namespace Nat where maxNat = 18446744073709551615 (-) : Nat -> Nat -> Int (-) = Nat.sub namespace Int where maxInt = +9223372036854775807 minInt = -9223372036854775808 use Universal == < > >= use Optional None Some -- Function composition dot : (b -> c) -> (a -> b) -> a -> c dot f g x = f (g x) -- Function composition andThen : (a -> b) -> (b -> c) -> a -> c andThen f g x = g (f x) const : a -> b -> a const a _ = a use Tuple Cons namespace Tuple where at1 : Tuple a b -> a at1 = cases Cons a _ -> a at2 : Tuple a (Tuple b c) -> b at2 = cases Cons _ (Cons b _) -> b at3 : Tuple a (Tuple b (Tuple c d)) -> c at3 = cases Cons _ (Cons _ (Cons c _)) -> c at4 : Tuple a (Tuple b (Tuple c (Tuple d e))) -> d at4 = cases Cons _ (Cons _ (Cons _ (Cons d _))) -> d namespace List where map : (a -> b) -> [a] -> [b] map f a = go i as acc = match List.at i as with None -> acc Some a -> go (i + 1) as (acc `snoc` f a) go 0 a [] zip : [a] -> [b] -> [(a,b)] zip as bs = go acc i = match (at i as, at i bs) with (None,_) -> acc (_,None) -> acc (Some a, Some b) -> go (acc `snoc` (a,b)) (i + 1) go [] 0 insert : Nat -> a -> [a] -> [a] insert i a as = take i as ++ [a] ++ drop i as replace : Nat -> a -> [a] -> [a] replace i a as = take i as ++ [a] ++ drop (i + 1) as slice : Nat -> Nat -> [a] -> [a] slice start stopExclusive s = take (stopExclusive `Nat.drop` start) (drop start s) unsafeAt : Nat -> [a] -> a unsafeAt n as = match at n as with Some a -> a None -> Debug.watch "oh noes" (unsafeAt n as) -- Debug.crash "oh noes!" foldl : (b -> a -> b) -> b -> [a] -> b foldl f b as = go b i = match List.at i as with None -> b Some a -> go (f b a) (i + 1) go b 0 foldb : (a -> b) -> (b -> b -> b) -> b -> [a] -> b foldb f op z as = if List.size as == 0 then z else if List.size as == 1 then f (unsafeAt 0 as) else match halve as with (left, right) -> foldb f op z left `op` foldb f op z right reverse : [a] -> [a] reverse as = foldl (acc a -> List.cons a acc) [] as indexed : [a] -> [(a, Nat)] indexed as = as `zip` range 0 (size as) sortBy : (a -> b) -> [a] -> [a] sortBy f as = tweak p = match p with (p1,p2) -> (f p1, p2, p1) Heap.sort (map tweak (indexed as)) |> map Tuple.at3 halve : [a] -> ([a], [a]) halve s = n = size s / 2 (take n s, drop n s) unfold : s -> (s -> Optional (a, s)) -> [a] unfold s0 f = go f s acc = match f s with None -> acc Some (a, s) -> go f s (acc `snoc` a) go f s0 [] uncons : [a] -> Optional (a, [a]) uncons as = match at 0 as with None -> None Some a -> Some (a, drop 1 as) unsnoc : [a] -> Optional ([a], a) unsnoc as = i = size (drop 1 as) match at i as with None -> None Some a -> Some (take i as, a) join : [[a]] -> [a] join = foldl (++) [] flatMap : (a -> [b]) -> [a] -> [b] flatMap f as = join (map f as) range : Nat -> Nat -> [Nat] range start stopExclusive = f i = if i < stopExclusive then Some (i, i + 1) else None unfold start f distinct : [a] -> [a] distinct as = go i seen acc = match List.at i as with None -> acc Some a -> if Set.contains a seen then go (i + 1) seen acc else go (i + 1) (Set.insert a seen) (acc `snoc` a) go 0 Set.empty [] -- Joins a list of lists in a "fair diagonal" fashion. -- Adapted from the Haskell version written by Luke Palmer. diagonal : [[a]] -> [a] diagonal = let x = 23 stripe = cases [] -> [] [] +: xxs -> stripe xxs (x +: xs) +: xxs -> cons [x] (zipCons xs (stripe xxs)) zipCons xs ys = match (xs, ys) with ([], ys) -> ys (xs, []) -> map (x -> [x]) xs (x +: xs, y +: ys) -> cons (cons x y) (zipCons xs ys) List.join `dot` stripe -- > List.foldb "" (t t2 -> "(" ++ t ++ " " ++ t2 ++ ")") (x -> x) ["Alice", "Bob", "Carol", "Dave", "Eve", "Frank", "Gerald", "Henry"] -- Sorted maps, represented as a pair of sequences -- Use binary search to do lookups and find insertion points -- This relies on the underlying sequence having efficient -- slicing and concatenation type Map k v = Map [k] [v] use Map Map namespace Search where indexOf : a -> [a] -> Optional Nat indexOf a s = ao = Some a Search.exact (i -> ao `compare` List.at i s) 0 (size s) lubIndexOf' : a -> Nat -> [a] -> Nat lubIndexOf' a start s = ao = Some a Search.lub (i -> ao `compare` List.at i s) start (size s) lubIndexOf : a -> [a] -> Nat lubIndexOf a s = lubIndexOf' a 0 s lub : (Nat -> Int) -> Nat -> Nat -> Nat lub hit bot top = if bot >= top then top else mid = (bot + top) / 2 match hit mid with +0 -> mid -1 -> lub hit bot mid +1 -> lub hit (mid + 1) top exact : (Nat -> Int) -> Nat -> Nat -> Optional Nat exact hit bot top = if bot >= top then None else mid = (bot + top) / 2 match hit mid with +0 -> Some mid -1 -> exact hit bot mid +1 -> exact hit (mid + 1) top -- > ex = [0,2,4,6,77,192,3838,12000] -- > List.map (e -> indexOf e ex) ex -- > lubIndexOf 193 ex (|>) : a -> (a -> b) -> b a |> f = f a (<|) : (a -> b) -> a -> b f <| a = f a id : a -> a id a = a namespace Map where empty : Map k v empty = Map [] [] singleton : k -> v -> Map k v singleton k v = Map [k] [v] fromList : [(k,v)] -> Map k v fromList kvs = go acc i = match List.at i kvs with None -> acc Some (k,v) -> go (insert k v acc) (i + 1) go empty 0 toList : Map k v -> [(k,v)] toList m = List.zip (keys m) (values m) size : Map k v -> Nat size s = List.size (keys s) lookup : k -> Map k v -> Optional v lookup k = cases Map ks vs -> match Search.indexOf k ks with None -> None Some i -> at i vs contains : k -> Map k v -> Boolean contains k cases Map ks _ -> match Search.indexOf k ks with None -> false _ -> true insert : k -> v -> Map k v -> Map k v insert k v = cases Map ks vs -> use Search lubIndexOf i = lubIndexOf k ks match at i ks with Some k' -> if k == k' then Map ks (List.replace i v vs) else Map (List.insert i k ks) (List.insert i v vs) None -> Map (ks `snoc` k) (vs `snoc` v) map : (v -> v2) -> Map k v -> Map k v2 map f m = Map (keys m) (List.map f (values m)) mapKeys : (k -> k2) -> Map k v -> Map k2 v mapKeys f m = Map (List.map f (keys m)) (values m) union : Map k v -> Map k v -> Map k v union = unionWith (_ v -> v) unionWith : (v -> v -> v) -> Map k v -> Map k v -> Map k v unionWith f m1 m2 = match (m1, m2) with (Map k1 v1, Map k2 v2) -> go i j ko vo = match (at i k1, at j k2) with (None, _) -> Map (ko ++ drop j k2) (vo ++ drop j v2) (_, None) -> Map (ko ++ drop i k1) (vo ++ drop i v1) (Some kx, Some ky) -> use List slice unsafeAt use Search lubIndexOf' if kx == ky then go (i + 1) (j + 1) (ko `snoc` kx) (vo `snoc` f (unsafeAt i v1) (unsafeAt j v2)) else if kx < ky then i' = lubIndexOf' ky i k1 go i' j (ko ++ slice i i' k1) (vo ++ slice i i' v1) else j' = lubIndexOf' kx j k2 go i j' (ko ++ slice j j' k2) (vo ++ slice j j' v2) go 0 0 [] [] intersect : Map k v -> Map k v -> Map k v intersect = intersectWith (_ v -> v) intersectWith : (v -> v -> v2) -> Map k v -> Map k v -> Map k v2 intersectWith f m1 m2 = match (m1, m2) with (Map k1 v1, Map k2 v2) -> go i j ko vo = match (at i k1, at j k2) with (None, _) -> Map ko vo (_, None) -> Map ko vo (Some kx, Some ky) -> if kx == ky then go (i + 1) (j + 1) (ko `snoc` kx) (vo `snoc` f (List.unsafeAt i v1) (List.unsafeAt j v2)) else if kx < ky then i' = Search.lubIndexOf' ky i k1 go i' j ko vo else j' = Search.lubIndexOf' kx j k2 go i j' ko vo go 0 0 [] [] keys : Map k v -> [k] keys = cases Map ks _ -> ks values : Map k v -> [v] values = cases Map _ vs -> vs namespace Multimap where insert : k -> v -> Map k [v] -> Map k [v] insert k v m = match Map.lookup k m with None -> Map.insert k [v] m Some vs -> Map.insert k (vs `snoc` v) m lookup : k -> Map k [v] -> [v] lookup k m = Optional.orDefault [] (Map.lookup k m) type Set a = Set (Map a ()) use Set Set namespace Set where empty : Set k empty = Set Map.empty underlying : Set k -> Map k () underlying = cases Set s -> s toMap : (k -> v) -> Set k -> Map k v toMap f = cases Set (Map ks vs) -> Map ks (List.map f ks) fromList : [k] -> Set k fromList ks = Set (Map.fromList (List.map (k -> (k,())) ks)) toList : Set k -> [k] toList = cases Set (Map ks _) -> ks contains : k -> Set k -> Boolean contains k = cases Set m -> Map.contains k m insert : k -> Set k -> Set k insert k = cases Set s -> Set (Map.insert k () s) union : Set k -> Set k -> Set k union s1 s2 = Set (Map.union (underlying s1) (underlying s2)) size : Set k -> Nat size s = Map.size (underlying s) intersect : Set k -> Set k -> Set k intersect s1 s2 = Set (Map.intersect (underlying s1) (underlying s2)) type Heap k v = Heap Nat k v [Heap k v] use Heap Heap namespace Heap where singleton : k -> v -> Heap k v singleton k v = Heap 1 k v [] size : Heap k v -> Nat size = cases Heap n _ _ _ -> n union : Heap k v -> Heap k v -> Heap k v union h1 h2 = match (h1, h2) with (Heap n k1 v1 hs1, Heap m k2 v2 hs2) -> if k1 >= k2 then Heap (n + m) k1 v1 (cons h2 hs1) else Heap (n + m) k2 v2 (cons h1 hs2) pop : Heap k v -> Optional (Heap k v) pop h = go h subs = use List drop size unsafeAt if size subs == 0 then h else if size subs == 1 then h `union` unsafeAt 0 subs else union h (unsafeAt 0 subs) `union` go (unsafeAt 1 subs) (drop 2 subs) match List.uncons (children h) with None -> None Some (s0, subs) -> Some (go s0 subs) children : Heap k v -> [Heap k v] children = cases Heap _ _ _ cs -> cs max : Heap k v -> (k, v) max = cases Heap _ k v _ -> (k, v) maxKey : Heap k v -> k maxKey = cases Heap _ k _ _ -> k fromList : [(k,v)] -> Optional (Heap k v) fromList kvs = op a b = match a with None -> b Some a -> match b with None -> Some a Some b -> Some (union a b) single = cases (k, v) -> Some (singleton k v) List.foldb single op None kvs fromKeys : [a] -> Optional (Heap a a) fromKeys as = fromList (List.map (a -> (a,a)) as) sortDescending : [a] -> [a] sortDescending as = step = cases None -> None Some h -> Some (max h, pop h) List.unfold (fromKeys as) step |> List.map Tuple.at1 sort : [a] -> [a] sort as = sortDescending as |> List.reverse -- > sort [11,9,8,4,5,6,7,3,2,10,1] namespace Optional where map : (a -> b) -> Optional a -> Optional b map f = cases None -> None Some a -> Some (f a) orDefault : a -> Optional a -> a orDefault a = cases None -> a Some a -> a orElse : Optional a -> Optional a -> Optional a orElse a b = match a with None -> b Some _ -> a flatMap : (a -> Optional b) -> Optional a -> Optional b flatMap f = cases None -> None Some a -> f a map2 : (a -> b -> c) -> Optional a -> Optional b -> Optional c map2 f oa ob = flatMap (a -> map (f a) ob) oa