mirror of
https://github.com/unicode-rs/unicode-normalization.git
synced 2024-11-25 19:24:17 +03:00
618 lines
24 KiB
Python
Executable File
618 lines
24 KiB
Python
Executable File
#!/usr/bin/env python
|
|
#
|
|
# Copyright 2011-2018 The Rust Project Developers. See the COPYRIGHT
|
|
# file at the top-level directory of this distribution and at
|
|
# http://rust-lang.org/COPYRIGHT.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
# http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
# <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
# option. This file may not be copied, modified, or distributed
|
|
# except according to those terms.
|
|
|
|
# This script uses the following Unicode tables:
|
|
# - DerivedNormalizationProps.txt
|
|
# - NormalizationTest.txt
|
|
# - UnicodeData.txt
|
|
# - StandardizedVariants.txt
|
|
#
|
|
# Since this should not require frequent updates, we just store this
|
|
# out-of-line and check the tables.rs and normalization_tests.rs files into git.
|
|
import collections
|
|
import urllib.request
|
|
from itertools import batched
|
|
|
|
UNICODE_VERSION = "16.0.0"
|
|
UCD_URL = "https://www.unicode.org/Public/%s/ucd/" % UNICODE_VERSION
|
|
|
|
PREAMBLE = """// Copyright 2012-2018 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
// NOTE: The following code was generated by "scripts/unicode.py", do not edit directly
|
|
|
|
#![allow(missing_docs)]
|
|
"""
|
|
|
|
NormalizationTest = collections.namedtuple(
|
|
"NormalizationTest",
|
|
["source", "nfc", "nfd", "nfkc", "nfkd"],
|
|
)
|
|
|
|
# Mapping taken from Table 12 from:
|
|
# http://www.unicode.org/reports/tr44/#General_Category_Values
|
|
expanded_categories = {
|
|
'Lu': ['LC', 'L'], 'Ll': ['LC', 'L'], 'Lt': ['LC', 'L'],
|
|
'Lm': ['L'], 'Lo': ['L'],
|
|
'Mn': ['M'], 'Mc': ['M'], 'Me': ['M'],
|
|
'Nd': ['N'], 'Nl': ['N'], 'No': ['No'],
|
|
'Pc': ['P'], 'Pd': ['P'], 'Ps': ['P'], 'Pe': ['P'],
|
|
'Pi': ['P'], 'Pf': ['P'], 'Po': ['P'],
|
|
'Sm': ['S'], 'Sc': ['S'], 'Sk': ['S'], 'So': ['S'],
|
|
'Zs': ['Z'], 'Zl': ['Z'], 'Zp': ['Z'],
|
|
'Cc': ['C'], 'Cf': ['C'], 'Cs': ['C'], 'Co': ['C'], 'Cn': ['C'],
|
|
}
|
|
|
|
# Constants from Unicode 9.0.0 Section 3.12 Conjoining Jamo Behavior
|
|
# http://www.unicode.org/versions/Unicode9.0.0/ch03.pdf#M9.32468.Heading.310.Combining.Jamo.Behavior
|
|
S_BASE, L_COUNT, V_COUNT, T_COUNT = 0xAC00, 19, 21, 28
|
|
S_COUNT = L_COUNT * V_COUNT * T_COUNT
|
|
|
|
class UnicodeData(object):
|
|
def __init__(self):
|
|
self._load_unicode_data()
|
|
self.norm_props = self._load_norm_props()
|
|
self.norm_tests = self._load_norm_tests()
|
|
|
|
self.canon_comp = self._compute_canonical_comp()
|
|
self.canon_fully_decomp, self.compat_fully_decomp = self._compute_fully_decomposed()
|
|
|
|
self.cjk_compat_variants_fully_decomp = {}
|
|
self._load_cjk_compat_ideograph_variants()
|
|
|
|
def stats(name, table):
|
|
count = sum(len(v) for v in table.values())
|
|
print("%s: %d chars => %d decomposed chars" % (name, len(table), count))
|
|
|
|
print("Decomposition table stats:")
|
|
stats("Canonical decomp", self.canon_decomp)
|
|
stats("Compatible decomp", self.compat_decomp)
|
|
stats("Canonical fully decomp", self.canon_fully_decomp)
|
|
stats("Compatible fully decomp", self.compat_fully_decomp)
|
|
stats("CJK Compat Variants fully decomp", self.cjk_compat_variants_fully_decomp)
|
|
|
|
self.ss_leading, self.ss_trailing = self._compute_stream_safe_tables()
|
|
|
|
def _fetch(self, filename):
|
|
resp = urllib.request.urlopen(UCD_URL + filename)
|
|
return resp.read().decode('utf-8')
|
|
|
|
def _load_unicode_data(self):
|
|
self.name_to_char_int = {}
|
|
self.combining_classes = {}
|
|
self.compat_decomp = {}
|
|
self.canon_decomp = {}
|
|
self.general_category_mark = []
|
|
self.general_category_public_assigned = []
|
|
|
|
assigned_start = 0;
|
|
prev_char_int = -1;
|
|
prev_name = "";
|
|
|
|
for line in self._fetch("UnicodeData.txt").splitlines():
|
|
# See ftp://ftp.unicode.org/Public/3.0-Update/UnicodeData-3.0.0.html
|
|
pieces = line.split(';')
|
|
assert len(pieces) == 15
|
|
char, name, category, cc, decomp = pieces[0], pieces[1], pieces[2], pieces[3], pieces[5]
|
|
char_int = int(char, 16)
|
|
|
|
name = pieces[1].strip()
|
|
self.name_to_char_int[name] = char_int
|
|
|
|
if cc != '0':
|
|
self.combining_classes[char_int] = cc
|
|
|
|
if decomp.startswith('<'):
|
|
self.compat_decomp[char_int] = [int(c, 16) for c in decomp.split()[1:]]
|
|
elif decomp != '':
|
|
self.canon_decomp[char_int] = [int(c, 16) for c in decomp.split()]
|
|
|
|
if category == 'M' or 'M' in expanded_categories.get(category, []):
|
|
self.general_category_mark.append(char_int)
|
|
|
|
assert category != 'Cn', "Unexpected: Unassigned codepoint in UnicodeData.txt"
|
|
if category not in ['Co', 'Cs']:
|
|
if char_int != prev_char_int + 1 and not is_first_and_last(prev_name, name):
|
|
self.general_category_public_assigned.append((assigned_start, prev_char_int))
|
|
assigned_start = char_int
|
|
prev_char_int = char_int
|
|
prev_name = name;
|
|
|
|
self.general_category_public_assigned.append((assigned_start, prev_char_int))
|
|
|
|
def _load_cjk_compat_ideograph_variants(self):
|
|
for line in self._fetch("StandardizedVariants.txt").splitlines():
|
|
strip_comments = line.split('#', 1)[0].strip()
|
|
if not strip_comments:
|
|
continue
|
|
|
|
variation_sequence, description, differences = strip_comments.split(';')
|
|
description = description.strip()
|
|
|
|
# Don't use variations that only apply in particular shaping environments.
|
|
if differences:
|
|
continue
|
|
|
|
# Look for entries where the description field is a codepoint name.
|
|
if description not in self.name_to_char_int:
|
|
continue
|
|
|
|
# Only consider the CJK Compatibility Ideographs.
|
|
if not description.startswith('CJK COMPATIBILITY IDEOGRAPH-'):
|
|
continue
|
|
|
|
char_int = self.name_to_char_int[description]
|
|
|
|
assert not char_int in self.combining_classes, "Unexpected: CJK compat variant with a combining class"
|
|
assert not char_int in self.compat_decomp, "Unexpected: CJK compat variant and compatibility decomposition"
|
|
assert len(self.canon_decomp[char_int]) == 1, "Unexpected: CJK compat variant and non-singleton canonical decomposition"
|
|
# If we ever need to handle Hangul here, we'll need to handle it separately.
|
|
assert not (S_BASE <= char_int < S_BASE + S_COUNT)
|
|
|
|
cjk_compat_variant_parts = [int(c, 16) for c in variation_sequence.split()]
|
|
for c in cjk_compat_variant_parts:
|
|
assert not c in self.canon_decomp, "Unexpected: CJK compat variant is unnormalized (canon)"
|
|
assert not c in self.compat_decomp, "Unexpected: CJK compat variant is unnormalized (compat)"
|
|
self.cjk_compat_variants_fully_decomp[char_int] = cjk_compat_variant_parts
|
|
|
|
def _load_norm_props(self):
|
|
props = collections.defaultdict(list)
|
|
|
|
for line in self._fetch("DerivedNormalizationProps.txt").splitlines():
|
|
(prop_data, _, _) = line.partition("#")
|
|
prop_pieces = prop_data.split(";")
|
|
|
|
if len(prop_pieces) < 2:
|
|
continue
|
|
|
|
assert len(prop_pieces) <= 3
|
|
(low, _, high) = prop_pieces[0].strip().partition("..")
|
|
|
|
prop = prop_pieces[1].strip()
|
|
|
|
data = None
|
|
if len(prop_pieces) == 3:
|
|
data = prop_pieces[2].strip()
|
|
|
|
props[prop].append((low, high, data))
|
|
|
|
return props
|
|
|
|
def _load_norm_tests(self):
|
|
tests = []
|
|
for line in self._fetch("NormalizationTest.txt").splitlines():
|
|
(test_data, _, _) = line.partition("#")
|
|
test_pieces = test_data.split(";")
|
|
|
|
if len(test_pieces) < 5:
|
|
continue
|
|
|
|
source, nfc, nfd, nfkc, nfkd = [[c.strip() for c in p.split()] for p in test_pieces[:5]]
|
|
tests.append(NormalizationTest(source, nfc, nfd, nfkc, nfkd))
|
|
|
|
return tests
|
|
|
|
def _compute_canonical_comp(self):
|
|
canon_comp = {}
|
|
comp_exclusions = [
|
|
(int(low, 16), int(high or low, 16))
|
|
for low, high, _ in self.norm_props["Full_Composition_Exclusion"]
|
|
]
|
|
for char_int, decomp in self.canon_decomp.items():
|
|
if any(lo <= char_int <= hi for lo, hi in comp_exclusions):
|
|
continue
|
|
|
|
assert len(decomp) == 2
|
|
assert (decomp[0], decomp[1]) not in canon_comp
|
|
canon_comp[(decomp[0], decomp[1])] = char_int
|
|
|
|
return canon_comp
|
|
|
|
def _compute_fully_decomposed(self):
|
|
"""
|
|
Even though the decomposition algorithm is recursive, it is possible
|
|
to precompute the recursion at table generation time with modest
|
|
increase to the table size. Then, for these precomputed tables, we
|
|
note that 1) compatible decomposition is a subset of canonical
|
|
decomposition and 2) they mostly agree on their intersection.
|
|
Therefore, we don't store entries in the compatible table for
|
|
characters that decompose the same way under canonical decomposition.
|
|
|
|
Decomposition table stats:
|
|
Canonical decomp: 2060 chars => 3085 decomposed chars
|
|
Compatible decomp: 3662 chars => 5440 decomposed chars
|
|
Canonical fully decomp: 2060 chars => 3404 decomposed chars
|
|
Compatible fully decomp: 3678 chars => 5599 decomposed chars
|
|
|
|
The upshot is that decomposition code is very simple and easy to inline
|
|
at mild code size cost.
|
|
"""
|
|
def _decompose(char_int, compatible):
|
|
# 7-bit ASCII never decomposes
|
|
if char_int <= 0x7f:
|
|
yield char_int
|
|
return
|
|
|
|
# Assert that we're handling Hangul separately.
|
|
assert not (S_BASE <= char_int < S_BASE + S_COUNT)
|
|
|
|
decomp = self.canon_decomp.get(char_int)
|
|
if decomp is not None:
|
|
for decomposed_ch in decomp:
|
|
for fully_decomposed_ch in _decompose(decomposed_ch, compatible):
|
|
yield fully_decomposed_ch
|
|
return
|
|
|
|
if compatible and char_int in self.compat_decomp:
|
|
for decomposed_ch in self.compat_decomp[char_int]:
|
|
for fully_decomposed_ch in _decompose(decomposed_ch, compatible):
|
|
yield fully_decomposed_ch
|
|
return
|
|
|
|
yield char_int
|
|
return
|
|
|
|
end_codepoint = max(
|
|
max(self.canon_decomp.keys()),
|
|
max(self.compat_decomp.keys()),
|
|
)
|
|
|
|
canon_fully_decomp = {}
|
|
compat_fully_decomp = {}
|
|
|
|
for char_int in range(0, end_codepoint + 1):
|
|
# Always skip Hangul, since it's more efficient to represent its
|
|
# decomposition programmatically.
|
|
if S_BASE <= char_int < S_BASE + S_COUNT:
|
|
continue
|
|
|
|
canon = list(_decompose(char_int, False))
|
|
if not (len(canon) == 1 and canon[0] == char_int):
|
|
canon_fully_decomp[char_int] = canon
|
|
|
|
compat = list(_decompose(char_int, True))
|
|
if not (len(compat) == 1 and compat[0] == char_int):
|
|
compat_fully_decomp[char_int] = compat
|
|
|
|
# Since canon_fully_decomp is a subset of compat_fully_decomp, we don't
|
|
# need to store their overlap when they agree. When they don't agree,
|
|
# store the decomposition in the compatibility table since we'll check
|
|
# that first when normalizing to NFKD.
|
|
assert set(canon_fully_decomp) <= set(compat_fully_decomp)
|
|
|
|
for ch in set(canon_fully_decomp) & set(compat_fully_decomp):
|
|
if canon_fully_decomp[ch] == compat_fully_decomp[ch]:
|
|
del compat_fully_decomp[ch]
|
|
|
|
return canon_fully_decomp, compat_fully_decomp
|
|
|
|
def _compute_stream_safe_tables(self):
|
|
"""
|
|
To make a text stream-safe with the Stream-Safe Text Process (UAX15-D4),
|
|
we need to be able to know the number of contiguous non-starters *after*
|
|
applying compatibility decomposition to each character.
|
|
|
|
We can do this incrementally by computing the number of leading and
|
|
trailing non-starters for each character's compatibility decomposition
|
|
with the following rules:
|
|
|
|
1) If a character is not affected by compatibility decomposition, look
|
|
up its canonical combining class to find out if it's a non-starter.
|
|
2) All Hangul characters are starters, even under decomposition.
|
|
3) Otherwise, very few decomposing characters have a nonzero count
|
|
of leading or trailing non-starters, so store these characters
|
|
with their associated counts in a separate table.
|
|
"""
|
|
leading_nonstarters = {}
|
|
trailing_nonstarters = {}
|
|
|
|
for c in set(self.canon_fully_decomp) | set(self.compat_fully_decomp):
|
|
decomposed = self.compat_fully_decomp.get(c) or self.canon_fully_decomp[c]
|
|
|
|
num_leading = 0
|
|
for d in decomposed:
|
|
if d not in self.combining_classes:
|
|
break
|
|
num_leading += 1
|
|
|
|
num_trailing = 0
|
|
for d in reversed(decomposed):
|
|
if d not in self.combining_classes:
|
|
break
|
|
num_trailing += 1
|
|
|
|
if num_leading > 0:
|
|
leading_nonstarters[c] = num_leading
|
|
if num_trailing > 0:
|
|
trailing_nonstarters[c] = num_trailing
|
|
|
|
return leading_nonstarters, trailing_nonstarters
|
|
|
|
hexify = lambda c: '{:04X}'.format(c)
|
|
|
|
# Test whether `first` and `last` are corresponding "<..., First>" and
|
|
# "<..., Last>" markers.
|
|
def is_first_and_last(first, last):
|
|
if not first.startswith('<') or not first.endswith(', First>'):
|
|
return False
|
|
if not last.startswith('<') or not last.endswith(', Last>'):
|
|
return False
|
|
return first[1:-8] == last[1:-7]
|
|
|
|
def gen_mph_data(name, d, kv_type, kv_callback, kv_row_width):
|
|
(salt, keys) = minimal_perfect_hash(d)
|
|
out.write(f"\npub(crate) const {name.upper()}_SALT: &[u16] = &[\n")
|
|
for s_row in batched(salt, 13):
|
|
out.write(" ")
|
|
for s in s_row:
|
|
out.write(f" 0x{s:03X},")
|
|
out.write("\n")
|
|
out.write("];\n")
|
|
out.write(f"pub(crate) const {name.upper()}_KV: &[{kv_type}] = &[\n")
|
|
for k_row in batched(keys, kv_row_width):
|
|
out.write(" ")
|
|
for k in k_row:
|
|
out.write(f" {kv_callback(k)},")
|
|
out.write("\n")
|
|
out.write("];\n")
|
|
|
|
def gen_combining_class(combining_classes, out):
|
|
gen_mph_data('canonical_combining_class', combining_classes, 'u32',
|
|
lambda k: f"0x{int(combining_classes[k]) | (k << 8):07X}", 8)
|
|
|
|
def gen_composition_table(canon_comp, out):
|
|
table = {}
|
|
for (c1, c2), c3 in canon_comp.items():
|
|
if c1 < 0x10000 and c2 < 0x10000:
|
|
table[(c1 << 16) | c2] = c3
|
|
(salt, keys) = minimal_perfect_hash(table)
|
|
gen_mph_data('COMPOSITION_TABLE', table, '(u32, char)',
|
|
lambda k: f"(0x{k:08X}, '\\u{{{table[k]:06X}}}')", 1)
|
|
|
|
out.write("pub(crate) fn composition_table_astral(c1: char, c2: char) -> Option<char> {\n")
|
|
out.write(" match (c1, c2) {\n")
|
|
for (c1, c2), c3 in sorted(canon_comp.items()):
|
|
if c1 >= 0x10000 or c2 >= 0x10000:
|
|
out.write(" ('\\u{%s}', '\\u{%s}') => Some('\\u{%s}'),\n" % (hexify(c1), hexify(c2), hexify(c3)))
|
|
|
|
out.write(" _ => None,\n")
|
|
out.write(" }\n")
|
|
out.write("}\n")
|
|
|
|
def gen_decomposition_tables(canon_decomp, compat_decomp, cjk_compat_variants_decomp, out):
|
|
tables = [(canon_decomp, 'canonical'), (compat_decomp, 'compatibility'), (cjk_compat_variants_decomp, 'cjk_compat_variants')]
|
|
for table, name in tables:
|
|
offsets = {}
|
|
offset = 0
|
|
out.write("pub(crate) const %s_DECOMPOSED_CHARS: &[char] = &[\n" % name.upper())
|
|
for k, v in table.items():
|
|
offsets[k] = offset
|
|
offset += len(v)
|
|
for c in v:
|
|
out.write(" '\\u{%s}',\n" % hexify(c))
|
|
# The largest offset must fit in a u16.
|
|
assert offset < 65536
|
|
out.write("];\n")
|
|
gen_mph_data(name + '_decomposed', table, "(u32, (u16, u16))",
|
|
lambda k: f"(0x{k:05X}, (0x{offsets[k]:03X}, 0x{len(table[k]):X}))", 1)
|
|
|
|
def gen_qc_match(prop_table, out):
|
|
out.write(" match c {\n")
|
|
|
|
for low, high, data in prop_table:
|
|
assert data in ('N', 'M')
|
|
result = "No" if data == 'N' else "Maybe"
|
|
if high:
|
|
out.write(r" '\u{%s}'..='\u{%s}' => %s," % (low, high, result))
|
|
else:
|
|
out.write(r" '\u{%s}' => %s," % (low, result))
|
|
out.write("\n")
|
|
|
|
out.write(" _ => Yes,\n")
|
|
out.write(" }\n")
|
|
|
|
def gen_nfc_qc(prop_tables, out):
|
|
out.write("\n#[inline]\n")
|
|
out.write("#[allow(ellipsis_inclusive_range_patterns)]\n")
|
|
out.write("pub fn qc_nfc(c: char) -> IsNormalized {\n")
|
|
gen_qc_match(prop_tables['NFC_QC'], out)
|
|
out.write("}\n")
|
|
|
|
def gen_nfkc_qc(prop_tables, out):
|
|
out.write("#[inline]\n")
|
|
out.write("#[allow(ellipsis_inclusive_range_patterns)]\n")
|
|
out.write("pub fn qc_nfkc(c: char) -> IsNormalized {\n")
|
|
gen_qc_match(prop_tables['NFKC_QC'], out)
|
|
out.write("}\n")
|
|
|
|
def gen_nfd_qc(prop_tables, out):
|
|
out.write("#[inline]\n")
|
|
out.write("#[allow(ellipsis_inclusive_range_patterns)]\n")
|
|
out.write("pub fn qc_nfd(c: char) -> IsNormalized {\n")
|
|
gen_qc_match(prop_tables['NFD_QC'], out)
|
|
out.write("}\n")
|
|
|
|
def gen_nfkd_qc(prop_tables, out):
|
|
out.write("#[inline]\n")
|
|
out.write("#[allow(ellipsis_inclusive_range_patterns)]\n")
|
|
out.write("pub fn qc_nfkd(c: char) -> IsNormalized {\n")
|
|
gen_qc_match(prop_tables['NFKD_QC'], out)
|
|
out.write("}\n")
|
|
|
|
def gen_combining_mark(general_category_mark, out):
|
|
gen_mph_data('combining_mark', general_category_mark, 'u32',
|
|
lambda k: '0x{:05X}'.format(k), 10)
|
|
|
|
def gen_public_assigned(general_category_public_assigned, out):
|
|
# This could be done as a hash but the table is somewhat small.
|
|
out.write("#[inline]\n")
|
|
out.write("pub fn is_public_assigned(c: char) -> bool {\n")
|
|
out.write(" match c {\n")
|
|
|
|
start = True
|
|
for first, last in general_category_public_assigned:
|
|
if start:
|
|
out.write(" ")
|
|
start = False
|
|
else:
|
|
out.write("\n | ")
|
|
if first == last:
|
|
out.write("'\\u{%s}'" % hexify(first))
|
|
else:
|
|
out.write("'\\u{%s}'..='\\u{%s}'" % (hexify(first), hexify(last)))
|
|
out.write(" => true,\n")
|
|
|
|
out.write(" _ => false,\n")
|
|
out.write(" }\n")
|
|
out.write("}\n")
|
|
|
|
def gen_stream_safe(leading, trailing, out):
|
|
# This could be done as a hash but the table is very small.
|
|
out.write("#[inline]\n")
|
|
out.write("pub fn stream_safe_leading_nonstarters(c: char) -> usize {\n")
|
|
out.write(" match c {\n")
|
|
|
|
for char, num_leading in sorted(leading.items()):
|
|
out.write(" '\\u{%s}' => %d,\n" % (hexify(char), num_leading))
|
|
|
|
out.write(" _ => 0,\n")
|
|
out.write(" }\n")
|
|
out.write("}\n")
|
|
|
|
gen_mph_data('trailing_nonstarters', trailing, 'u32',
|
|
lambda k: f"0x{int(trailing[k]) | (k << 8):07X}", 8)
|
|
|
|
def gen_tests(tests, out):
|
|
out.write("""#[derive(Debug)]
|
|
pub struct NormalizationTest {
|
|
pub source: &'static str,
|
|
pub nfc: &'static str,
|
|
pub nfd: &'static str,
|
|
pub nfkc: &'static str,
|
|
pub nfkd: &'static str,
|
|
}
|
|
|
|
""")
|
|
|
|
out.write("pub const NORMALIZATION_TESTS: &[NormalizationTest] = &[\n")
|
|
str_literal = lambda s: '"%s"' % "".join("\\u{%s}" % c for c in s)
|
|
|
|
for test in tests:
|
|
out.write(" NormalizationTest {\n")
|
|
out.write(" source: %s,\n" % str_literal(test.source))
|
|
out.write(" nfc: %s,\n" % str_literal(test.nfc))
|
|
out.write(" nfd: %s,\n" % str_literal(test.nfd))
|
|
out.write(" nfkc: %s,\n" % str_literal(test.nfkc))
|
|
out.write(" nfkd: %s,\n" % str_literal(test.nfkd))
|
|
out.write(" },\n")
|
|
|
|
out.write("];\n")
|
|
|
|
# Guaranteed to be less than n.
|
|
def my_hash(x, salt, n):
|
|
# This is hash based on the theory that multiplication is efficient
|
|
mask_32 = 0xffffffff
|
|
y = ((x + salt) * 2654435769) & mask_32
|
|
y ^= (x * 0x31415926) & mask_32
|
|
return (y * n) >> 32
|
|
|
|
# Compute minimal perfect hash function, d can be either a dict or list of keys.
|
|
def minimal_perfect_hash(d):
|
|
n = len(d)
|
|
buckets = dict((h, []) for h in range(n))
|
|
for key in d:
|
|
h = my_hash(key, 0, n)
|
|
buckets[h].append(key)
|
|
bsorted = [(len(buckets[h]), h) for h in range(n)]
|
|
bsorted.sort(reverse = True)
|
|
claimed = [False] * n
|
|
salts = [0] * n
|
|
keys = [0] * n
|
|
for (bucket_size, h) in bsorted:
|
|
# Note: the traditional perfect hashing approach would also special-case
|
|
# bucket_size == 1 here and assign any empty slot, rather than iterating
|
|
# until rehash finds an empty slot. But we're not doing that so we can
|
|
# avoid the branch.
|
|
if bucket_size == 0:
|
|
break
|
|
else:
|
|
for salt in range(1, 32768):
|
|
rehashes = [my_hash(key, salt, n) for key in buckets[h]]
|
|
# Make sure there are no rehash collisions within this bucket.
|
|
if all(not claimed[hash] for hash in rehashes):
|
|
if len(set(rehashes)) < bucket_size:
|
|
continue
|
|
salts[h] = salt
|
|
for key in buckets[h]:
|
|
rehash = my_hash(key, salt, n)
|
|
claimed[rehash] = True
|
|
keys[rehash] = key
|
|
break
|
|
if salts[h] == 0:
|
|
print("minimal perfect hashing failed")
|
|
# Note: if this happens (because of unfortunate data), then there are
|
|
# a few things that could be done. First, the hash function could be
|
|
# tweaked. Second, the bucket order could be scrambled (especially the
|
|
# singletons). Right now, the buckets are sorted, which has the advantage
|
|
# of being deterministic.
|
|
#
|
|
# As a more extreme approach, the singleton bucket optimization could be
|
|
# applied (give the direct address for singleton buckets, rather than
|
|
# relying on a rehash). That is definitely the more standard approach in
|
|
# the minimal perfect hashing literature, but in testing the branch was a
|
|
# significant slowdown.
|
|
exit(1)
|
|
return (salts, keys)
|
|
|
|
if __name__ == '__main__':
|
|
data = UnicodeData()
|
|
with open("tables.rs", "w", newline = "\n") as out:
|
|
out.write(PREAMBLE)
|
|
out.write("use crate::quick_check::IsNormalized;\n")
|
|
out.write("use crate::quick_check::IsNormalized::*;\n")
|
|
out.write("\n")
|
|
|
|
version = "(%s, %s, %s)" % tuple(UNICODE_VERSION.split("."))
|
|
out.write("#[allow(unused)]\n")
|
|
out.write("pub const UNICODE_VERSION: (u8, u8, u8) = %s;\n" % version)
|
|
|
|
gen_combining_class(data.combining_classes, out)
|
|
|
|
gen_composition_table(data.canon_comp, out)
|
|
|
|
gen_decomposition_tables(data.canon_fully_decomp, data.compat_fully_decomp, data.cjk_compat_variants_fully_decomp, out)
|
|
|
|
gen_combining_mark(data.general_category_mark, out)
|
|
|
|
gen_public_assigned(data.general_category_public_assigned, out)
|
|
|
|
gen_nfc_qc(data.norm_props, out)
|
|
|
|
gen_nfkc_qc(data.norm_props, out)
|
|
|
|
gen_nfd_qc(data.norm_props, out)
|
|
|
|
gen_nfkd_qc(data.norm_props, out)
|
|
|
|
gen_stream_safe(data.ss_leading, data.ss_trailing, out)
|
|
|
|
with open("normalization_tests.rs", "w", newline = "\n") as out:
|
|
out.write(PREAMBLE)
|
|
gen_tests(data.norm_tests, out)
|