unicode-normalization/scripts/unicode.py
2024-09-17 13:48:35 +02:00

618 lines
24 KiB
Python
Executable File

#!/usr/bin/env python
#
# Copyright 2011-2018 The Rust Project Developers. See the COPYRIGHT
# file at the top-level directory of this distribution and at
# http://rust-lang.org/COPYRIGHT.
#
# Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
# http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
# <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
# option. This file may not be copied, modified, or distributed
# except according to those terms.
# This script uses the following Unicode tables:
# - DerivedNormalizationProps.txt
# - NormalizationTest.txt
# - UnicodeData.txt
# - StandardizedVariants.txt
#
# Since this should not require frequent updates, we just store this
# out-of-line and check the tables.rs and normalization_tests.rs files into git.
import collections
import urllib.request
from itertools import batched
UNICODE_VERSION = "16.0.0"
UCD_URL = "https://www.unicode.org/Public/%s/ucd/" % UNICODE_VERSION
PREAMBLE = """// Copyright 2012-2018 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// NOTE: The following code was generated by "scripts/unicode.py", do not edit directly
#![allow(missing_docs)]
"""
NormalizationTest = collections.namedtuple(
"NormalizationTest",
["source", "nfc", "nfd", "nfkc", "nfkd"],
)
# Mapping taken from Table 12 from:
# http://www.unicode.org/reports/tr44/#General_Category_Values
expanded_categories = {
'Lu': ['LC', 'L'], 'Ll': ['LC', 'L'], 'Lt': ['LC', 'L'],
'Lm': ['L'], 'Lo': ['L'],
'Mn': ['M'], 'Mc': ['M'], 'Me': ['M'],
'Nd': ['N'], 'Nl': ['N'], 'No': ['No'],
'Pc': ['P'], 'Pd': ['P'], 'Ps': ['P'], 'Pe': ['P'],
'Pi': ['P'], 'Pf': ['P'], 'Po': ['P'],
'Sm': ['S'], 'Sc': ['S'], 'Sk': ['S'], 'So': ['S'],
'Zs': ['Z'], 'Zl': ['Z'], 'Zp': ['Z'],
'Cc': ['C'], 'Cf': ['C'], 'Cs': ['C'], 'Co': ['C'], 'Cn': ['C'],
}
# Constants from Unicode 9.0.0 Section 3.12 Conjoining Jamo Behavior
# http://www.unicode.org/versions/Unicode9.0.0/ch03.pdf#M9.32468.Heading.310.Combining.Jamo.Behavior
S_BASE, L_COUNT, V_COUNT, T_COUNT = 0xAC00, 19, 21, 28
S_COUNT = L_COUNT * V_COUNT * T_COUNT
class UnicodeData(object):
def __init__(self):
self._load_unicode_data()
self.norm_props = self._load_norm_props()
self.norm_tests = self._load_norm_tests()
self.canon_comp = self._compute_canonical_comp()
self.canon_fully_decomp, self.compat_fully_decomp = self._compute_fully_decomposed()
self.cjk_compat_variants_fully_decomp = {}
self._load_cjk_compat_ideograph_variants()
def stats(name, table):
count = sum(len(v) for v in table.values())
print("%s: %d chars => %d decomposed chars" % (name, len(table), count))
print("Decomposition table stats:")
stats("Canonical decomp", self.canon_decomp)
stats("Compatible decomp", self.compat_decomp)
stats("Canonical fully decomp", self.canon_fully_decomp)
stats("Compatible fully decomp", self.compat_fully_decomp)
stats("CJK Compat Variants fully decomp", self.cjk_compat_variants_fully_decomp)
self.ss_leading, self.ss_trailing = self._compute_stream_safe_tables()
def _fetch(self, filename):
resp = urllib.request.urlopen(UCD_URL + filename)
return resp.read().decode('utf-8')
def _load_unicode_data(self):
self.name_to_char_int = {}
self.combining_classes = {}
self.compat_decomp = {}
self.canon_decomp = {}
self.general_category_mark = []
self.general_category_public_assigned = []
assigned_start = 0;
prev_char_int = -1;
prev_name = "";
for line in self._fetch("UnicodeData.txt").splitlines():
# See ftp://ftp.unicode.org/Public/3.0-Update/UnicodeData-3.0.0.html
pieces = line.split(';')
assert len(pieces) == 15
char, name, category, cc, decomp = pieces[0], pieces[1], pieces[2], pieces[3], pieces[5]
char_int = int(char, 16)
name = pieces[1].strip()
self.name_to_char_int[name] = char_int
if cc != '0':
self.combining_classes[char_int] = cc
if decomp.startswith('<'):
self.compat_decomp[char_int] = [int(c, 16) for c in decomp.split()[1:]]
elif decomp != '':
self.canon_decomp[char_int] = [int(c, 16) for c in decomp.split()]
if category == 'M' or 'M' in expanded_categories.get(category, []):
self.general_category_mark.append(char_int)
assert category != 'Cn', "Unexpected: Unassigned codepoint in UnicodeData.txt"
if category not in ['Co', 'Cs']:
if char_int != prev_char_int + 1 and not is_first_and_last(prev_name, name):
self.general_category_public_assigned.append((assigned_start, prev_char_int))
assigned_start = char_int
prev_char_int = char_int
prev_name = name;
self.general_category_public_assigned.append((assigned_start, prev_char_int))
def _load_cjk_compat_ideograph_variants(self):
for line in self._fetch("StandardizedVariants.txt").splitlines():
strip_comments = line.split('#', 1)[0].strip()
if not strip_comments:
continue
variation_sequence, description, differences = strip_comments.split(';')
description = description.strip()
# Don't use variations that only apply in particular shaping environments.
if differences:
continue
# Look for entries where the description field is a codepoint name.
if description not in self.name_to_char_int:
continue
# Only consider the CJK Compatibility Ideographs.
if not description.startswith('CJK COMPATIBILITY IDEOGRAPH-'):
continue
char_int = self.name_to_char_int[description]
assert not char_int in self.combining_classes, "Unexpected: CJK compat variant with a combining class"
assert not char_int in self.compat_decomp, "Unexpected: CJK compat variant and compatibility decomposition"
assert len(self.canon_decomp[char_int]) == 1, "Unexpected: CJK compat variant and non-singleton canonical decomposition"
# If we ever need to handle Hangul here, we'll need to handle it separately.
assert not (S_BASE <= char_int < S_BASE + S_COUNT)
cjk_compat_variant_parts = [int(c, 16) for c in variation_sequence.split()]
for c in cjk_compat_variant_parts:
assert not c in self.canon_decomp, "Unexpected: CJK compat variant is unnormalized (canon)"
assert not c in self.compat_decomp, "Unexpected: CJK compat variant is unnormalized (compat)"
self.cjk_compat_variants_fully_decomp[char_int] = cjk_compat_variant_parts
def _load_norm_props(self):
props = collections.defaultdict(list)
for line in self._fetch("DerivedNormalizationProps.txt").splitlines():
(prop_data, _, _) = line.partition("#")
prop_pieces = prop_data.split(";")
if len(prop_pieces) < 2:
continue
assert len(prop_pieces) <= 3
(low, _, high) = prop_pieces[0].strip().partition("..")
prop = prop_pieces[1].strip()
data = None
if len(prop_pieces) == 3:
data = prop_pieces[2].strip()
props[prop].append((low, high, data))
return props
def _load_norm_tests(self):
tests = []
for line in self._fetch("NormalizationTest.txt").splitlines():
(test_data, _, _) = line.partition("#")
test_pieces = test_data.split(";")
if len(test_pieces) < 5:
continue
source, nfc, nfd, nfkc, nfkd = [[c.strip() for c in p.split()] for p in test_pieces[:5]]
tests.append(NormalizationTest(source, nfc, nfd, nfkc, nfkd))
return tests
def _compute_canonical_comp(self):
canon_comp = {}
comp_exclusions = [
(int(low, 16), int(high or low, 16))
for low, high, _ in self.norm_props["Full_Composition_Exclusion"]
]
for char_int, decomp in self.canon_decomp.items():
if any(lo <= char_int <= hi for lo, hi in comp_exclusions):
continue
assert len(decomp) == 2
assert (decomp[0], decomp[1]) not in canon_comp
canon_comp[(decomp[0], decomp[1])] = char_int
return canon_comp
def _compute_fully_decomposed(self):
"""
Even though the decomposition algorithm is recursive, it is possible
to precompute the recursion at table generation time with modest
increase to the table size. Then, for these precomputed tables, we
note that 1) compatible decomposition is a subset of canonical
decomposition and 2) they mostly agree on their intersection.
Therefore, we don't store entries in the compatible table for
characters that decompose the same way under canonical decomposition.
Decomposition table stats:
Canonical decomp: 2060 chars => 3085 decomposed chars
Compatible decomp: 3662 chars => 5440 decomposed chars
Canonical fully decomp: 2060 chars => 3404 decomposed chars
Compatible fully decomp: 3678 chars => 5599 decomposed chars
The upshot is that decomposition code is very simple and easy to inline
at mild code size cost.
"""
def _decompose(char_int, compatible):
# 7-bit ASCII never decomposes
if char_int <= 0x7f:
yield char_int
return
# Assert that we're handling Hangul separately.
assert not (S_BASE <= char_int < S_BASE + S_COUNT)
decomp = self.canon_decomp.get(char_int)
if decomp is not None:
for decomposed_ch in decomp:
for fully_decomposed_ch in _decompose(decomposed_ch, compatible):
yield fully_decomposed_ch
return
if compatible and char_int in self.compat_decomp:
for decomposed_ch in self.compat_decomp[char_int]:
for fully_decomposed_ch in _decompose(decomposed_ch, compatible):
yield fully_decomposed_ch
return
yield char_int
return
end_codepoint = max(
max(self.canon_decomp.keys()),
max(self.compat_decomp.keys()),
)
canon_fully_decomp = {}
compat_fully_decomp = {}
for char_int in range(0, end_codepoint + 1):
# Always skip Hangul, since it's more efficient to represent its
# decomposition programmatically.
if S_BASE <= char_int < S_BASE + S_COUNT:
continue
canon = list(_decompose(char_int, False))
if not (len(canon) == 1 and canon[0] == char_int):
canon_fully_decomp[char_int] = canon
compat = list(_decompose(char_int, True))
if not (len(compat) == 1 and compat[0] == char_int):
compat_fully_decomp[char_int] = compat
# Since canon_fully_decomp is a subset of compat_fully_decomp, we don't
# need to store their overlap when they agree. When they don't agree,
# store the decomposition in the compatibility table since we'll check
# that first when normalizing to NFKD.
assert set(canon_fully_decomp) <= set(compat_fully_decomp)
for ch in set(canon_fully_decomp) & set(compat_fully_decomp):
if canon_fully_decomp[ch] == compat_fully_decomp[ch]:
del compat_fully_decomp[ch]
return canon_fully_decomp, compat_fully_decomp
def _compute_stream_safe_tables(self):
"""
To make a text stream-safe with the Stream-Safe Text Process (UAX15-D4),
we need to be able to know the number of contiguous non-starters *after*
applying compatibility decomposition to each character.
We can do this incrementally by computing the number of leading and
trailing non-starters for each character's compatibility decomposition
with the following rules:
1) If a character is not affected by compatibility decomposition, look
up its canonical combining class to find out if it's a non-starter.
2) All Hangul characters are starters, even under decomposition.
3) Otherwise, very few decomposing characters have a nonzero count
of leading or trailing non-starters, so store these characters
with their associated counts in a separate table.
"""
leading_nonstarters = {}
trailing_nonstarters = {}
for c in set(self.canon_fully_decomp) | set(self.compat_fully_decomp):
decomposed = self.compat_fully_decomp.get(c) or self.canon_fully_decomp[c]
num_leading = 0
for d in decomposed:
if d not in self.combining_classes:
break
num_leading += 1
num_trailing = 0
for d in reversed(decomposed):
if d not in self.combining_classes:
break
num_trailing += 1
if num_leading > 0:
leading_nonstarters[c] = num_leading
if num_trailing > 0:
trailing_nonstarters[c] = num_trailing
return leading_nonstarters, trailing_nonstarters
hexify = lambda c: '{:04X}'.format(c)
# Test whether `first` and `last` are corresponding "<..., First>" and
# "<..., Last>" markers.
def is_first_and_last(first, last):
if not first.startswith('<') or not first.endswith(', First>'):
return False
if not last.startswith('<') or not last.endswith(', Last>'):
return False
return first[1:-8] == last[1:-7]
def gen_mph_data(name, d, kv_type, kv_callback, kv_row_width):
(salt, keys) = minimal_perfect_hash(d)
out.write(f"\npub(crate) const {name.upper()}_SALT: &[u16] = &[\n")
for s_row in batched(salt, 13):
out.write(" ")
for s in s_row:
out.write(f" 0x{s:03X},")
out.write("\n")
out.write("];\n")
out.write(f"pub(crate) const {name.upper()}_KV: &[{kv_type}] = &[\n")
for k_row in batched(keys, kv_row_width):
out.write(" ")
for k in k_row:
out.write(f" {kv_callback(k)},")
out.write("\n")
out.write("];\n")
def gen_combining_class(combining_classes, out):
gen_mph_data('canonical_combining_class', combining_classes, 'u32',
lambda k: f"0x{int(combining_classes[k]) | (k << 8):07X}", 8)
def gen_composition_table(canon_comp, out):
table = {}
for (c1, c2), c3 in canon_comp.items():
if c1 < 0x10000 and c2 < 0x10000:
table[(c1 << 16) | c2] = c3
(salt, keys) = minimal_perfect_hash(table)
gen_mph_data('COMPOSITION_TABLE', table, '(u32, char)',
lambda k: f"(0x{k:08X}, '\\u{{{table[k]:06X}}}')", 1)
out.write("pub(crate) fn composition_table_astral(c1: char, c2: char) -> Option<char> {\n")
out.write(" match (c1, c2) {\n")
for (c1, c2), c3 in sorted(canon_comp.items()):
if c1 >= 0x10000 or c2 >= 0x10000:
out.write(" ('\\u{%s}', '\\u{%s}') => Some('\\u{%s}'),\n" % (hexify(c1), hexify(c2), hexify(c3)))
out.write(" _ => None,\n")
out.write(" }\n")
out.write("}\n")
def gen_decomposition_tables(canon_decomp, compat_decomp, cjk_compat_variants_decomp, out):
tables = [(canon_decomp, 'canonical'), (compat_decomp, 'compatibility'), (cjk_compat_variants_decomp, 'cjk_compat_variants')]
for table, name in tables:
offsets = {}
offset = 0
out.write("pub(crate) const %s_DECOMPOSED_CHARS: &[char] = &[\n" % name.upper())
for k, v in table.items():
offsets[k] = offset
offset += len(v)
for c in v:
out.write(" '\\u{%s}',\n" % hexify(c))
# The largest offset must fit in a u16.
assert offset < 65536
out.write("];\n")
gen_mph_data(name + '_decomposed', table, "(u32, (u16, u16))",
lambda k: f"(0x{k:05X}, (0x{offsets[k]:03X}, 0x{len(table[k]):X}))", 1)
def gen_qc_match(prop_table, out):
out.write(" match c {\n")
for low, high, data in prop_table:
assert data in ('N', 'M')
result = "No" if data == 'N' else "Maybe"
if high:
out.write(r" '\u{%s}'..='\u{%s}' => %s," % (low, high, result))
else:
out.write(r" '\u{%s}' => %s," % (low, result))
out.write("\n")
out.write(" _ => Yes,\n")
out.write(" }\n")
def gen_nfc_qc(prop_tables, out):
out.write("\n#[inline]\n")
out.write("#[allow(ellipsis_inclusive_range_patterns)]\n")
out.write("pub fn qc_nfc(c: char) -> IsNormalized {\n")
gen_qc_match(prop_tables['NFC_QC'], out)
out.write("}\n")
def gen_nfkc_qc(prop_tables, out):
out.write("#[inline]\n")
out.write("#[allow(ellipsis_inclusive_range_patterns)]\n")
out.write("pub fn qc_nfkc(c: char) -> IsNormalized {\n")
gen_qc_match(prop_tables['NFKC_QC'], out)
out.write("}\n")
def gen_nfd_qc(prop_tables, out):
out.write("#[inline]\n")
out.write("#[allow(ellipsis_inclusive_range_patterns)]\n")
out.write("pub fn qc_nfd(c: char) -> IsNormalized {\n")
gen_qc_match(prop_tables['NFD_QC'], out)
out.write("}\n")
def gen_nfkd_qc(prop_tables, out):
out.write("#[inline]\n")
out.write("#[allow(ellipsis_inclusive_range_patterns)]\n")
out.write("pub fn qc_nfkd(c: char) -> IsNormalized {\n")
gen_qc_match(prop_tables['NFKD_QC'], out)
out.write("}\n")
def gen_combining_mark(general_category_mark, out):
gen_mph_data('combining_mark', general_category_mark, 'u32',
lambda k: '0x{:05X}'.format(k), 10)
def gen_public_assigned(general_category_public_assigned, out):
# This could be done as a hash but the table is somewhat small.
out.write("#[inline]\n")
out.write("pub fn is_public_assigned(c: char) -> bool {\n")
out.write(" match c {\n")
start = True
for first, last in general_category_public_assigned:
if start:
out.write(" ")
start = False
else:
out.write("\n | ")
if first == last:
out.write("'\\u{%s}'" % hexify(first))
else:
out.write("'\\u{%s}'..='\\u{%s}'" % (hexify(first), hexify(last)))
out.write(" => true,\n")
out.write(" _ => false,\n")
out.write(" }\n")
out.write("}\n")
def gen_stream_safe(leading, trailing, out):
# This could be done as a hash but the table is very small.
out.write("#[inline]\n")
out.write("pub fn stream_safe_leading_nonstarters(c: char) -> usize {\n")
out.write(" match c {\n")
for char, num_leading in sorted(leading.items()):
out.write(" '\\u{%s}' => %d,\n" % (hexify(char), num_leading))
out.write(" _ => 0,\n")
out.write(" }\n")
out.write("}\n")
gen_mph_data('trailing_nonstarters', trailing, 'u32',
lambda k: f"0x{int(trailing[k]) | (k << 8):07X}", 8)
def gen_tests(tests, out):
out.write("""#[derive(Debug)]
pub struct NormalizationTest {
pub source: &'static str,
pub nfc: &'static str,
pub nfd: &'static str,
pub nfkc: &'static str,
pub nfkd: &'static str,
}
""")
out.write("pub const NORMALIZATION_TESTS: &[NormalizationTest] = &[\n")
str_literal = lambda s: '"%s"' % "".join("\\u{%s}" % c for c in s)
for test in tests:
out.write(" NormalizationTest {\n")
out.write(" source: %s,\n" % str_literal(test.source))
out.write(" nfc: %s,\n" % str_literal(test.nfc))
out.write(" nfd: %s,\n" % str_literal(test.nfd))
out.write(" nfkc: %s,\n" % str_literal(test.nfkc))
out.write(" nfkd: %s,\n" % str_literal(test.nfkd))
out.write(" },\n")
out.write("];\n")
# Guaranteed to be less than n.
def my_hash(x, salt, n):
# This is hash based on the theory that multiplication is efficient
mask_32 = 0xffffffff
y = ((x + salt) * 2654435769) & mask_32
y ^= (x * 0x31415926) & mask_32
return (y * n) >> 32
# Compute minimal perfect hash function, d can be either a dict or list of keys.
def minimal_perfect_hash(d):
n = len(d)
buckets = dict((h, []) for h in range(n))
for key in d:
h = my_hash(key, 0, n)
buckets[h].append(key)
bsorted = [(len(buckets[h]), h) for h in range(n)]
bsorted.sort(reverse = True)
claimed = [False] * n
salts = [0] * n
keys = [0] * n
for (bucket_size, h) in bsorted:
# Note: the traditional perfect hashing approach would also special-case
# bucket_size == 1 here and assign any empty slot, rather than iterating
# until rehash finds an empty slot. But we're not doing that so we can
# avoid the branch.
if bucket_size == 0:
break
else:
for salt in range(1, 32768):
rehashes = [my_hash(key, salt, n) for key in buckets[h]]
# Make sure there are no rehash collisions within this bucket.
if all(not claimed[hash] for hash in rehashes):
if len(set(rehashes)) < bucket_size:
continue
salts[h] = salt
for key in buckets[h]:
rehash = my_hash(key, salt, n)
claimed[rehash] = True
keys[rehash] = key
break
if salts[h] == 0:
print("minimal perfect hashing failed")
# Note: if this happens (because of unfortunate data), then there are
# a few things that could be done. First, the hash function could be
# tweaked. Second, the bucket order could be scrambled (especially the
# singletons). Right now, the buckets are sorted, which has the advantage
# of being deterministic.
#
# As a more extreme approach, the singleton bucket optimization could be
# applied (give the direct address for singleton buckets, rather than
# relying on a rehash). That is definitely the more standard approach in
# the minimal perfect hashing literature, but in testing the branch was a
# significant slowdown.
exit(1)
return (salts, keys)
if __name__ == '__main__':
data = UnicodeData()
with open("tables.rs", "w", newline = "\n") as out:
out.write(PREAMBLE)
out.write("use crate::quick_check::IsNormalized;\n")
out.write("use crate::quick_check::IsNormalized::*;\n")
out.write("\n")
version = "(%s, %s, %s)" % tuple(UNICODE_VERSION.split("."))
out.write("#[allow(unused)]\n")
out.write("pub const UNICODE_VERSION: (u8, u8, u8) = %s;\n" % version)
gen_combining_class(data.combining_classes, out)
gen_composition_table(data.canon_comp, out)
gen_decomposition_tables(data.canon_fully_decomp, data.compat_fully_decomp, data.cjk_compat_variants_fully_decomp, out)
gen_combining_mark(data.general_category_mark, out)
gen_public_assigned(data.general_category_public_assigned, out)
gen_nfc_qc(data.norm_props, out)
gen_nfkc_qc(data.norm_props, out)
gen_nfd_qc(data.norm_props, out)
gen_nfkd_qc(data.norm_props, out)
gen_stream_safe(data.ss_leading, data.ss_trailing, out)
with open("normalization_tests.rs", "w", newline = "\n") as out:
out.write(PREAMBLE)
gen_tests(data.norm_tests, out)