mirror of
https://github.com/unisonweb/unison.git
synced 2024-11-11 17:16:30 +03:00
8cee89dc29
- () -> Unit - ().() -> Unit.Unit - Pair -> Tuple - Pair.Pair -> Tuple.Cons - Sequence -> List - Effect -> Request - {Int,Nat,Float,Text}.{==,<,<=,>,>=} -> {Int,Nat,Float,Text}.{eq,lt,lteq,gt,gteq} - mark Text.!= as a deprecated builtin
445 lines
11 KiB
Plaintext
445 lines
11 KiB
Plaintext
namespace Nat where
|
|
maxNat = 18446744073709551615
|
|
|
|
(-) : Nat -> Nat -> Int
|
|
(-) = Nat.sub
|
|
|
|
namespace Int where
|
|
maxInt = +9223372036854775807
|
|
minInt = -9223372036854775808
|
|
|
|
use Universal == < > >=
|
|
use Optional None Some
|
|
|
|
-- Function composition
|
|
dot : (b -> c) -> (a -> b) -> a -> c
|
|
dot f g x = f (g x)
|
|
|
|
-- Function composition
|
|
andThen : (a -> b) -> (b -> c) -> a -> c
|
|
andThen f g x = g (f x)
|
|
|
|
const : a -> b -> a
|
|
const a _ = a
|
|
|
|
use Tuple Cons
|
|
|
|
namespace Tuple where
|
|
at1 : Tuple a b -> a
|
|
at1 p = case p of Cons a _ -> a
|
|
|
|
at2 : Tuple a (Tuple b c) -> b
|
|
at2 p = case p of Cons _ (Cons b _) -> b
|
|
|
|
at3 : Tuple a (Tuple b (Tuple c d)) -> c
|
|
at3 p = case p of Cons _ (Cons _ (Cons c _)) -> c
|
|
|
|
at4 : Tuple a (Tuple b (Tuple c (Tuple d e))) -> d
|
|
at4 p = case p of Cons _ (Cons _ (Cons _ (Cons d _))) -> d
|
|
|
|
namespace List where
|
|
|
|
map : (a -> b) -> [a] -> [b]
|
|
map f a =
|
|
go i as acc = case List.at i as of
|
|
None -> acc
|
|
Some a -> go (i + 1) as (acc `snoc` f a)
|
|
go 0 a []
|
|
|
|
zip : [a] -> [b] -> [(a,b)]
|
|
zip as bs =
|
|
go acc i = case (at i as, at i bs) of
|
|
(None,_) -> acc
|
|
(_,None) -> acc
|
|
(Some a, Some b) -> go (acc `snoc` (a,b)) (i + 1)
|
|
go [] 0
|
|
|
|
insert : Nat -> a -> [a] -> [a]
|
|
insert i a as = take i as ++ [a] ++ drop i as
|
|
|
|
replace : Nat -> a -> [a] -> [a]
|
|
replace i a as = take i as ++ [a] ++ drop (i + 1) as
|
|
|
|
slice : Nat -> Nat -> [a] -> [a]
|
|
slice start stopExclusive s =
|
|
take (stopExclusive `Nat.drop` start) (drop start s)
|
|
|
|
unsafeAt : Nat -> [a] -> a
|
|
unsafeAt n as = case at n as of
|
|
Some a -> a
|
|
None -> Debug.watch "oh noes" (unsafeAt n as) -- Debug.crash "oh noes!"
|
|
|
|
foldl : (b -> a -> b) -> b -> [a] -> b
|
|
foldl f b as =
|
|
go b i = case List.at i as of
|
|
None -> b
|
|
Some a -> go (f b a) (i + 1)
|
|
go b 0
|
|
|
|
foldb : (a -> b) -> (b -> b -> b) -> b -> [a] -> b
|
|
foldb f op z as =
|
|
if List.size as == 0 then z
|
|
else if List.size as == 1 then f (unsafeAt 0 as)
|
|
else case halve as of (left, right) ->
|
|
foldb f op z left `op` foldb f op z right
|
|
|
|
reverse : [a] -> [a]
|
|
reverse as = foldl (acc a -> List.cons a acc) [] as
|
|
|
|
indexed : [a] -> [(a, Nat)]
|
|
indexed as = as `zip` range 0 (size as)
|
|
|
|
sortBy : (a -> b) -> [a] -> [a]
|
|
sortBy f as =
|
|
tweak p = case p of (p1,p2) -> (f p1, p2, p1)
|
|
Heap.sort (map tweak (indexed as)) |> map Tuple.at3
|
|
|
|
halve : [a] -> ([a], [a])
|
|
halve s =
|
|
n = size s / 2
|
|
(take n s, drop n s)
|
|
|
|
unfold : s -> (s -> Optional (a, s)) -> [a]
|
|
unfold s0 f =
|
|
go f s acc = case f s of
|
|
None -> acc
|
|
Some (a, s) -> go f s (acc `snoc` a)
|
|
go f s0 []
|
|
|
|
uncons : [a] -> Optional (a, [a])
|
|
uncons as = case at 0 as of
|
|
None -> None
|
|
Some a -> Some (a, drop 1 as)
|
|
|
|
unsnoc : [a] -> Optional ([a], a)
|
|
unsnoc as =
|
|
i = size (drop 1 as)
|
|
case at i as of
|
|
None -> None
|
|
Some a -> Some (take i as, a)
|
|
|
|
join : [[a]] -> [a]
|
|
join = foldl (++) []
|
|
|
|
flatMap : (a -> [b]) -> [a] -> [b]
|
|
flatMap f as = join (map f as)
|
|
|
|
range : Nat -> Nat -> [Nat]
|
|
range start stopExclusive =
|
|
f i = if i < stopExclusive then Some (i, i + 1) else None
|
|
unfold start f
|
|
|
|
distinct : [a] -> [a]
|
|
distinct as =
|
|
go i seen acc = case List.at i as of
|
|
None -> acc
|
|
Some a -> if Set.contains a seen then go (i + 1) seen acc
|
|
else go (i + 1) (Set.insert a seen) (acc `snoc` a)
|
|
go 0 Set.empty []
|
|
|
|
-- Joins a list of lists in a "fair diagonal" fashion.
|
|
-- Adapted from the Haskell version written by Luke Palmer.
|
|
diagonal : [[a]] -> [a]
|
|
diagonal =
|
|
let
|
|
x = 23
|
|
stripe aas = case aas of
|
|
[] -> []
|
|
[] +: xxs -> stripe xxs
|
|
(x +: xs) +: xxs -> cons [x] (zipCons xs (stripe xxs))
|
|
zipCons xs ys = case (xs, ys) of
|
|
([], ys) -> ys
|
|
(xs, []) -> map (x -> [x]) xs
|
|
(x +: xs, y +: ys) -> cons (cons x y) (zipCons xs ys)
|
|
List.join `dot` stripe
|
|
|
|
-- > List.foldb "" (t t2 -> "(" ++ t ++ " " ++ t2 ++ ")") (x -> x) ["Alice", "Bob", "Carol", "Dave", "Eve", "Frank", "Gerald", "Henry"]
|
|
|
|
-- Sorted maps, represented as a pair of sequences
|
|
-- Use binary search to do lookups and find insertion points
|
|
-- This relies on the underlying sequence having efficient
|
|
-- slicing and concatenation
|
|
type Map k v = Map [k] [v]
|
|
|
|
use Map Map
|
|
|
|
namespace Search where
|
|
|
|
indexOf : a -> [a] -> Optional Nat
|
|
indexOf a s =
|
|
ao = Some a
|
|
Search.exact (i -> ao `compare` List.at i s) 0 (size s)
|
|
|
|
lubIndexOf' : a -> Nat -> [a] -> Nat
|
|
lubIndexOf' a start s =
|
|
ao = Some a
|
|
Search.lub (i -> ao `compare` List.at i s) start (size s)
|
|
|
|
lubIndexOf : a -> [a] -> Nat
|
|
lubIndexOf a s = lubIndexOf' a 0 s
|
|
|
|
lub : (Nat -> Int) -> Nat -> Nat -> Nat
|
|
lub hit bot top =
|
|
if bot >= top then top
|
|
else
|
|
mid = (bot + top) / 2
|
|
case hit mid of
|
|
+0 -> mid
|
|
-1 -> lub hit bot mid
|
|
+1 -> lub hit (mid + 1) top
|
|
|
|
exact : (Nat -> Int) -> Nat -> Nat -> Optional Nat
|
|
exact hit bot top =
|
|
if bot >= top then None
|
|
else
|
|
mid = (bot + top) / 2
|
|
case hit mid of
|
|
+0 -> Some mid
|
|
-1 -> exact hit bot mid
|
|
+1 -> exact hit (mid + 1) top
|
|
|
|
-- > ex = [0,2,4,6,77,192,3838,12000]
|
|
-- > List.map (e -> indexOf e ex) ex
|
|
-- > lubIndexOf 193 ex
|
|
|
|
|
|
(|>) : a -> (a -> b) -> b
|
|
a |> f = f a
|
|
|
|
(<|) : (a -> b) -> a -> b
|
|
f <| a = f a
|
|
|
|
id : a -> a
|
|
id a = a
|
|
|
|
namespace Map where
|
|
|
|
empty : Map k v
|
|
empty = Map [] []
|
|
|
|
singleton : k -> v -> Map k v
|
|
singleton k v = Map [k] [v]
|
|
|
|
fromList : [(k,v)] -> Map k v
|
|
fromList kvs =
|
|
go acc i = case List.at i kvs of
|
|
None -> acc
|
|
Some (k,v) -> go (insert k v acc) (i + 1)
|
|
go empty 0
|
|
|
|
toList : Map k v -> [(k,v)]
|
|
toList m = List.zip (keys m) (values m)
|
|
|
|
size : Map k v -> Nat
|
|
size s = List.size (keys s)
|
|
|
|
lookup : k -> Map k v -> Optional v
|
|
lookup k m = case m of
|
|
Map ks vs -> case Search.indexOf k ks of
|
|
None -> None
|
|
Some i -> at i vs
|
|
|
|
contains : k -> Map k v -> Boolean
|
|
contains k m = case m of Map ks _ -> case Search.indexOf k ks of
|
|
None -> false
|
|
_ -> true
|
|
|
|
insert : k -> v -> Map k v -> Map k v
|
|
insert k v m = case m of Map ks vs ->
|
|
use Search lubIndexOf
|
|
i = lubIndexOf k ks
|
|
case at i ks of
|
|
Some k' ->
|
|
if k == k' then Map ks (List.replace i v vs)
|
|
else Map (List.insert i k ks) (List.insert i v vs)
|
|
None -> Map (ks `snoc` k) (vs `snoc` v)
|
|
|
|
map : (v -> v2) -> Map k v -> Map k v2
|
|
map f m = Map (keys m) (List.map f (values m))
|
|
|
|
mapKeys : (k -> k2) -> Map k v -> Map k2 v
|
|
mapKeys f m = Map (List.map f (keys m)) (values m)
|
|
|
|
union : Map k v -> Map k v -> Map k v
|
|
union = unionWith (_ v -> v)
|
|
|
|
unionWith : (v -> v -> v) -> Map k v -> Map k v -> Map k v
|
|
unionWith f m1 m2 = case (m1, m2) of (Map k1 v1, Map k2 v2) ->
|
|
go i j ko vo = case (at i k1, at j k2) of
|
|
(None, _) -> Map (ko ++ drop j k2) (vo ++ drop j v2)
|
|
(_, None) -> Map (ko ++ drop i k1) (vo ++ drop i v1)
|
|
(Some kx, Some ky) ->
|
|
use List slice unsafeAt
|
|
use Search lubIndexOf'
|
|
if kx == ky then
|
|
go (i + 1) (j + 1)
|
|
(ko `snoc` kx)
|
|
(vo `snoc` f (unsafeAt i v1) (unsafeAt j v2))
|
|
else if kx < ky then
|
|
i' = lubIndexOf' ky i k1
|
|
go i' j (ko ++ slice i i' k1) (vo ++ slice i i' v1)
|
|
else
|
|
j' = lubIndexOf' kx j k2
|
|
go i j' (ko ++ slice j j' k2) (vo ++ slice j j' v2)
|
|
go 0 0 [] []
|
|
|
|
intersect : Map k v -> Map k v -> Map k v
|
|
intersect = intersectWith (_ v -> v)
|
|
|
|
intersectWith : (v -> v -> v2) -> Map k v -> Map k v -> Map k v2
|
|
intersectWith f m1 m2 = case (m1, m2) of (Map k1 v1, Map k2 v2) ->
|
|
go i j ko vo = case (at i k1, at j k2) of
|
|
(None, _) -> Map ko vo
|
|
(_, None) -> Map ko vo
|
|
(Some kx, Some ky) ->
|
|
if kx == ky then
|
|
go (i + 1) (j + 1)
|
|
(ko `snoc` kx)
|
|
(vo `snoc` f (List.unsafeAt i v1) (List.unsafeAt j v2))
|
|
else if kx < ky then
|
|
i' = Search.lubIndexOf' ky i k1
|
|
go i' j ko vo
|
|
else
|
|
j' = Search.lubIndexOf' kx j k2
|
|
go i j' ko vo
|
|
go 0 0 [] []
|
|
|
|
keys : Map k v -> [k]
|
|
keys m = case m of Map ks _ -> ks
|
|
|
|
values : Map k v -> [v]
|
|
values m = case m of Map _ vs -> vs
|
|
|
|
namespace Multimap where
|
|
|
|
insert : k -> v -> Map k [v] -> Map k [v]
|
|
insert k v m = case Map.lookup k m of
|
|
None -> Map.insert k [v] m
|
|
Some vs -> Map.insert k (vs `snoc` v) m
|
|
|
|
lookup : k -> Map k [v] -> [v]
|
|
lookup k m = Optional.orDefault [] (Map.lookup k m)
|
|
|
|
type Set a = Set (Map a ())
|
|
use Set Set
|
|
|
|
namespace Set where
|
|
|
|
empty : Set k
|
|
empty = Set Map.empty
|
|
|
|
underlying : Set k -> Map k ()
|
|
underlying s = case s of Set s -> s
|
|
|
|
toMap : (k -> v) -> Set k -> Map k v
|
|
toMap f s = case s of Set (Map ks vs) -> Map ks (List.map f ks)
|
|
|
|
fromList : [k] -> Set k
|
|
fromList ks = Set (Map.fromList (List.map (k -> (k,())) ks))
|
|
|
|
toList : Set k -> [k]
|
|
toList s = case s of Set (Map ks _) -> ks
|
|
|
|
contains : k -> Set k -> Boolean
|
|
contains k s = case s of Set m -> Map.contains k m
|
|
|
|
insert : k -> Set k -> Set k
|
|
insert k s = case s of Set s -> Set (Map.insert k () s)
|
|
|
|
union : Set k -> Set k -> Set k
|
|
union s1 s2 = Set (Map.union (underlying s1) (underlying s2))
|
|
|
|
size : Set k -> Nat
|
|
size s = Map.size (underlying s)
|
|
|
|
intersect : Set k -> Set k -> Set k
|
|
intersect s1 s2 = Set (Map.intersect (underlying s1) (underlying s2))
|
|
|
|
type Heap k v = Heap Nat k v [Heap k v]
|
|
use Heap Heap
|
|
|
|
namespace Heap where
|
|
|
|
singleton : k -> v -> Heap k v
|
|
singleton k v = Heap 1 k v []
|
|
|
|
size : Heap k v -> Nat
|
|
size h = case h of Heap n _ _ _ -> n
|
|
|
|
union : Heap k v -> Heap k v -> Heap k v
|
|
union h1 h2 = case (h1, h2) of
|
|
(Heap n k1 v1 hs1, Heap m k2 v2 hs2) ->
|
|
if k1 >= k2 then Heap (n + m) k1 v1 (cons h2 hs1)
|
|
else Heap (n + m) k2 v2 (cons h1 hs2)
|
|
|
|
pop : Heap k v -> Optional (Heap k v)
|
|
pop h =
|
|
go h subs =
|
|
use List drop size unsafeAt
|
|
if size subs == 0 then h
|
|
else if size subs == 1 then h `union` unsafeAt 0 subs
|
|
else union h (unsafeAt 0 subs) `union` go (unsafeAt 1 subs) (drop 2 subs)
|
|
case List.uncons (children h) of
|
|
None -> None
|
|
Some (s0, subs) -> Some (go s0 subs)
|
|
|
|
children : Heap k v -> [Heap k v]
|
|
children h = case h of Heap _ _ _ cs -> cs
|
|
|
|
max : Heap k v -> (k, v)
|
|
max h = case h of Heap _ k v _ -> (k, v)
|
|
|
|
maxKey : Heap k v -> k
|
|
maxKey h = case h of Heap _ k _ _ -> k
|
|
|
|
fromList : [(k,v)] -> Optional (Heap k v)
|
|
fromList kvs =
|
|
op a b = case a of
|
|
None -> b
|
|
Some a -> case b of
|
|
None -> Some a
|
|
Some b -> Some (union a b)
|
|
single kv = case kv of
|
|
(k, v) -> Some (singleton k v)
|
|
List.foldb single op None kvs
|
|
|
|
fromKeys : [a] -> Optional (Heap a a)
|
|
fromKeys as = fromList (List.map (a -> (a,a)) as)
|
|
|
|
sortDescending : [a] -> [a]
|
|
sortDescending as =
|
|
step o = case o of
|
|
None -> None
|
|
Some h -> Some (max h, pop h)
|
|
List.unfold (fromKeys as) step |> List.map Tuple.at1
|
|
|
|
sort : [a] -> [a]
|
|
sort as = sortDescending as |> List.reverse
|
|
|
|
-- > sort [11,9,8,4,5,6,7,3,2,10,1]
|
|
|
|
namespace Optional where
|
|
|
|
map : (a -> b) -> Optional a -> Optional b
|
|
map f o = case o of
|
|
None -> None
|
|
Some a -> Some (f a)
|
|
|
|
orDefault : a -> Optional a -> a
|
|
orDefault a o = case o of
|
|
None -> a
|
|
Some a -> a
|
|
|
|
orElse : Optional a -> Optional a -> Optional a
|
|
orElse a b = case a of
|
|
None -> b
|
|
Some _ -> a
|
|
|
|
flatMap : (a -> Optional b) -> Optional a -> Optional b
|
|
flatMap f o = case o of
|
|
None -> None
|
|
Some a -> f a
|
|
|
|
map2 : (a -> b -> c) -> Optional a -> Optional b -> Optional c
|
|
map2 f oa ob = flatMap (a -> map (f a) ob) oa
|