swc/bundler/tests/.cache/deno/14d2cb6efaa975d346dd8d3811810e8c910c4912.ts
강동윤 bbaf619f63
fix(bundler): Fix bugs (#1437)
swc_bundler:
 - [x] Fix wrapped esms. (denoland/deno#9307)
 - [x] Make test secure.
2021-03-02 17:33:03 +09:00

1273 lines
23 KiB
TypeScript

// Loaded from https://deno.land/x/jpegts@1.1/lib/encoder.ts
/*
Copyright (c) 2008, Adobe Systems Incorporated
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of Adobe Systems Incorporated nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
JPEG encoder ported to JavaScript and optimized by Andreas Ritter, www.bytestrom.eu, 11/2009
Basic GUI blocking jpeg encoder
*/
import { Image } from "./image.ts";
function JPEGEncoder(quality: number) {
const ffloor = Math.floor;
const YTable = new Array(64);
const UVTable = new Array(64);
const fdtbl_Y = new Array(64);
const fdtbl_UV = new Array(64);
// @ts-ignore
let YDC_HT;
// @ts-ignore
let UVDC_HT;
// @ts-ignore
let YAC_HT;
// @ts-ignore
let UVAC_HT;
const bitcode = new Array(65535);
const category = new Array(65535);
const outputfDCTQuant = new Array(64);
const DU = new Array(64);
let byteout = [];
let bytenew = 0;
let bytepos = 7;
const YDU = new Array(64);
const UDU = new Array(64);
const VDU = new Array(64);
const clt = new Array(256);
const RGB_YUV_TABLE = new Array(2048);
// @ts-ignore
let currentQuality;
const ZigZag = [
0,
1,
5,
6,
14,
15,
27,
28,
2,
4,
7,
13,
16,
26,
29,
42,
3,
8,
12,
17,
25,
30,
41,
43,
9,
11,
18,
24,
31,
40,
44,
53,
10,
19,
23,
32,
39,
45,
52,
54,
20,
22,
33,
38,
46,
51,
55,
60,
21,
34,
37,
47,
50,
56,
59,
61,
35,
36,
48,
49,
57,
58,
62,
63,
];
const std_dc_luminance_nrcodes = [
0,
0,
1,
5,
1,
1,
1,
1,
1,
1,
0,
0,
0,
0,
0,
0,
0,
];
const std_dc_luminance_values = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11];
const std_ac_luminance_nrcodes = [
0,
0,
2,
1,
3,
3,
2,
4,
3,
5,
5,
4,
4,
0,
0,
1,
0x7d,
];
const std_ac_luminance_values = [
0x01,
0x02,
0x03,
0x00,
0x04,
0x11,
0x05,
0x12,
0x21,
0x31,
0x41,
0x06,
0x13,
0x51,
0x61,
0x07,
0x22,
0x71,
0x14,
0x32,
0x81,
0x91,
0xa1,
0x08,
0x23,
0x42,
0xb1,
0xc1,
0x15,
0x52,
0xd1,
0xf0,
0x24,
0x33,
0x62,
0x72,
0x82,
0x09,
0x0a,
0x16,
0x17,
0x18,
0x19,
0x1a,
0x25,
0x26,
0x27,
0x28,
0x29,
0x2a,
0x34,
0x35,
0x36,
0x37,
0x38,
0x39,
0x3a,
0x43,
0x44,
0x45,
0x46,
0x47,
0x48,
0x49,
0x4a,
0x53,
0x54,
0x55,
0x56,
0x57,
0x58,
0x59,
0x5a,
0x63,
0x64,
0x65,
0x66,
0x67,
0x68,
0x69,
0x6a,
0x73,
0x74,
0x75,
0x76,
0x77,
0x78,
0x79,
0x7a,
0x83,
0x84,
0x85,
0x86,
0x87,
0x88,
0x89,
0x8a,
0x92,
0x93,
0x94,
0x95,
0x96,
0x97,
0x98,
0x99,
0x9a,
0xa2,
0xa3,
0xa4,
0xa5,
0xa6,
0xa7,
0xa8,
0xa9,
0xaa,
0xb2,
0xb3,
0xb4,
0xb5,
0xb6,
0xb7,
0xb8,
0xb9,
0xba,
0xc2,
0xc3,
0xc4,
0xc5,
0xc6,
0xc7,
0xc8,
0xc9,
0xca,
0xd2,
0xd3,
0xd4,
0xd5,
0xd6,
0xd7,
0xd8,
0xd9,
0xda,
0xe1,
0xe2,
0xe3,
0xe4,
0xe5,
0xe6,
0xe7,
0xe8,
0xe9,
0xea,
0xf1,
0xf2,
0xf3,
0xf4,
0xf5,
0xf6,
0xf7,
0xf8,
0xf9,
0xfa,
];
const std_dc_chrominance_nrcodes = [
0,
0,
3,
1,
1,
1,
1,
1,
1,
1,
1,
1,
0,
0,
0,
0,
0,
];
const std_dc_chrominance_values = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11];
const std_ac_chrominance_nrcodes = [
0,
0,
2,
1,
2,
4,
4,
3,
4,
7,
5,
4,
4,
0,
1,
2,
0x77,
];
const std_ac_chrominance_values = [
0x00,
0x01,
0x02,
0x03,
0x11,
0x04,
0x05,
0x21,
0x31,
0x06,
0x12,
0x41,
0x51,
0x07,
0x61,
0x71,
0x13,
0x22,
0x32,
0x81,
0x08,
0x14,
0x42,
0x91,
0xa1,
0xb1,
0xc1,
0x09,
0x23,
0x33,
0x52,
0xf0,
0x15,
0x62,
0x72,
0xd1,
0x0a,
0x16,
0x24,
0x34,
0xe1,
0x25,
0xf1,
0x17,
0x18,
0x19,
0x1a,
0x26,
0x27,
0x28,
0x29,
0x2a,
0x35,
0x36,
0x37,
0x38,
0x39,
0x3a,
0x43,
0x44,
0x45,
0x46,
0x47,
0x48,
0x49,
0x4a,
0x53,
0x54,
0x55,
0x56,
0x57,
0x58,
0x59,
0x5a,
0x63,
0x64,
0x65,
0x66,
0x67,
0x68,
0x69,
0x6a,
0x73,
0x74,
0x75,
0x76,
0x77,
0x78,
0x79,
0x7a,
0x82,
0x83,
0x84,
0x85,
0x86,
0x87,
0x88,
0x89,
0x8a,
0x92,
0x93,
0x94,
0x95,
0x96,
0x97,
0x98,
0x99,
0x9a,
0xa2,
0xa3,
0xa4,
0xa5,
0xa6,
0xa7,
0xa8,
0xa9,
0xaa,
0xb2,
0xb3,
0xb4,
0xb5,
0xb6,
0xb7,
0xb8,
0xb9,
0xba,
0xc2,
0xc3,
0xc4,
0xc5,
0xc6,
0xc7,
0xc8,
0xc9,
0xca,
0xd2,
0xd3,
0xd4,
0xd5,
0xd6,
0xd7,
0xd8,
0xd9,
0xda,
0xe2,
0xe3,
0xe4,
0xe5,
0xe6,
0xe7,
0xe8,
0xe9,
0xea,
0xf2,
0xf3,
0xf4,
0xf5,
0xf6,
0xf7,
0xf8,
0xf9,
0xfa,
];
// @ts-ignore
function initQuantTables(sf) {
const YQT = [
16,
11,
10,
16,
24,
40,
51,
61,
12,
12,
14,
19,
26,
58,
60,
55,
14,
13,
16,
24,
40,
57,
69,
56,
14,
17,
22,
29,
51,
87,
80,
62,
18,
22,
37,
56,
68,
109,
103,
77,
24,
35,
55,
64,
81,
104,
113,
92,
49,
64,
78,
87,
103,
121,
120,
101,
72,
92,
95,
98,
112,
100,
103,
99,
];
for (let i = 0; i < 64; i++) {
let t = ffloor((YQT[i] * sf + 50) / 100);
if (t < 1) {
t = 1;
} else if (t > 255) {
t = 255;
}
YTable[ZigZag[i]] = t;
}
const UVQT = [
17,
18,
24,
47,
99,
99,
99,
99,
18,
21,
26,
66,
99,
99,
99,
99,
24,
26,
56,
99,
99,
99,
99,
99,
47,
66,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
99,
];
for (let j = 0; j < 64; j++) {
let u = ffloor((UVQT[j] * sf + 50) / 100);
if (u < 1) {
u = 1;
} else if (u > 255) {
u = 255;
}
UVTable[ZigZag[j]] = u;
}
const aasf = [
1.0,
1.387039845,
1.306562965,
1.175875602,
1.0,
0.785694958,
0.541196100,
0.275899379,
];
let k = 0;
for (let row = 0; row < 8; row++) {
for (let col = 0; col < 8; col++) {
fdtbl_Y[k] = (1.0 / (YTable[ZigZag[k]] * aasf[row] * aasf[col] * 8.0));
fdtbl_UV[k] =
(1.0 / (UVTable[ZigZag[k]] * aasf[row] * aasf[col] * 8.0));
k++;
}
}
}
// @ts-ignore
function computeHuffmanTbl(nrcodes, std_table) {
let codevalue = 0;
let pos_in_table = 0;
const HT = new Array();
for (let k = 1; k <= 16; k++) {
for (let j = 1; j <= nrcodes[k]; j++) {
HT[std_table[pos_in_table]] = [];
HT[std_table[pos_in_table]][0] = codevalue;
HT[std_table[pos_in_table]][1] = k;
pos_in_table++;
codevalue++;
}
codevalue *= 2;
}
return HT;
}
function initHuffmanTbl() {
YDC_HT = computeHuffmanTbl(
std_dc_luminance_nrcodes,
std_dc_luminance_values,
);
UVDC_HT = computeHuffmanTbl(
std_dc_chrominance_nrcodes,
std_dc_chrominance_values,
);
YAC_HT = computeHuffmanTbl(
std_ac_luminance_nrcodes,
std_ac_luminance_values,
);
UVAC_HT = computeHuffmanTbl(
std_ac_chrominance_nrcodes,
std_ac_chrominance_values,
);
}
function initCategoryNumber() {
let nrlower = 1;
let nrupper = 2;
for (let cat = 1; cat <= 15; cat++) {
// Positive numbers
for (let nr = nrlower; nr < nrupper; nr++) {
category[32767 + nr] = cat;
bitcode[32767 + nr] = [];
bitcode[32767 + nr][1] = cat;
bitcode[32767 + nr][0] = nr;
}
// Negative numbers
for (let nrneg = -(nrupper - 1); nrneg <= -nrlower; nrneg++) {
category[32767 + nrneg] = cat;
bitcode[32767 + nrneg] = [];
bitcode[32767 + nrneg][1] = cat;
bitcode[32767 + nrneg][0] = nrupper - 1 + nrneg;
}
nrlower <<= 1;
nrupper <<= 1;
}
}
function initRGBYUVTable() {
for (let i = 0; i < 256; i++) {
RGB_YUV_TABLE[i] = 19595 * i;
RGB_YUV_TABLE[(i + 256) >> 0] = 38470 * i;
RGB_YUV_TABLE[(i + 512) >> 0] = 7471 * i + 0x8000;
RGB_YUV_TABLE[(i + 768) >> 0] = -11059 * i;
RGB_YUV_TABLE[(i + 1024) >> 0] = -21709 * i;
RGB_YUV_TABLE[(i + 1280) >> 0] = 32768 * i + 0x807FFF;
RGB_YUV_TABLE[(i + 1536) >> 0] = -27439 * i;
RGB_YUV_TABLE[(i + 1792) >> 0] = -5329 * i;
}
}
// IO functions
// @ts-ignore
function writeBits(bs) {
const value = bs[0];
let posval = bs[1] - 1;
while (posval >= 0) {
if (value & (1 << posval)) {
bytenew |= (1 << bytepos);
}
posval--;
bytepos--;
if (bytepos < 0) {
if (bytenew === 0xFF) {
writeByte(0xFF);
writeByte(0);
} else {
writeByte(bytenew);
}
bytepos = 7;
bytenew = 0;
}
}
}
// @ts-ignore
function writeByte(value) {
// byteout.push(clt[value]); // write char directly instead of converting later
byteout.push(value);
}
// @ts-ignore
function writeWord(value) {
writeByte((value >> 8) & 0xFF);
writeByte((value) & 0xFF);
}
// DCT & quantization core
// @ts-ignore
function fDCTQuant(data, fdtbl) {
let d0, d1, d2, d3, d4, d5, d6, d7;
/* Pass 1: process rows. */
let dataOff = 0;
let i;
const I8 = 8;
const I64 = 64;
for (i = 0; i < I8; ++i) {
d0 = data[dataOff];
d1 = data[dataOff + 1];
d2 = data[dataOff + 2];
d3 = data[dataOff + 3];
d4 = data[dataOff + 4];
d5 = data[dataOff + 5];
d6 = data[dataOff + 6];
d7 = data[dataOff + 7];
const tmp0 = d0 + d7;
const tmp7 = d0 - d7;
const tmp1 = d1 + d6;
const tmp6 = d1 - d6;
const tmp2 = d2 + d5;
const tmp5 = d2 - d5;
const tmp3 = d3 + d4;
const tmp4 = d3 - d4;
/* Even part */
let tmp10 = tmp0 + tmp3; /* phase 2 */
const tmp13 = tmp0 - tmp3;
let tmp11 = tmp1 + tmp2;
let tmp12 = tmp1 - tmp2;
data[dataOff] = tmp10 + tmp11; /* phase 3 */
data[dataOff + 4] = tmp10 - tmp11;
const z1 = (tmp12 + tmp13) * 0.707106781; /* c4 */
data[dataOff + 2] = tmp13 + z1; /* phase 5 */
data[dataOff + 6] = tmp13 - z1;
/* Odd part */
tmp10 = tmp4 + tmp5; /* phase 2 */
tmp11 = tmp5 + tmp6;
tmp12 = tmp6 + tmp7;
/* The rotator is modified from fig 4-8 to avoid extra negations. */
const z5 = (tmp10 - tmp12) * 0.382683433; /* c6 */
const z2 = 0.541196100 * tmp10 + z5; /* c2-c6 */
const z4 = 1.306562965 * tmp12 + z5; /* c2+c6 */
const z3 = tmp11 * 0.707106781; /* c4 */
const z11 = tmp7 + z3; /* phase 5 */
const z13 = tmp7 - z3;
data[dataOff + 5] = z13 + z2; /* phase 6 */
data[dataOff + 3] = z13 - z2;
data[dataOff + 1] = z11 + z4;
data[dataOff + 7] = z11 - z4;
dataOff += 8; /* advance pointer to next row */
}
/* Pass 2: process columns. */
dataOff = 0;
for (i = 0; i < I8; ++i) {
d0 = data[dataOff];
d1 = data[dataOff + 8];
d2 = data[dataOff + 16];
d3 = data[dataOff + 24];
d4 = data[dataOff + 32];
d5 = data[dataOff + 40];
d6 = data[dataOff + 48];
d7 = data[dataOff + 56];
const tmp0p2 = d0 + d7;
const tmp7p2 = d0 - d7;
const tmp1p2 = d1 + d6;
const tmp6p2 = d1 - d6;
const tmp2p2 = d2 + d5;
const tmp5p2 = d2 - d5;
const tmp3p2 = d3 + d4;
const tmp4p2 = d3 - d4;
/* Even part */
let tmp10p2 = tmp0p2 + tmp3p2; /* phase 2 */
const tmp13p2 = tmp0p2 - tmp3p2;
let tmp11p2 = tmp1p2 + tmp2p2;
let tmp12p2 = tmp1p2 - tmp2p2;
data[dataOff] = tmp10p2 + tmp11p2; /* phase 3 */
data[dataOff + 32] = tmp10p2 - tmp11p2;
const z1p2 = (tmp12p2 + tmp13p2) * 0.707106781; /* c4 */
data[dataOff + 16] = tmp13p2 + z1p2; /* phase 5 */
data[dataOff + 48] = tmp13p2 - z1p2;
/* Odd part */
tmp10p2 = tmp4p2 + tmp5p2; /* phase 2 */
tmp11p2 = tmp5p2 + tmp6p2;
tmp12p2 = tmp6p2 + tmp7p2;
/* The rotator is modified from fig 4-8 to avoid extra negations. */
const z5p2 = (tmp10p2 - tmp12p2) * 0.382683433; /* c6 */
const z2p2 = 0.541196100 * tmp10p2 + z5p2; /* c2-c6 */
const z4p2 = 1.306562965 * tmp12p2 + z5p2; /* c2+c6 */
const z3p2 = tmp11p2 * 0.707106781; /* c4 */
const z11p2 = tmp7p2 + z3p2; /* phase 5 */
const z13p2 = tmp7p2 - z3p2;
data[dataOff + 40] = z13p2 + z2p2; /* phase 6 */
data[dataOff + 24] = z13p2 - z2p2;
data[dataOff + 8] = z11p2 + z4p2;
data[dataOff + 56] = z11p2 - z4p2;
dataOff++; /* advance pointer to next column */
}
// Quantize/descale the coefficients
let fDCTQuant1;
for (i = 0; i < I64; ++i) {
// Apply the quantization and scaling factor & Round to nearest integer
fDCTQuant1 = data[i] * fdtbl[i];
outputfDCTQuant[i] = (fDCTQuant1 > 0.0)
? ((fDCTQuant1 + 0.5) | 0)
: ((fDCTQuant1 - 0.5) | 0);
}
return outputfDCTQuant;
}
function writeAPP0() {
writeWord(0xFFE0); // marker
writeWord(16); // length
writeByte(0x4A); // J
writeByte(0x46); // F
writeByte(0x49); // I
writeByte(0x46); // F
writeByte(0); // = "JFIF",'\0'
writeByte(1); // versionhi
writeByte(1); // versionlo
writeByte(0); // xyunits
writeWord(1); // xdensity
writeWord(1); // ydensity
writeByte(0); // thumbnwidth
writeByte(0); // thumbnheight
}
// @ts-ignore
function writeSOF0(width, height) {
writeWord(0xFFC0); // marker
writeWord(17); // length, truecolor YUV JPG
writeByte(8); // precision
writeWord(height);
writeWord(width);
writeByte(3); // nrofcomponents
writeByte(1); // IdY
writeByte(0x11); // HVY
writeByte(0); // QTY
writeByte(2); // IdU
writeByte(0x11); // HVU
writeByte(1); // QTU
writeByte(3); // IdV
writeByte(0x11); // HVV
writeByte(1); // QTV
}
function writeDQT() {
writeWord(0xFFDB); // marker
writeWord(132); // length
writeByte(0);
for (let i = 0; i < 64; i++) {
writeByte(YTable[i]);
}
writeByte(1);
for (let j = 0; j < 64; j++) {
writeByte(UVTable[j]);
}
}
function writeDHT() {
writeWord(0xFFC4); // marker
writeWord(0x01A2); // length
writeByte(0); // HTYDCinfo
for (let i = 0; i < 16; i++) {
writeByte(std_dc_luminance_nrcodes[i + 1]);
}
for (let j = 0; j <= 11; j++) {
writeByte(std_dc_luminance_values[j]);
}
writeByte(0x10); // HTYACinfo
for (let k = 0; k < 16; k++) {
writeByte(std_ac_luminance_nrcodes[k + 1]);
}
for (let l = 0; l <= 161; l++) {
writeByte(std_ac_luminance_values[l]);
}
writeByte(1); // HTUDCinfo
for (let m = 0; m < 16; m++) {
writeByte(std_dc_chrominance_nrcodes[m + 1]);
}
for (let n = 0; n <= 11; n++) {
writeByte(std_dc_chrominance_values[n]);
}
writeByte(0x11); // HTUACinfo
for (let o = 0; o < 16; o++) {
writeByte(std_ac_chrominance_nrcodes[o + 1]);
}
for (let p = 0; p <= 161; p++) {
writeByte(std_ac_chrominance_values[p]);
}
}
function writeSOS() {
writeWord(0xFFDA); // marker
writeWord(12); // length
writeByte(3); // nrofcomponents
writeByte(1); // IdY
writeByte(0); // HTY
writeByte(2); // IdU
writeByte(0x11); // HTU
writeByte(3); // IdV
writeByte(0x11); // HTV
writeByte(0); // Ss
writeByte(0x3f); // Se
writeByte(0); // Bf
}
// @ts-ignore
function processDU(CDU, fdtbl, DC, HTDC, HTAC) {
const EOB = HTAC[0x00];
const M16zeroes = HTAC[0xF0];
let pos;
const I16 = 16;
const I63 = 63;
const I64 = 64;
const DU_DCT = fDCTQuant(CDU, fdtbl);
// ZigZag reorder
for (let j = 0; j < I64; ++j) {
DU[ZigZag[j]] = DU_DCT[j];
}
const Diff = DU[0] - DC;
DC = DU[0];
// Encode DC
if (Diff === 0) {
writeBits(HTDC[0]); // Diff might be 0
} else {
pos = 32767 + Diff;
writeBits(HTDC[category[pos]]);
writeBits(bitcode[pos]);
}
// Encode ACs
let end0pos = 63; // was const... which is crazy
for (; (end0pos > 0) && (DU[end0pos] === 0); end0pos--) {}
// end0pos = first element in reverse order !=0
if (end0pos === 0) {
writeBits(EOB);
return DC;
}
let i = 1;
let lng;
while (i <= end0pos) {
const startpos = i;
for (; (DU[i] === 0) && (i <= end0pos); ++i) {}
let nrzeroes = i - startpos;
if (nrzeroes >= I16) {
lng = nrzeroes >> 4;
for (let nrmarker = 1; nrmarker <= lng; ++nrmarker) {
writeBits(M16zeroes);
}
nrzeroes = nrzeroes & 0xF;
}
pos = 32767 + DU[i];
writeBits(HTAC[(nrzeroes << 4) + category[pos]]);
writeBits(bitcode[pos]);
i++;
}
if (end0pos !== I63) {
writeBits(EOB);
}
return DC;
}
function initCharLookupTable() {
const sfcc = String.fromCharCode;
for (let i = 0; i < 256; i++) { ///// ACHTUNG // 255
clt[i] = sfcc(i);
}
}
// @ts-ignore
this.encode = function (image, q) {
if (q) { setQuality(q); }
// Initialize bit writer
byteout = new Array();
bytenew = 0;
bytepos = 7;
// Add JPEG headers
writeWord(0xFFD8); // SOI
writeAPP0();
writeDQT();
writeSOF0(image.width, image.height);
writeDHT();
writeSOS();
// Encode 8x8 macroblocks
let DCY = 0;
let DCU = 0;
let DCV = 0;
bytenew = 0;
bytepos = 7;
this.encode.displayName = "_encode_";
const imageData = image.data;
const width = image.width;
const height = image.height;
const quadWidth = width * 4;
let x, y = 0;
let r, g, b;
let start, p, col, row, pos;
while (y < height) {
x = 0;
while (x < quadWidth) {
start = quadWidth * y + x;
for (pos = 0; pos < 64; pos++) {
row = pos >> 3; // /8
col = (pos & 7) * 4; // %8
p = start + (row * quadWidth) + col;
if (y + row >= height) { // padding bottom
p -= (quadWidth * (y + 1 + row - height));
}
if (x + col >= quadWidth) { // padding right
p -= ((x + col) - quadWidth + 4);
}
r = imageData[p++];
g = imageData[p++];
b = imageData[p];
/* // calculate YUV values dynamically
YDU[pos]=((( 0.29900)*r+( 0.58700)*g+( 0.11400)*b))-128; //-0x80
UDU[pos]=(((-0.16874)*r+(-0.33126)*g+( 0.50000)*b));
VDU[pos]=((( 0.50000)*r+(-0.41869)*g+(-0.08131)*b));
*/
// use lookup table (slightly faster)
YDU[pos] =
((RGB_YUV_TABLE[r] + RGB_YUV_TABLE[(g + 256) >> 0] +
RGB_YUV_TABLE[(b + 512) >> 0]) >> 16) - 128;
UDU[pos] =
((RGB_YUV_TABLE[(r + 768) >> 0] + RGB_YUV_TABLE[(g + 1024) >> 0] +
RGB_YUV_TABLE[(b + 1280) >> 0]) >> 16) - 128;
VDU[pos] =
((RGB_YUV_TABLE[(r + 1280) >> 0] + RGB_YUV_TABLE[(g + 1536) >> 0] +
RGB_YUV_TABLE[(b + 1792) >> 0]) >> 16) - 128;
}
// @ts-ignore
DCY = processDU(YDU, fdtbl_Y, DCY, YDC_HT, YAC_HT);
// @ts-ignore
DCU = processDU(UDU, fdtbl_UV, DCU, UVDC_HT, UVAC_HT);
// @ts-ignore
DCV = processDU(VDU, fdtbl_UV, DCV, UVDC_HT, UVAC_HT);
x += 32;
}
y += 8;
}
////////////////////////////////////////////////////////////////
// Do the bit alignment of the EOI marker
if (bytepos >= 0) {
const fillbits = [];
fillbits[1] = bytepos + 1;
fillbits[0] = (1 << (bytepos + 1)) - 1;
writeBits(fillbits);
}
writeWord(0xFFD9); // EOI
return new Uint8Array(byteout);
};
// @ts-ignore
function setQuality(q) {
if (q <= 0) {
q = 1;
}
if (q > 100) {
q = 100;
}
// @ts-ignore
if (currentQuality === q) { return; } // don't recalc if unchanged
let sf = 0;
if (q < 50) {
sf = Math.floor(5000 / q);
} else {
sf = Math.floor(200 - q * 2);
}
initQuantTables(sf);
currentQuality = q;
}
function init() {
if (!quality) { quality = 50; }
// Create tables
initCharLookupTable();
initHuffmanTbl();
initCategoryNumber();
initRGBYUVTable();
setQuality(quality);
}
init();
}
export const encode = function (imgData: Image, qu: number = 50): Image {
// @ts-ignore
const encoder = new JPEGEncoder(qu);
const data = encoder.encode(imgData, qu);
const result = new Image();
result.data = data;
result.width = imgData.width;
result.height = imgData.height;
return result;
};