths[i]; j++) {
// @ts-ignore
p = code.pop();
// @ts-ignore
p.children[p.index] = values[k];
while (p.index > 0) {
// @ts-ignore
p = code.pop();
}
p.index++;
code.push(p);
while (code.length <= i) {
code.push(q = {children: [], index: 0});
// @ts-ignore
p.children[p.index] = q.children;
p = q;
}
k++;
}
if (i + 1 < length) {
// p here points to last code
code.push(q = {children: [], index: 0});
// @ts-ignore
p.children[p.index] = q.children;
p = q;
}
}
return code[0].children;
}
// @ts-ignore
function decodeScan(data, offset, frame, components, resetInterval, spectralStart, spectralEnd, successivePrev, successive) {
const mcusPerLine = frame.mcusPerLine;
const progressive = frame.progressive;
const startOffset = offset
let bitsData = 0, bitsCount = 0;
function readBit() {
if (bitsCount > 0) {
bitsCount--;
return (bitsData >> bitsCount) & 1;
}
bitsData = data[offset++];
if (bitsData === 0xFF) {
const nextByte = data[offset++];
if (nextByte) {
throw new Error("unexpected marker: " + ((bitsData << 8) | nextByte).toString(16));
}
// unstuff 0
}
bitsCount = 7;
return bitsData >>> 7;
}
// @ts-ignore
function decodeHuffman(tree) {
let node = tree, bit;
while ((bit = readBit()) !== null) {
node = node[bit];
if (typeof node === "number") {
return node;
}
if (typeof node !== "object") {
throw new Error("invalid huffman sequence");
}
}
return null;
}
// @ts-ignore
function receive(length) {
let n = 0;
while (length > 0) {
const bit = readBit();
if (bit === null) { return; }
n = (n << 1) | bit;
length--;
}
return n;
}
// @ts-ignore
function receiveAndExtend(length) {
const n = receive(length);
// @ts-ignore
if (n >= 1 << (length - 1)) {
return n;
}
// @ts-ignore
return n + (-1 << length) + 1;
}
// @ts-ignore
function decodeBaseline(component, zz) {
const t = decodeHuffman(component.huffmanTableDC);
const diff = t === 0 ? 0 : receiveAndExtend(t);
zz[0] = (component.pred += diff);
let k = 1;
while (k < 64) {
const rs = decodeHuffman(component.huffmanTableAC);
// @ts-ignore
const s = rs & 15, r = rs >> 4;
if (s === 0) {
if (r < 15) {
break;
}
k += 16;
continue;
}
k += r;
const z = dctZigZag[k];
zz[z] = receiveAndExtend(s);
k++;
}
}
// @ts-ignore
function decodeDCFirst(component, zz) {
const t = decodeHuffman(component.huffmanTableDC);
// @ts-ignore
const diff = t === 0 ? 0 : (receiveAndExtend(t) << successive);
zz[0] = (component.pred += diff);
}
// @ts-ignore
function decodeDCSuccessive(component, zz) {
zz[0] |= readBit() << successive;
}
let eobrun = 0;
// @ts-ignore
function decodeACFirst(component, zz) {
if (eobrun > 0) {
eobrun--;
return;
}
let k = spectralStart, e = spectralEnd;
while (k <= e) {
const rs = decodeHuffman(component.huffmanTableAC);
// @ts-ignore
const s = rs & 15, r = rs >> 4;
if (s === 0) {
if (r < 15) {
// @ts-ignore
eobrun = receive(r) + (1 << r) - 1;
break;
}
k += 16;
continue;
}
k += r;
const z = dctZigZag[k];
// @ts-ignore
zz[z] = receiveAndExtend(s) * (1 << successive);
k++;
}
}
// @ts-ignore
let successiveACState = 0, successiveACNextValue;
// @ts-ignore
function decodeACSuccessive(component, zz) {
let k = spectralStart, e = spectralEnd, r = 0;
while (k <= e) {
const z = dctZigZag[k];
const direction = zz[z] < 0 ? -1 : 1;
switch (successiveACState) {
case 0: // initial state
const rs = decodeHuffman(component.huffmanTableAC);
// @ts-ignore
const s = rs & 15;
// @ts-ignore
r = rs >> 4
if (s === 0) {
if (r < 15) {
// @ts-ignore
eobrun = receive(r) + (1 << r);
successiveACState = 4;
} else {
r = 16;
successiveACState = 1;
}
} else {
if (s !== 1) {
throw new Error("invalid ACn encoding");
}
successiveACNextValue = receiveAndExtend(s);
successiveACState = r ? 2 : 3;
}
continue;
case 1: // skipping r zero items
case 2:
if (zz[z]) {
zz[z] += (readBit() << successive) * direction;
} else {
r--;
if (r === 0) {
successiveACState = successiveACState == 2 ? 3 : 0;
}
}
break;
case 3: // set value for a zero item
if (zz[z]) {
zz[z] += (readBit() << successive) * direction;
} else {
// @ts-ignore
zz[z] = successiveACNextValue << successive;
successiveACState = 0;
}
break;
case 4: // eob
if (zz[z]) {
zz[z] += (readBit() << successive) * direction;
}
break;
}
k++;
}
if (successiveACState === 4) {
eobrun--;
if (eobrun === 0) {
successiveACState = 0;
}
}
}
// @ts-ignore
function decodeMcu(component, decode, mcu, row, col) {
const mcuRow = (mcu / mcusPerLine) | 0;
const mcuCol = mcu % mcusPerLine;
const blockRow = mcuRow * component.v + row;
const blockCol = mcuCol * component.h + col;
decode(component, component.blocks[blockRow][blockCol]);
}
// @ts-ignore
function decodeBlock(component, decode, mcu) {
const blockRow = (mcu / component.blocksPerLine) | 0;
const blockCol = mcu % component.blocksPerLine;
decode(component, component.blocks[blockRow][blockCol]);
}
const componentsLength = components.length;
let component, i, j, k, n;
let decodeFn;
if (progressive) {
if (spectralStart === 0) {
decodeFn = successivePrev === 0 ? decodeDCFirst : decodeDCSuccessive;
} else {
decodeFn = successivePrev === 0 ? decodeACFirst : decodeACSuccessive;
}
} else {
decodeFn = decodeBaseline;
}
let mcu = 0, marker;
let mcuExpected;
if (componentsLength == 1) {
mcuExpected = components[0].blocksPerLine * components[0].blocksPerColumn;
} else {
mcuExpected = mcusPerLine * frame.mcusPerColumn;
}
if (!resetInterval) { resetInterval = mcuExpected; }
let h, v;
while (mcu < mcuExpected) {
// reset interval stuff
for (i = 0; i < componentsLength; i++) {
components[i].pred = 0;
}
eobrun = 0;
if (componentsLength == 1) {
component = components[0];
for (n = 0; n < resetInterval; n++) {
decodeBlock(component, decodeFn, mcu);
mcu++;
}
} else {
for (n = 0; n < resetInterval; n++) {
for (i = 0; i < componentsLength; i++) {
component = components[i];
h = component.h;
v = component.v;
for (j = 0; j < v; j++) {
for (k = 0; k < h; k++) {
decodeMcu(component, decodeFn, mcu, j, k);
}
}
}
mcu++;
// If we've reached our expected MCU's, stop decoding
if (mcu === mcuExpected) { break; }
}
}
// find marker
bitsCount = 0;
marker = (data[offset] << 8) | data[offset + 1];
if (marker < 0xFF00) {
throw new Error("marker was not found");
}
if (marker >= 0xFFD0 && marker <= 0xFFD7) { // RSTx
offset += 2;
} else {
break;
}
}
return offset - startOffset;
}
// @ts-ignore
function buildComponentData(frame, component) {
const lines = [];
const blocksPerLine = component.blocksPerLine;
const blocksPerColumn = component.blocksPerColumn;
const samplesPerLine = blocksPerLine << 3;
const R = new Int32Array(64), r = new Uint8Array(64);
// @ts-ignore
function quantizeAndInverse(zz, dataOut, dataIn) {
const qt = component.quantizationTable;
let v0, v1, v2, v3, v4, v5, v6, v7, t;
const p = dataIn;
let i;
// dequant
for (i = 0; i < 64; i++) {
p[i] = zz[i] * qt[i];
}
// inverse DCT on rows
for (i = 0; i < 8; ++i) {
const row = 8 * i;
// check for all-zero AC coefficients
if (p[1 + row] == 0 && p[2 + row] == 0 && p[3 + row] == 0 &&
p[4 + row] == 0 && p[5 + row] == 0 && p[6 + row] == 0 &&
p[7 + row] == 0) {
t = (dctSqrt2 * p[0 + row] + 512) >> 10;
p[0 + row] = t;
p[1 + row] = t;
p[2 + row] = t;
p[3 + row] = t;
p[4 + row] = t;
p[5 + row] = t;
p[6 + row] = t;
p[7 + row] = t;
continue;
}
// stage 4
v0 = (dctSqrt2 * p[0 + row] + 128) >> 8;
v1 = (dctSqrt2 * p[4 + row] + 128) >> 8;
v2 = p[2 + row];
v3 = p[6 + row];
v4 = (dctSqrt1d2 * (p[1 + row] - p[7 + row]) + 128) >> 8;
v7 = (dctSqrt1d2 * (p[1 + row] + p[7 + row]) + 128) >> 8;
v5 = p[3 + row] << 4;
v6 = p[5 + row] << 4;
// stage 3
t = (v0 - v1 + 1) >> 1;
v0 = (v0 + v1 + 1) >> 1;
v1 = t;
t = (v2 * dctSin6 + v3 * dctCos6 + 128) >> 8;
v2 = (v2 * dctCos6 - v3 * dctSin6 + 128) >> 8;
v3 = t;
t = (v4 - v6 + 1) >> 1;
v4 = (v4 + v6 + 1) >> 1;
v6 = t;
t = (v7 + v5 + 1) >> 1;
v5 = (v7 - v5 + 1) >> 1;
v7 = t;
// stage 2
t = (v0 - v3 + 1) >> 1;
v0 = (v0 + v3 + 1) >> 1;
v3 = t;
t = (v1 - v2 + 1) >> 1;
v1 = (v1 + v2 + 1) >> 1;
v2 = t;
t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12;
v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12;
v7 = t;
t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12;
v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12;
v6 = t;
// stage 1
p[0 + row] = v0 + v7;
p[7 + row] = v0 - v7;
p[1 + row] = v1 + v6;
p[6 + row] = v1 - v6;
p[2 + row] = v2 + v5;
p[5 + row] = v2 - v5;
p[3 + row] = v3 + v4;
p[4 + row] = v3 - v4;
}
// inverse DCT on columns
for (i = 0; i < 8; ++i) {
const col = i;
// check for all-zero AC coefficients
if (p[1 * 8 + col] == 0 && p[2 * 8 + col] == 0 && p[3 * 8 + col] == 0 &&
p[4 * 8 + col] == 0 && p[5 * 8 + col] == 0 && p[6 * 8 + col] == 0 &&
p[7 * 8 + col] == 0) {
t = (dctSqrt2 * dataIn[i + 0] + 8192) >> 14;
p[0 * 8 + col] = t;
p[1 * 8 + col] = t;
p[2 * 8 + col] = t;
p[3 * 8 + col] = t;
p[4 * 8 + col] = t;
p[5 * 8 + col] = t;
p[6 * 8 + col] = t;
p[7 * 8 + col] = t;
continue;
}
// stage 4
v0 = (dctSqrt2 * p[0 * 8 + col] + 2048) >> 12;
v1 = (dctSqrt2 * p[4 * 8 + col] + 2048) >> 12;
v2 = p[2 * 8 + col];
v3 = p[6 * 8 + col];
v4 = (dctSqrt1d2 * (p[1 * 8 + col] - p[7 * 8 + col]) + 2048) >> 12;
v7 = (dctSqrt1d2 * (p[1 * 8 + col] + p[7 * 8 + col]) + 2048) >> 12;
v5 = p[3 * 8 + col];
v6 = p[5 * 8 + col];
// stage 3
t = (v0 - v1 + 1) >> 1;
v0 = (v0 + v1 + 1) >> 1;
v1 = t;
t = (v2 * dctSin6 + v3 * dctCos6 + 2048) >> 12;
v2 = (v2 * dctCos6 - v3 * dctSin6 + 2048) >> 12;
v3 = t;
t = (v4 - v6 + 1) >> 1;
v4 = (v4 + v6 + 1) >> 1;
v6 = t;
t = (v7 + v5 + 1) >> 1;
v5 = (v7 - v5 + 1) >> 1;
v7 = t;
// stage 2
t = (v0 - v3 + 1) >> 1;
v0 = (v0 + v3 + 1) >> 1;
v3 = t;
t = (v1 - v2 + 1) >> 1;
v1 = (v1 + v2 + 1) >> 1;
v2 = t;
t = (v4 * dctSin3 + v7 * dctCos3 + 2048) >> 12;
v4 = (v4 * dctCos3 - v7 * dctSin3 + 2048) >> 12;
v7 = t;
t = (v5 * dctSin1 + v6 * dctCos1 + 2048) >> 12;
v5 = (v5 * dctCos1 - v6 * dctSin1 + 2048) >> 12;
v6 = t;
// stage 1
p[0 * 8 + col] = v0 + v7;
p[7 * 8 + col] = v0 - v7;
p[1 * 8 + col] = v1 + v6;
p[6 * 8 + col] = v1 - v6;
p[2 * 8 + col] = v2 + v5;
p[5 * 8 + col] = v2 - v5;
p[3 * 8 + col] = v3 + v4;
p[4 * 8 + col] = v3 - v4;
}
// convert to 8-bit integers
for (i = 0; i < 64; ++i) {
const sample = 128 + ((p[i] + 8) >> 4);
dataOut[i] = sample < 0 ? 0 : sample > 0xFF ? 0xFF : sample;
}
}
let i, j;
for (let blockRow = 0; blockRow < blocksPerColumn; blockRow++) {
const scanLine = blockRow << 3;
for (i = 0; i < 8; i++) {
lines.push(new Uint8Array(samplesPerLine));
}
for (let blockCol = 0; blockCol < blocksPerLine; blockCol++) {
quantizeAndInverse(component.blocks[blockRow][blockCol], r, R);
let offset = 0, sample = blockCol << 3;
for (j = 0; j < 8; j++) {
const line = lines[scanLine + j];
for (i = 0; i < 8; i++) {
line[sample + i] = r[offset++];
}
}
}
}
return lines;
}
// @ts-ignore
function clampTo8bit(a) {
return a < 0 ? 0 : a > 255 ? 255 : a;
}
constructor.prototype = {
// @ts-ignore
load: function load(path) {
// let xhr = new XMLHttpRequest();
// xhr.open("GET", path, true);
// xhr.responseType = "arraybuffer";
// xhr.onload = (function() {
// // TODO catch parse error
// let data = new Uint8Array(xhr.response || xhr.mozResponseArrayBuffer);
// this.parse(data);
// if (this.onload)
// this.onload();
// }).bind(this);
// xhr.send(null);
},
parse: function parse(data: Uint8Array) {
let offset = 0;
function readUint16() {
const value = (data[offset] << 8) | data[offset + 1];
offset += 2;
return value;
}
function readDataBlock() {
const length = readUint16();
const array = data.subarray(offset, offset + length - 2);
offset += array.length;
return array;
}
// @ts-ignore
function prepareComponents(frame) {
let maxH = 0, maxV = 0;
let component, componentId;
for (componentId in frame.components) {
if (frame.components.hasOwnProperty(componentId)) {
component = frame.components[componentId];
if (maxH < component.h) { maxH = component.h; }
if (maxV < component.v) { maxV = component.v; }
}
}
const mcusPerLine = Math.ceil(frame.samplesPerLine / 8 / maxH);
const mcusPerColumn = Math.ceil(frame.scanLines / 8 / maxV);
for (componentId in frame.components) {
if (frame.components.hasOwnProperty(componentId)) {
component = frame.components[componentId];
const blocksPerLine = Math.ceil(Math.ceil(frame.samplesPerLine / 8) * component.h / maxH);
const blocksPerColumn = Math.ceil(Math.ceil(frame.scanLines / 8) * component.v / maxV);
const blocksPerLineForMcu = mcusPerLine * component.h;
const blocksPerColumnForMcu = mcusPerColumn * component.v;
const blocks = [];
for (let i = 0; i < blocksPerColumnForMcu; i++) {
const row = [];
for (let j = 0; j < blocksPerLineForMcu; j++) {
row.push(new Int32Array(64));
}
blocks.push(row);
}
component.blocksPerLine = blocksPerLine;
component.blocksPerColumn = blocksPerColumn;
component.blocks = blocks;
}
}
frame.maxH = maxH;
frame.maxV = maxV;
frame.mcusPerLine = mcusPerLine;
frame.mcusPerColumn = mcusPerColumn;
}
let jfif = null;
let adobe = null;
let frame, resetInterval;
const quantizationTables = [], frames = [];
// @ts-ignore
const huffmanTablesAC = [], huffmanTablesDC = [];
let fileMarker = readUint16();
if (fileMarker != 0xFFD8) { // SOI (Start of Image)
throw new Error("SOI not found");
}
fileMarker = readUint16();
while (fileMarker != 0xFFD9) { // EOI (End of image)
let i, j, l;
switch (fileMarker) {
case 0xFF00: break;
case 0xFFE0: // APP0 (Application Specific)
case 0xFFE1: // APP1
case 0xFFE2: // APP2
case 0xFFE3: // APP3
case 0xFFE4: // APP4
case 0xFFE5: // APP5
case 0xFFE6: // APP6
case 0xFFE7: // APP7
case 0xFFE8: // APP8
case 0xFFE9: // APP9
case 0xFFEA: // APP10
case 0xFFEB: // APP11
case 0xFFEC: // APP12
case 0xFFED: // APP13
case 0xFFEE: // APP14
case 0xFFEF: // APP15
case 0xFFFE: // COM (Comment)
const appData = readDataBlock();
if (fileMarker === 0xFFE0) {
if (appData[0] === 0x4A && appData[1] === 0x46 && appData[2] === 0x49 &&
appData[3] === 0x46 && appData[4] === 0) { // 'JFIF\x00'
jfif = {
version: { major: appData[5], minor: appData[6] },
densityUnits: appData[7],
xDensity: (appData[8] << 8) | appData[9],
yDensity: (appData[10] << 8) | appData[11],
thumbWidth: appData[12],
thumbHeight: appData[13],
thumbData: appData.subarray(14, 14 + 3 * appData[12] * appData[13])
};
}
}
// TODO APP1 - Exif
if (fileMarker === 0xFFEE) {
if (appData[0] === 0x41 && appData[1] === 0x64 && appData[2] === 0x6F &&
appData[3] === 0x62 && appData[4] === 0x65 && appData[5] === 0) { // 'Adobe\x00'
adobe = {
version: appData[6],
flags0: (appData[7] << 8) | appData[8],
flags1: (appData[9] << 8) | appData[10],
transformCode: appData[11]
};
}
}
break;
case 0xFFDB: // DQT (Define Quantization Tables)
const quantizationTablesLength = readUint16();
const quantizationTablesEnd = quantizationTablesLength + offset - 2;
while (offset < quantizationTablesEnd) {
const quantizationTableSpec = data[offset++];
const tableData = new Int32Array(64);
if ((quantizationTableSpec >> 4) === 0) { // 8 bit values
for (j = 0; j < 64; j++) {
const z = dctZigZag[j];
tableData[z] = data[offset++];
}
} else if ((quantizationTableSpec >> 4) === 1) { // 16 bit
for (j = 0; j < 64; j++) {
const z = dctZigZag[j];
tableData[z] = readUint16();
}
} else {
throw new Error("DQT: invalid table spec");
}
quantizationTables[quantizationTableSpec & 15] = tableData;
}
break;
case 0xFFC0: // SOF0 (Start of Frame, Baseline DCT)
case 0xFFC1: // SOF1 (Start of Frame, Extended DCT)
case 0xFFC2: // SOF2 (Start of Frame, Progressive DCT)
readUint16(); // skip data length
frame = {};
// @ts-ignore
frame.extended = (fileMarker === 0xFFC1);
// @ts-ignore
frame.progressive = (fileMarker === 0xFFC2);
// @ts-ignore
frame.precision = data[offset++];
// @ts-ignore
frame.scanLines = readUint16();
// @ts-ignore
frame.samplesPerLine = readUint16();
// @ts-ignore
frame.components = {};
// @ts-ignore
frame.componentsOrder = [];
let componentsCount = data[offset++], componentId;
for (i = 0; i < componentsCount; i++) {
componentId = data[offset];
const h = data[offset + 1] >> 4;
const v = data[offset + 1] & 15;
const qId = data[offset + 2];
// @ts-ignore
frame.componentsOrder.push(componentId);
// @ts-ignore
frame.components[componentId] = {
h: h,
v: v,
quantizationIdx: qId
};
offset += 3;
}
prepareComponents(frame);
frames.push(frame);
break;
case 0xFFC4: // DHT (Define Huffman Tables)
const huffmanLength = readUint16();
for (i = 2; i < huffmanLength;) {
const huffmanTableSpec = data[offset++];
const codeLengths = new Uint8Array(16);
let codeLengthSum = 0;
for (j = 0; j < 16; j++, offset++) {
codeLengthSum += (codeLengths[j] = data[offset]);
}
const huffmanValues = new Uint8Array(codeLengthSum);
for (j = 0; j < codeLengthSum; j++, offset++) {
huffmanValues[j] = data[offset];
}
i += 17 + codeLengthSum;
((huffmanTableSpec >> 4) === 0 ?
// @ts-ignore
huffmanTablesDC : huffmanTablesAC)[huffmanTableSpec & 15] =
buildHuffmanTable(codeLengths, huffmanValues);
}
break;
case 0xFFDD: // DRI (Define Restart Interval)
readUint16(); // skip data length
resetInterval = readUint16();
break;
case 0xFFDA: // SOS (Start of Scan)
readUint16();
const selectorsCount = data[offset++];
let components = [], component;
for (i = 0; i < selectorsCount; i++) {
// @ts-ignore
component = frame.components[data[offset++]];
const tableSpec = data[offset++];
// @ts-ignore
component.huffmanTableDC = huffmanTablesDC[tableSpec >> 4];
// @ts-ignore
component.huffmanTableAC = huffmanTablesAC[tableSpec & 15];
components.push(component);
}
const spectralStart = data[offset++];
const spectralEnd = data[offset++];
const successiveApproximation = data[offset++];
const processed = decodeScan(data, offset,
frame, components, resetInterval,
spectralStart, spectralEnd,
successiveApproximation >> 4, successiveApproximation & 15);
offset += processed;
break;
case 0xFFFF: // Fill bytes
if (data[offset] !== 0xFF) { // Avoid skipping a valid marker.
offset--;
}
break;
default:
if (data[offset - 3] == 0xFF &&
data[offset - 2] >= 0xC0 && data[offset - 2] <= 0xFE) {
// could be incorrect encoding -- last 0xFF byte of the previous
// block was eaten by the encoder
offset -= 3;
break;
}
throw new Error("unknown JPEG marker " + fileMarker.toString(16));
}
fileMarker = readUint16();
}
if (frames.length != 1) {
throw new Error("only single frame JPEGs supported");
}
// set each frame's components quantization table
for (let i = 0; i < frames.length; i++) {
// @ts-ignore
const cp = frames[i].components;
for (const j in cp) {
cp[j].quantizationTable = quantizationTables[cp[j].quantizationIdx];
delete cp[j].quantizationIdx;
}
}
// @ts-ignore
this.width = frame.samplesPerLine;
// @ts-ignore
this.height = frame.scanLines;
this.jfif = jfif;
this.adobe = adobe;
this.components = [];
// @ts-ignore
for (let i = 0; i < frame.componentsOrder.length; i++) {
// @ts-ignore
const component = frame.components[frame.componentsOrder[i]];
this.components.push({
lines: buildComponentData(frame, component),
// @ts-ignore
scaleX: component.h / frame.maxH,
// @ts-ignore
scaleY: component.v / frame.maxV
});
}
},
// @ts-ignore
getData: function getData(width, height) {
const scaleX = this.width / width, scaleY = this.height / height;
let component1, component2, component3, component4;
let component1Line, component2Line, component3Line, component4Line;
let x, y;
let offset = 0;
let Y, Cb, Cr, K, C, M, Ye, R, G, B;
let colorTransform;
const dataLength = width * height * this.components.length;
const data = new Uint8Array(dataLength);
switch (this.components.length) {
case 1:
component1 = this.components[0];
for (y = 0; y < height; y++) {
component1Line = component1.lines[0 | (y * component1.scaleY * scaleY)];
for (x = 0; x < width; x++) {
Y = component1Line[0 | (x * component1.scaleX * scaleX)];
data[offset++] = Y;
}
}
break;
case 2:
// PDF might compress two component data in custom colorspace
component1 = this.components[0];
component2 = this.components[1];
for (y = 0; y < height; y++) {
component1Line = component1.lines[0 | (y * component1.scaleY * scaleY)];
component2Line = component2.lines[0 | (y * component2.scaleY * scaleY)];
for (x = 0; x < width; x++) {
Y = component1Line[0 | (x * component1.scaleX * scaleX)];
data[offset++] = Y;
Y = component2Line[0 | (x * component2.scaleX * scaleX)];
data[offset++] = Y;
}
}
break;
case 3:
// The default transform for three components is true
colorTransform = true;
// The adobe transform marker overrides any previous setting
if (this.adobe && this.adobe.transformCode) {
colorTransform = true;
} else if (typeof this.colorTransform !== "undefined") {
colorTransform = !!this.colorTransform;
}
component1 = this.components[0];
component2 = this.components[1];
component3 = this.components[2];
for (y = 0; y < height; y++) {
component1Line = component1.lines[0 | (y * component1.scaleY * scaleY)];
component2Line = component2.lines[0 | (y * component2.scaleY * scaleY)];
component3Line = component3.lines[0 | (y * component3.scaleY * scaleY)];
for (x = 0; x < width; x++) {
if (!colorTransform) {
R = component1Line[0 | (x * component1.scaleX * scaleX)];
G = component2Line[0 | (x * component2.scaleX * scaleX)];
B = component3Line[0 | (x * component3.scaleX * scaleX)];
} else {
Y = component1Line[0 | (x * component1.scaleX * scaleX)];
Cb = component2Line[0 | (x * component2.scaleX * scaleX)];
Cr = component3Line[0 | (x * component3.scaleX * scaleX)];
R = clampTo8bit(Y + 1.402 * (Cr - 128));
G = clampTo8bit(Y - 0.3441363 * (Cb - 128) - 0.71413636 * (Cr - 128));
B = clampTo8bit(Y + 1.772 * (Cb - 128));
}
data[offset++] = R;
data[offset++] = G;
data[offset++] = B;
}
}
break;
case 4:
if (!this.adobe) {
throw new Error("Unsupported color mode (4 components)");
}
// The default transform for four components is false
colorTransform = false;
// The adobe transform marker overrides any previous setting
if (this.adobe && this.adobe.transformCode) {
colorTransform = true;
} else if (typeof this.colorTransform !== "undefined") {
colorTransform = !!this.colorTransform;
}
component1 = this.components[0];
component2 = this.components[1];
component3 = this.components[2];
component4 = this.components[3];
for (y = 0; y < height; y++) {
component1Line = component1.lines[0 | (y * component1.scaleY * scaleY)];
component2Line = component2.lines[0 | (y * component2.scaleY * scaleY)];
component3Line = component3.lines[0 | (y * component3.scaleY * scaleY)];
component4Line = component4.lines[0 | (y * component4.scaleY * scaleY)];
for (x = 0; x < width; x++) {
if (!colorTransform) {
C = component1Line[0 | (x * component1.scaleX * scaleX)];
M = component2Line[0 | (x * component2.scaleX * scaleX)];
Ye = component3Line[0 | (x * component3.scaleX * scaleX)];
K = component4Line[0 | (x * component4.scaleX * scaleX)];
} else {
Y = component1Line[0 | (x * component1.scaleX * scaleX)];
Cb = component2Line[0 | (x * component2.scaleX * scaleX)];
Cr = component3Line[0 | (x * component3.scaleX * scaleX)];
K = component4Line[0 | (x * component4.scaleX * scaleX)];
C = 255 - clampTo8bit(Y + 1.402 * (Cr - 128));
M = 255 - clampTo8bit(Y - 0.3441363 * (Cb - 128) - 0.71413636 * (Cr - 128));
Ye = 255 - clampTo8bit(Y + 1.772 * (Cb - 128));
}
data[offset++] = 255 - C;
data[offset++] = 255 - M;
data[offset++] = 255 - Ye;
data[offset++] = 255 - K;
}
}
break;
default:
throw new Error("Unsupported color mode");
}
return data;
},
// @ts-ignore
copyToImageData: function copyToImageData(imageData) {
const width = imageData.width, height = imageData.height;
const imageDataArray = imageData.data;
const data = this.getData(width, height);
let i = 0, j = 0, x, y;
let Y, K, C, M, R, G, B;
switch (this.components.length) {
case 1:
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
Y = data[i++];
imageDataArray[j++] = Y;
imageDataArray[j++] = Y;
imageDataArray[j++] = Y;
imageDataArray[j++] = 255;
}
}
break;
case 3:
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
R = data[i++];
G = data[i++];
B = data[i++];
imageDataArray[j++] = R;
imageDataArray[j++] = G;
imageDataArray[j++] = B;
imageDataArray[j++] = 255;
}
}
break;
case 4:
for (y = 0; y < height; y++) {
for (x = 0; x < width; x++) {
C = data[i++];
M = data[i++];
Y = data[i++];
K = data[i++];
R = 255 - clampTo8bit(C * (1 - K / 255) + K);
G = 255 - clampTo8bit(M * (1 - K / 255) + K);
B = 255 - clampTo8bit(Y * (1 - K / 255) + K);
imageDataArray[j++] = R;
imageDataArray[j++] = G;
imageDataArray[j++] = B;
imageDataArray[j++] = 255;
}
}
break;
default:
throw new Error("Unsupported color mode");
}
}
};
return constructor;
})();
export const decode = function (jpegData: Uint8Array, colorTransform: boolean = true): Image {
const arr = new Uint8Array(jpegData);
// @ts-ignore
const decoder = new JpegImage();
decoder.parse(arr);
decoder.colorTransform = colorTransform;
const image = new Image();
image.height = decoder.height
image.width = decoder.width
image.data = new Uint8Array(decoder.width * decoder.height * 4)
decoder.copyToImageData(image);
return image;
}