mirror of
https://github.com/uqbar-dao/nectar.git
synced 2025-01-07 01:56:31 +03:00
replace old net with net2
This commit is contained in:
parent
878be1b51e
commit
4094be9293
@ -14,7 +14,7 @@ mod http_client;
|
||||
mod http_server;
|
||||
mod kernel;
|
||||
mod keygen;
|
||||
mod net2;
|
||||
mod net;
|
||||
mod register;
|
||||
mod terminal;
|
||||
mod types;
|
||||
@ -255,7 +255,7 @@ async fn main() {
|
||||
vfs_message_sender,
|
||||
encryptor_sender,
|
||||
));
|
||||
tasks.spawn(net2::networking(
|
||||
tasks.spawn(net::networking(
|
||||
our.clone(),
|
||||
our_ip.to_string(),
|
||||
networking_keypair_arc.clone(),
|
||||
|
@ -1,599 +0,0 @@
|
||||
use crate::net::*;
|
||||
use chacha20poly1305::{
|
||||
aead::{Aead, AeadCore, KeyInit, OsRng},
|
||||
XChaCha20Poly1305, XNonce,
|
||||
};
|
||||
use elliptic_curve::ecdh::SharedSecret;
|
||||
use futures::{SinkExt, StreamExt};
|
||||
use ring::signature::Ed25519KeyPair;
|
||||
use tokio::sync::mpsc::{unbounded_channel, UnboundedReceiver, UnboundedSender};
|
||||
use tokio::task::JoinHandle;
|
||||
use tokio_tungstenite::tungstenite;
|
||||
|
||||
pub async fn build_connection(
|
||||
our: Identity,
|
||||
keypair: Arc<Ed25519KeyPair>,
|
||||
pki: OnchainPKI,
|
||||
keys: PeerKeys,
|
||||
peers: Peers,
|
||||
websocket: WebSocket,
|
||||
kernel_message_tx: MessageSender,
|
||||
net_message_tx: MessageSender,
|
||||
network_error_tx: NetworkErrorSender,
|
||||
with: Option<String>,
|
||||
) -> (
|
||||
UnboundedSender<(NetworkMessage, Option<ErrorShuttle>)>,
|
||||
JoinHandle<Option<String>>,
|
||||
) {
|
||||
// println!("building new connection\r");
|
||||
let (message_tx, message_rx) = unbounded_channel::<(NetworkMessage, Option<ErrorShuttle>)>();
|
||||
let handle = tokio::spawn(maintain_connection(
|
||||
our,
|
||||
with,
|
||||
keypair,
|
||||
pki,
|
||||
keys,
|
||||
peers,
|
||||
websocket,
|
||||
message_tx.clone(),
|
||||
message_rx,
|
||||
kernel_message_tx,
|
||||
net_message_tx,
|
||||
network_error_tx,
|
||||
));
|
||||
return (message_tx, handle);
|
||||
}
|
||||
|
||||
/// Keeps a connection alive and handles sending and receiving of NetworkMessages through it.
|
||||
/// TODO add a keepalive PING/PONG system
|
||||
/// TODO kill this after a certain amount of inactivity
|
||||
pub async fn maintain_connection(
|
||||
our: Identity,
|
||||
with: Option<String>,
|
||||
keypair: Arc<Ed25519KeyPair>,
|
||||
pki: OnchainPKI,
|
||||
keys: PeerKeys,
|
||||
peers: Peers,
|
||||
websocket: WebSocket,
|
||||
message_tx: UnboundedSender<(NetworkMessage, Option<ErrorShuttle>)>,
|
||||
mut message_rx: UnboundedReceiver<(NetworkMessage, Option<ErrorShuttle>)>,
|
||||
kernel_message_tx: MessageSender,
|
||||
net_message_tx: MessageSender,
|
||||
network_error_tx: NetworkErrorSender,
|
||||
) -> Option<String> {
|
||||
// let conn_id: u64 = rand::random();
|
||||
// println!("maintaining connection {conn_id}\r");
|
||||
|
||||
// accept messages on the websocket in one task, and send messages in another
|
||||
let (mut write_stream, mut read_stream) = websocket.split();
|
||||
|
||||
let (forwarding_ack_tx, mut forwarding_ack_rx) = unbounded_channel::<MessageResult>();
|
||||
// manage outstanding ACKs from messages sent over the connection
|
||||
// TODO replace with more performant data structure
|
||||
let ack_map = Arc::new(RwLock::new(HashMap::<u64, ErrorShuttle>::new()));
|
||||
let sender_ack_map = ack_map.clone();
|
||||
|
||||
let last_pong = Arc::new(RwLock::new(tokio::time::Instant::now()));
|
||||
let ping_last_pong = last_pong.clone();
|
||||
let ping_tx = message_tx.clone();
|
||||
|
||||
// Ping/Pong keepalive task
|
||||
let ping_task = tokio::spawn(async move {
|
||||
loop {
|
||||
tokio::time::sleep(tokio::time::Duration::from_secs(30)).await;
|
||||
if ping_last_pong.read().await.elapsed() > tokio::time::Duration::from_secs(60) {
|
||||
break;
|
||||
}
|
||||
if let Err(_) = ping_tx.send((NetworkMessage::Ping, None)) {
|
||||
// Failed to send Ping, kill the connection
|
||||
break;
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
let forwarder_message_tx = message_tx.clone();
|
||||
let ack_forwarder = tokio::spawn(async move {
|
||||
while let Some(result) = forwarding_ack_rx.recv().await {
|
||||
match result {
|
||||
Ok(NetworkMessage::Ack(id)) => {
|
||||
// println!("net: got forwarding ack for message {}\r", id);
|
||||
forwarder_message_tx
|
||||
.send((NetworkMessage::Ack(id), None))
|
||||
.unwrap();
|
||||
}
|
||||
Ok(NetworkMessage::Nack(id)) => {
|
||||
// println!("net: got forwarding nack for message {}\r", id);
|
||||
forwarder_message_tx
|
||||
.send((NetworkMessage::Nack(id), None))
|
||||
.unwrap();
|
||||
}
|
||||
Ok(NetworkMessage::HandshakeAck(handshake)) => {
|
||||
// println!(
|
||||
// "net: got forwarding handshakeAck for message {}\r",
|
||||
// handshake.id
|
||||
// );
|
||||
forwarder_message_tx
|
||||
.send((NetworkMessage::HandshakeAck(handshake), None))
|
||||
.unwrap();
|
||||
}
|
||||
Err((message_id, _e)) => {
|
||||
// println!("net: got forwarding error from ack_rx: {:?}\r", e);
|
||||
// what do we do here?
|
||||
forwarder_message_tx
|
||||
.send((NetworkMessage::Nack(message_id), None))
|
||||
.unwrap();
|
||||
}
|
||||
_ => {
|
||||
// println!("net: weird none ack\r");
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
// receive messages from over the websocket and route them to the correct peer handler,
|
||||
// or create it, if necessary.
|
||||
let ws_receiver = tokio::spawn(async move {
|
||||
while let Some(incoming) = read_stream.next().await {
|
||||
let Ok(tungstenite::Message::Binary(bin)) = incoming else {
|
||||
if let Ok(tungstenite::Message::Ping(_)) = incoming {
|
||||
// let _ = write_stream.send(tungstenite::Message::Pong(vec![])).await;
|
||||
}
|
||||
continue;
|
||||
};
|
||||
// TODO use a language-netural serialization format here!
|
||||
let Ok(net_message) = bincode::deserialize::<NetworkMessage>(&bin) else {
|
||||
// just kill the connection if we get a non-Uqbar message
|
||||
break;
|
||||
};
|
||||
match net_message {
|
||||
NetworkMessage::Pong => {
|
||||
*last_pong.write().await = tokio::time::Instant::now();
|
||||
continue;
|
||||
}
|
||||
NetworkMessage::Ping => {
|
||||
// respond with a Pong
|
||||
let _ = message_tx.send((NetworkMessage::Pong, None));
|
||||
continue;
|
||||
}
|
||||
NetworkMessage::Ack(id) => {
|
||||
let Some(result_tx) = ack_map.write().await.remove(&id) else {
|
||||
// println!("conn {conn_id}: got unexpected Ack {id}\r");
|
||||
continue;
|
||||
};
|
||||
// println!("conn {conn_id}: got Ack {id}\r");
|
||||
let _ = result_tx.send(Ok(net_message));
|
||||
continue;
|
||||
}
|
||||
NetworkMessage::Nack(id) => {
|
||||
let Some(result_tx) = ack_map.write().await.remove(&id) else {
|
||||
// println!("net: got unexpected Nack\r");
|
||||
continue;
|
||||
};
|
||||
let _ = result_tx.send(Ok(net_message));
|
||||
continue;
|
||||
}
|
||||
NetworkMessage::Msg {
|
||||
ref id,
|
||||
ref from,
|
||||
ref to,
|
||||
ref contents,
|
||||
} => {
|
||||
// println!("conn {conn_id}: handling msg {id}\r");
|
||||
// if the message is *directed to us*, try to handle with the
|
||||
// matching peer handler "decrypter".
|
||||
//
|
||||
if to == &our.name {
|
||||
// if we have the peer, send the message to them.
|
||||
if let Some(peer) = peers.read().await.get(from) {
|
||||
let _ = peer
|
||||
.decrypter
|
||||
.send((contents.to_owned(), forwarding_ack_tx.clone()));
|
||||
continue;
|
||||
}
|
||||
// if we don't have the peer, see if we have the keys to create them.
|
||||
// if we don't have their keys, throw a nack.
|
||||
if let Some((peer_id, secret)) = keys.read().await.get(from) {
|
||||
let new_peer = create_new_peer(
|
||||
our.clone(),
|
||||
peer_id.clone(),
|
||||
peers.clone(),
|
||||
keys.clone(),
|
||||
secret.clone(),
|
||||
message_tx.clone(),
|
||||
kernel_message_tx.clone(),
|
||||
net_message_tx.clone(),
|
||||
network_error_tx.clone(),
|
||||
);
|
||||
let _ = new_peer
|
||||
.decrypter
|
||||
.send((contents.to_owned(), forwarding_ack_tx.clone()));
|
||||
peers.write().await.insert(peer_id.name.clone(), new_peer);
|
||||
} else {
|
||||
// println!("net: nacking message {id}\r");
|
||||
message_tx.send((NetworkMessage::Nack(*id), None)).unwrap();
|
||||
}
|
||||
} else {
|
||||
// if the message is *directed to someone else*, try to handle
|
||||
// with the matching peer handler "sender".
|
||||
//
|
||||
if let Some(peer) = peers.read().await.get(to) {
|
||||
let id = *id;
|
||||
let to = to.clone();
|
||||
match peer.sender.send((
|
||||
PeerMessage::Net(net_message),
|
||||
Some(forwarding_ack_tx.clone()),
|
||||
)) {
|
||||
Ok(_) => {}
|
||||
Err(_) => {
|
||||
peers.write().await.remove(&to);
|
||||
message_tx.send((NetworkMessage::Nack(id), None)).unwrap();
|
||||
}
|
||||
}
|
||||
} else {
|
||||
// if we don't have the peer, throw a nack.
|
||||
// println!("net: nacking message with id {id}\r");
|
||||
message_tx.send((NetworkMessage::Nack(*id), None)).unwrap();
|
||||
}
|
||||
}
|
||||
}
|
||||
NetworkMessage::Handshake(ref handshake) => {
|
||||
// when we get a handshake, if we are the target,
|
||||
// 1. verify it against the PKI
|
||||
// 2. send a response handshakeAck
|
||||
// 3. create a Peer and save, replacing old one if it existed
|
||||
// as long as we are the target, we also get to kill this connection
|
||||
// if the handshake is invalid, since it must be directly "to" us.
|
||||
if handshake.target == our.name {
|
||||
let Some(peer_id) = pki.read().await.get(&handshake.from).cloned() else {
|
||||
// println!(
|
||||
// "net: failed handshake with unknown node {}\r",
|
||||
// handshake.from
|
||||
// );
|
||||
message_tx
|
||||
.send((NetworkMessage::Nack(handshake.id), None))
|
||||
.unwrap();
|
||||
break;
|
||||
};
|
||||
let their_ephemeral_pk = match validate_handshake(&handshake, &peer_id) {
|
||||
Ok(pk) => pk,
|
||||
Err(e) => {
|
||||
println!("net: invalid handshake from {}: {}\r", handshake.from, e);
|
||||
message_tx
|
||||
.send((NetworkMessage::Nack(handshake.id), None))
|
||||
.unwrap();
|
||||
break;
|
||||
}
|
||||
};
|
||||
let (secret, handshake) = make_secret_and_handshake(
|
||||
&our,
|
||||
keypair.clone(),
|
||||
&handshake.from,
|
||||
Some(handshake.id),
|
||||
);
|
||||
message_tx
|
||||
.send((NetworkMessage::HandshakeAck(handshake), None))
|
||||
.unwrap();
|
||||
let secret = Arc::new(secret.diffie_hellman(&their_ephemeral_pk));
|
||||
// save the handshake to our Keys map
|
||||
keys.write()
|
||||
.await
|
||||
.insert(peer_id.name.clone(), (peer_id.clone(), secret.clone()));
|
||||
let new_peer = create_new_peer(
|
||||
our.clone(),
|
||||
peer_id.clone(),
|
||||
peers.clone(),
|
||||
keys.clone(),
|
||||
secret,
|
||||
message_tx.clone(),
|
||||
kernel_message_tx.clone(),
|
||||
net_message_tx.clone(),
|
||||
network_error_tx.clone(),
|
||||
);
|
||||
// we might be replacing an old peer, so we need to remove it first
|
||||
// we can't rely on the hashmap for this, because the dropped peer
|
||||
// will trigger a drop of the sender, which will kill the peer_handler
|
||||
peers.write().await.remove(&peer_id.name);
|
||||
peers.write().await.insert(peer_id.name.clone(), new_peer);
|
||||
} else {
|
||||
// if we are NOT the target,
|
||||
// try to send it to the matching peer handler "sender"
|
||||
if let Some(peer) = peers.read().await.get(&handshake.target) {
|
||||
let _ = peer.sender.send((
|
||||
PeerMessage::Net(net_message),
|
||||
Some(forwarding_ack_tx.clone()),
|
||||
));
|
||||
} else {
|
||||
// if we don't have the peer, throw a nack.
|
||||
// println!("net: nacking handshake with id {}\r", handshake.id);
|
||||
message_tx
|
||||
.send((NetworkMessage::Nack(handshake.id), None))
|
||||
.unwrap();
|
||||
}
|
||||
}
|
||||
}
|
||||
NetworkMessage::HandshakeAck(ref handshake) => {
|
||||
let Some(result_tx) = ack_map.write().await.remove(&handshake.id) else {
|
||||
continue;
|
||||
};
|
||||
let _ = result_tx.send(Ok(net_message));
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
tokio::select! {
|
||||
_ = ws_receiver => {
|
||||
// println!("ws_receiver died\r");
|
||||
},
|
||||
_ = ack_forwarder => {
|
||||
// println!("ack_forwarder died\r");
|
||||
},
|
||||
_ = ping_task => {
|
||||
// println!("ping_task died\r");
|
||||
},
|
||||
// receive messages we would like to send to peers along this connection
|
||||
// and send them to the websocket
|
||||
_ = async {
|
||||
while let Some((message, result_tx)) = message_rx.recv().await {
|
||||
// TODO use a language-netural serialization format here!
|
||||
if let Ok(bytes) = bincode::serialize::<NetworkMessage>(&message) {
|
||||
match &message {
|
||||
NetworkMessage::Msg { id, .. } => {
|
||||
// println!("conn {conn_id}: piping msg {id}\r");
|
||||
sender_ack_map.write().await.insert(*id, result_tx.unwrap());
|
||||
}
|
||||
NetworkMessage::Handshake(h) => {
|
||||
sender_ack_map.write().await.insert(h.id, result_tx.unwrap());
|
||||
}
|
||||
_ => {}
|
||||
}
|
||||
match write_stream.send(tungstenite::Message::Binary(bytes)).await {
|
||||
Ok(()) => {}
|
||||
Err(e) => {
|
||||
// println!("net: send error: {:?}\r", e);
|
||||
let id = match &message {
|
||||
NetworkMessage::Msg { id, .. } => id,
|
||||
NetworkMessage::Handshake(h) => &h.id,
|
||||
_ => continue,
|
||||
};
|
||||
let Some(result_tx) = sender_ack_map.write().await.remove(&id) else {
|
||||
continue;
|
||||
};
|
||||
// TODO learn how to handle other non-fatal websocket errors.
|
||||
match e {
|
||||
tungstenite::error::Error::Capacity(_)
|
||||
| tungstenite::Error::Io(_) => {
|
||||
let _ = result_tx.send(Err((*id, SendErrorKind::Timeout)));
|
||||
}
|
||||
_ => {
|
||||
let _ = result_tx.send(Ok(NetworkMessage::Nack(*id)));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} => {
|
||||
// println!("ws_sender died\r");
|
||||
},
|
||||
};
|
||||
return with;
|
||||
}
|
||||
|
||||
/// After a successful handshake, use information to spawn a new `peer_handler` task
|
||||
/// and save a `Peer` in our peers mapping. Returns a sender to use for sending messages
|
||||
/// to this peer, which will also be saved in its Peer struct.
|
||||
pub fn create_new_peer(
|
||||
our: Identity,
|
||||
new_peer_id: Identity,
|
||||
peers: Peers,
|
||||
keys: PeerKeys,
|
||||
secret: Arc<SharedSecret<Secp256k1>>,
|
||||
conn_sender: UnboundedSender<(NetworkMessage, Option<ErrorShuttle>)>,
|
||||
kernel_message_tx: MessageSender,
|
||||
net_message_tx: MessageSender,
|
||||
network_error_tx: NetworkErrorSender,
|
||||
) -> Peer {
|
||||
let (message_tx, message_rx) = unbounded_channel::<(PeerMessage, Option<ErrorShuttle>)>();
|
||||
let (decrypter_tx, decrypter_rx) = unbounded_channel::<(Vec<u8>, ErrorShuttle)>();
|
||||
let peer_id_name = new_peer_id.name.clone();
|
||||
let peer_conn_sender = conn_sender.clone();
|
||||
tokio::spawn(async move {
|
||||
match peer_handler(
|
||||
our,
|
||||
peer_id_name.clone(),
|
||||
secret,
|
||||
message_rx,
|
||||
decrypter_rx,
|
||||
peer_conn_sender,
|
||||
kernel_message_tx,
|
||||
network_error_tx,
|
||||
)
|
||||
.await
|
||||
{
|
||||
None => {
|
||||
// println!("net: dropping peer handler but not deleting\r");
|
||||
}
|
||||
Some(km) => {
|
||||
// println!("net: ok actually deleting peer+keys now and retrying send\r");
|
||||
peers.write().await.remove(&peer_id_name);
|
||||
keys.write().await.remove(&peer_id_name);
|
||||
let _ = net_message_tx.send(km).await;
|
||||
}
|
||||
}
|
||||
});
|
||||
return Peer {
|
||||
identity: new_peer_id,
|
||||
sender: message_tx,
|
||||
decrypter: decrypter_tx,
|
||||
socket_tx: conn_sender,
|
||||
};
|
||||
}
|
||||
|
||||
/// 1. take in messages from a specific peer, decrypt them, and send to kernel
|
||||
/// 2. take in messages targeted at specific peer and either:
|
||||
/// - encrypt them, and send to proper connection
|
||||
/// - forward them untouched along the connection
|
||||
async fn peer_handler(
|
||||
our: Identity,
|
||||
who: String,
|
||||
secret: Arc<SharedSecret<Secp256k1>>,
|
||||
mut message_rx: UnboundedReceiver<(PeerMessage, Option<ErrorShuttle>)>,
|
||||
mut decrypter_rx: UnboundedReceiver<(Vec<u8>, ErrorShuttle)>,
|
||||
socket_tx: UnboundedSender<(NetworkMessage, Option<ErrorShuttle>)>,
|
||||
kernel_message_tx: MessageSender,
|
||||
network_error_tx: NetworkErrorSender,
|
||||
) -> Option<KernelMessage> {
|
||||
// println!("peer_handler\r");
|
||||
let mut key = [0u8; 32];
|
||||
secret
|
||||
.extract::<sha2::Sha256>(None)
|
||||
.expand(&[], &mut key)
|
||||
.unwrap();
|
||||
let cipher = XChaCha20Poly1305::new(generic_array::GenericArray::from_slice(&key));
|
||||
|
||||
let (ack_tx, mut ack_rx) = unbounded_channel::<MessageResult>();
|
||||
// TODO use a more efficient data structure
|
||||
let ack_map = Arc::new(RwLock::new(HashMap::<u64, KernelMessage>::new()));
|
||||
let recv_ack_map = ack_map.clone();
|
||||
tokio::select! {
|
||||
//
|
||||
// take in messages from a specific peer, decrypt them, and send to kernel
|
||||
//
|
||||
_ = async {
|
||||
while let Some((encrypted_bytes, result_tx)) = decrypter_rx.recv().await {
|
||||
let nonce = XNonce::from_slice(&encrypted_bytes[..24]);
|
||||
if let Ok(decrypted) = cipher.decrypt(&nonce, &encrypted_bytes[24..]) {
|
||||
if let Ok(message) = bincode::deserialize::<KernelMessage>(&decrypted) {
|
||||
if message.source.node == who {
|
||||
// println!("net: got peer message {}, acking\r", message.id);
|
||||
let _ = result_tx.send(Ok(NetworkMessage::Ack(message.id)));
|
||||
let _ = kernel_message_tx.send(message).await;
|
||||
continue;
|
||||
}
|
||||
println!("net: got message 'from' wrong person! cheater/liar!\r");
|
||||
break;
|
||||
}
|
||||
println!("net: failed to deserialize message from {}\r", who);
|
||||
break;
|
||||
}
|
||||
println!("net: failed to decrypt message from {}, could be spoofer\r", who);
|
||||
break;
|
||||
}
|
||||
} => {
|
||||
// println!("net: lost peer {who}\r");
|
||||
return None
|
||||
}
|
||||
//
|
||||
// take in messages targeted at specific peer and either:
|
||||
// - encrypt them, and send to proper connection
|
||||
// - forward them untouched along the connection
|
||||
//
|
||||
_ = async {
|
||||
// if we get a result_tx, rather than track it here, let a different
|
||||
// part of the code handle whatever comes back from the socket.
|
||||
while let Some((message, maybe_result_tx)) = message_rx.recv().await {
|
||||
// if message is raw, we should encrypt.
|
||||
// otherwise, simply send
|
||||
match message {
|
||||
PeerMessage::Raw(message) => {
|
||||
let id = message.id;
|
||||
if let Ok(bytes) = bincode::serialize::<KernelMessage>(&message) {
|
||||
// generating a random nonce for each message.
|
||||
// this isn't really as secure as we could get: should
|
||||
// add a counter and then throw away the key when we hit a
|
||||
// certain # of messages. TODO.
|
||||
let nonce = XChaCha20Poly1305::generate_nonce(&mut OsRng);
|
||||
if let Ok(encrypted) = cipher.encrypt(&nonce, bytes.as_ref()) {
|
||||
if maybe_result_tx.is_none() {
|
||||
ack_map.write().await.insert(id, message);
|
||||
}
|
||||
match socket_tx.send((
|
||||
NetworkMessage::Msg {
|
||||
from: our.name.clone(),
|
||||
to: who.clone(),
|
||||
id: id,
|
||||
contents: [nonce.to_vec(), encrypted].concat(),
|
||||
},
|
||||
Some(maybe_result_tx.unwrap_or(ack_tx.clone())),
|
||||
)) {
|
||||
Ok(()) => tokio::task::yield_now().await,
|
||||
Err(tokio::sync::mpsc::error::SendError((_, result_tx))) => {
|
||||
// println!("net: lost socket with {who}\r");
|
||||
let _ = result_tx.unwrap().send(Ok(NetworkMessage::Nack(id)));
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
PeerMessage::Net(net_message) => {
|
||||
match socket_tx.send((net_message, Some(maybe_result_tx.unwrap_or(ack_tx.clone())))) {
|
||||
Ok(()) => continue,
|
||||
Err(tokio::sync::mpsc::error::SendError((net_message, result_tx))) => {
|
||||
// println!("net: lost *forwarding* socket with {who}\r");
|
||||
let id = match net_message {
|
||||
NetworkMessage::Msg { id, .. } => id,
|
||||
NetworkMessage::Handshake(h) => h.id,
|
||||
_ => continue,
|
||||
};
|
||||
let _ = result_tx.unwrap().send(Ok(NetworkMessage::Nack(id)));
|
||||
break;
|
||||
},
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
} => return None,
|
||||
//
|
||||
// receive acks and nacks from our socket
|
||||
// throw away acks, but kill this peer and retry the send on nacks.
|
||||
//
|
||||
maybe_km = async {
|
||||
while let Some(result) = ack_rx.recv().await {
|
||||
match result {
|
||||
Ok(NetworkMessage::Ack(id)) => {
|
||||
// println!("net: got ack for message {}\r", id);
|
||||
recv_ack_map.write().await.remove(&id);
|
||||
continue;
|
||||
}
|
||||
Ok(NetworkMessage::Nack(id)) => {
|
||||
// println!("net: got nack for message {}\r", id);
|
||||
let Some(km) = recv_ack_map.write().await.remove(&id) else {
|
||||
continue;
|
||||
};
|
||||
// when we get a Nack, **delete this peer** and try to send the message again!
|
||||
return Some(km)
|
||||
}
|
||||
Err((message_id, e)) => {
|
||||
// println!("net: got error from ack_rx: {:?}\r", e);
|
||||
// in practice this is always a timeout in current implementation
|
||||
let Some(km) = recv_ack_map.write().await.remove(&message_id) else {
|
||||
continue;
|
||||
};
|
||||
let _ = network_error_tx
|
||||
.send(WrappedSendError {
|
||||
id: km.id,
|
||||
source: km.source,
|
||||
error: SendError {
|
||||
kind: e,
|
||||
target: km.target,
|
||||
message: km.message,
|
||||
payload: km.payload,
|
||||
},
|
||||
})
|
||||
.await;
|
||||
return None
|
||||
}
|
||||
_ => {
|
||||
// println!("net: weird none ack\r");
|
||||
return None
|
||||
}
|
||||
}
|
||||
}
|
||||
return None;
|
||||
} => {
|
||||
// println!("net: exiting peer due to nackage\r");
|
||||
return maybe_km
|
||||
},
|
||||
}
|
||||
}
|
1853
src/net/mod.rs
1853
src/net/mod.rs
File diff suppressed because it is too large
Load Diff
141
src/net/types.rs
141
src/net/types.rs
@ -1,71 +1,108 @@
|
||||
use crate::types::*;
|
||||
use anyhow::Result;
|
||||
use elliptic_curve::ecdh::SharedSecret;
|
||||
use ethers::prelude::k256::Secp256k1;
|
||||
use futures::stream::{SplitSink, SplitStream};
|
||||
use serde::{Deserialize, Serialize};
|
||||
use std::{collections::HashMap, sync::Arc};
|
||||
use tokio::net::TcpStream;
|
||||
use tokio::sync::{mpsc, RwLock};
|
||||
use tokio_tungstenite::{MaybeTlsStream, WebSocketStream};
|
||||
use tokio::sync::mpsc::UnboundedSender;
|
||||
use tokio_tungstenite::{tungstenite, MaybeTlsStream, WebSocketStream};
|
||||
|
||||
pub type PeerKeys = Arc<RwLock<HashMap<String, (Identity, Arc<SharedSecret<Secp256k1>>)>>>;
|
||||
pub type Peers = Arc<RwLock<HashMap<String, Peer>>>;
|
||||
pub type WebSocket = WebSocketStream<MaybeTlsStream<TcpStream>>;
|
||||
pub type MessageResult = Result<NetworkMessage, (u64, SendErrorKind)>;
|
||||
pub type ErrorShuttle = mpsc::UnboundedSender<MessageResult>;
|
||||
/// Sent to a node when you want to connect directly to them.
|
||||
/// Sent in the 'e, ee, s, es' and 's, se' phases of XX noise protocol pattern.
|
||||
#[derive(Debug, Deserialize, Serialize)]
|
||||
pub struct HandshakePayload {
|
||||
pub name: NodeId,
|
||||
// signature is created by their networking key, of their static key
|
||||
// someone could reuse this signature, but then they will be unable
|
||||
// to encrypt messages to us.
|
||||
pub signature: Vec<u8>,
|
||||
/// Set to true when you want them to act as a router for you, sending
|
||||
/// messages from potentially many remote sources over this connection,
|
||||
/// including from the router itself.
|
||||
/// This is not relevant in a handshake sent from the receiver side.
|
||||
pub proxy_request: bool,
|
||||
pub protocol_version: u8,
|
||||
}
|
||||
|
||||
/// Sent to a node when you want them to connect you to an indirect node.
|
||||
/// If the receiver of the request has an open connection to your target,
|
||||
/// and is willing, they will send a message to the target prompting them
|
||||
/// to build the other side of the connection, at which point they will
|
||||
/// hold open a Passthrough for you two.
|
||||
///
|
||||
/// Alternatively, if the receiver does not have an open connection but the
|
||||
/// target is a direct node, they can create a Passthrough for you two if
|
||||
/// they are willing to proxy for you.
|
||||
///
|
||||
/// Sent in the 'e' phase of XX noise protocol pattern.
|
||||
#[derive(Debug, Deserialize, Serialize)]
|
||||
pub struct RoutingRequest {
|
||||
pub source: NodeId,
|
||||
// signature is created by their networking key, of the [target, router name].concat()
|
||||
// someone could reuse this signature, and TODO need to make sure that's useless.
|
||||
pub signature: Vec<u8>,
|
||||
pub target: NodeId,
|
||||
pub protocol_version: u8,
|
||||
}
|
||||
|
||||
pub enum Connection {
|
||||
Peer(PeerConnection),
|
||||
Passthrough(PassthroughConnection),
|
||||
PendingPassthrough(PendingPassthroughConnection),
|
||||
}
|
||||
|
||||
pub struct PeerConnection {
|
||||
pub noise: snow::TransportState,
|
||||
pub buf: Vec<u8>,
|
||||
pub write_stream: SplitSink<WebSocketStream<MaybeTlsStream<TcpStream>>, tungstenite::Message>,
|
||||
pub read_stream: SplitStream<WebSocketStream<MaybeTlsStream<TcpStream>>>,
|
||||
}
|
||||
|
||||
pub struct PassthroughConnection {
|
||||
pub write_stream_1: SplitSink<WebSocketStream<MaybeTlsStream<TcpStream>>, tungstenite::Message>,
|
||||
pub read_stream_1: SplitStream<WebSocketStream<MaybeTlsStream<TcpStream>>>,
|
||||
pub write_stream_2: SplitSink<WebSocketStream<MaybeTlsStream<TcpStream>>, tungstenite::Message>,
|
||||
pub read_stream_2: SplitStream<WebSocketStream<MaybeTlsStream<TcpStream>>>,
|
||||
}
|
||||
|
||||
pub struct PendingPassthroughConnection {
|
||||
pub target: NodeId,
|
||||
pub write_stream: SplitSink<WebSocketStream<MaybeTlsStream<TcpStream>>, tungstenite::Message>,
|
||||
pub read_stream: SplitStream<WebSocketStream<MaybeTlsStream<TcpStream>>>,
|
||||
}
|
||||
|
||||
// TODO upgrade from hashmaps
|
||||
pub type Peers = HashMap<String, Arc<Peer>>;
|
||||
pub type PKINames = HashMap<String, NodeId>; // TODO maybe U256 to String
|
||||
pub type OnchainPKI = HashMap<String, Identity>;
|
||||
pub type PendingPassthroughs = HashMap<(NodeId, NodeId), PendingPassthroughConnection>;
|
||||
|
||||
/// stored in mapping by their username
|
||||
pub struct Peer {
|
||||
pub identity: Identity,
|
||||
// send messages here to have them encrypted and sent across an active connection
|
||||
pub sender: mpsc::UnboundedSender<(PeerMessage, Option<ErrorShuttle>)>,
|
||||
// send encrypted messages from this peer here to have them decrypted and sent to kernel
|
||||
pub decrypter: mpsc::UnboundedSender<(Vec<u8>, ErrorShuttle)>,
|
||||
pub socket_tx: mpsc::UnboundedSender<(NetworkMessage, Option<ErrorShuttle>)>,
|
||||
}
|
||||
|
||||
/// parsed from Binary websocket message
|
||||
/// TODO add a version number somewhere in the serialized format!!
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
pub enum NetworkMessage {
|
||||
Ack(u64),
|
||||
Nack(u64),
|
||||
Msg {
|
||||
id: u64,
|
||||
from: String,
|
||||
to: String,
|
||||
contents: Vec<u8>,
|
||||
},
|
||||
Handshake(Handshake),
|
||||
HandshakeAck(Handshake),
|
||||
// only used in implementation, not part of protocol
|
||||
Ping,
|
||||
Pong,
|
||||
}
|
||||
|
||||
pub enum PeerMessage {
|
||||
Raw(KernelMessage),
|
||||
Net(NetworkMessage),
|
||||
}
|
||||
|
||||
/// contains identity and encryption keys, used in initial handshake.
|
||||
/// parsed from Text websocket message
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
pub struct Handshake {
|
||||
pub id: u64,
|
||||
pub from: String,
|
||||
pub target: String,
|
||||
pub id_signature: Vec<u8>,
|
||||
pub ephemeral_public_key: Vec<u8>,
|
||||
pub ephemeral_public_key_signature: Vec<u8>,
|
||||
/// If true, we are routing for them and have a RoutingClientConnection
|
||||
/// associated with them. We can send them prompts to establish Passthroughs.
|
||||
pub routing_for: bool,
|
||||
pub sender: UnboundedSender<KernelMessage>,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
pub enum NetActions {
|
||||
/// Received from a router of ours when they have a new pending passthrough for us.
|
||||
/// We should respond (if we desire) by using them to initialize a routed connection
|
||||
/// with the NodeId given.
|
||||
ConnectionRequest(NodeId),
|
||||
/// can only receive from trusted source, for now just ourselves locally,
|
||||
/// in the future could get from remote provider
|
||||
QnsUpdate(QnsUpdate),
|
||||
QnsBatchUpdate(Vec<QnsUpdate>),
|
||||
}
|
||||
|
||||
/// For now, only sent in response to a ConnectionRequest
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
pub enum NetResponses {
|
||||
Attempting(NodeId),
|
||||
Rejected(NodeId),
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
pub struct QnsUpdate {
|
||||
pub name: String, // actual username / domain name
|
||||
|
@ -1,4 +1,4 @@
|
||||
use crate::net2::{types::*, MESSAGE_MAX_SIZE, TIMEOUT};
|
||||
use crate::net::{types::*, MESSAGE_MAX_SIZE, TIMEOUT};
|
||||
use crate::types::*;
|
||||
use anyhow::{anyhow, Result};
|
||||
use futures::stream::{SplitSink, SplitStream};
|
1186
src/net2/mod.rs
1186
src/net2/mod.rs
File diff suppressed because it is too large
Load Diff
@ -1,115 +0,0 @@
|
||||
use crate::types::*;
|
||||
use futures::stream::{SplitSink, SplitStream};
|
||||
use serde::{Deserialize, Serialize};
|
||||
use std::{collections::HashMap, sync::Arc};
|
||||
use tokio::net::TcpStream;
|
||||
use tokio::sync::mpsc::UnboundedSender;
|
||||
use tokio_tungstenite::{tungstenite, MaybeTlsStream, WebSocketStream};
|
||||
|
||||
/// Sent to a node when you want to connect directly to them.
|
||||
/// Sent in the 'e, ee, s, es' and 's, se' phases of XX noise protocol pattern.
|
||||
#[derive(Debug, Deserialize, Serialize)]
|
||||
pub struct HandshakePayload {
|
||||
pub name: NodeId,
|
||||
// signature is created by their networking key, of their static key
|
||||
// someone could reuse this signature, but then they will be unable
|
||||
// to encrypt messages to us.
|
||||
pub signature: Vec<u8>,
|
||||
/// Set to true when you want them to act as a router for you, sending
|
||||
/// messages from potentially many remote sources over this connection,
|
||||
/// including from the router itself.
|
||||
/// This is not relevant in a handshake sent from the receiver side.
|
||||
pub proxy_request: bool,
|
||||
pub protocol_version: u8,
|
||||
}
|
||||
|
||||
/// Sent to a node when you want them to connect you to an indirect node.
|
||||
/// If the receiver of the request has an open connection to your target,
|
||||
/// and is willing, they will send a message to the target prompting them
|
||||
/// to build the other side of the connection, at which point they will
|
||||
/// hold open a Passthrough for you two.
|
||||
///
|
||||
/// Alternatively, if the receiver does not have an open connection but the
|
||||
/// target is a direct node, they can create a Passthrough for you two if
|
||||
/// they are willing to proxy for you.
|
||||
///
|
||||
/// Sent in the 'e' phase of XX noise protocol pattern.
|
||||
#[derive(Debug, Deserialize, Serialize)]
|
||||
pub struct RoutingRequest {
|
||||
pub source: NodeId,
|
||||
// signature is created by their networking key, of the [target, router name].concat()
|
||||
// someone could reuse this signature, and TODO need to make sure that's useless.
|
||||
pub signature: Vec<u8>,
|
||||
pub target: NodeId,
|
||||
pub protocol_version: u8,
|
||||
}
|
||||
|
||||
pub enum Connection {
|
||||
Peer(PeerConnection),
|
||||
Passthrough(PassthroughConnection),
|
||||
PendingPassthrough(PendingPassthroughConnection),
|
||||
}
|
||||
|
||||
pub struct PeerConnection {
|
||||
pub noise: snow::TransportState,
|
||||
pub buf: Vec<u8>,
|
||||
pub write_stream: SplitSink<WebSocketStream<MaybeTlsStream<TcpStream>>, tungstenite::Message>,
|
||||
pub read_stream: SplitStream<WebSocketStream<MaybeTlsStream<TcpStream>>>,
|
||||
}
|
||||
|
||||
pub struct PassthroughConnection {
|
||||
pub write_stream_1: SplitSink<WebSocketStream<MaybeTlsStream<TcpStream>>, tungstenite::Message>,
|
||||
pub read_stream_1: SplitStream<WebSocketStream<MaybeTlsStream<TcpStream>>>,
|
||||
pub write_stream_2: SplitSink<WebSocketStream<MaybeTlsStream<TcpStream>>, tungstenite::Message>,
|
||||
pub read_stream_2: SplitStream<WebSocketStream<MaybeTlsStream<TcpStream>>>,
|
||||
}
|
||||
|
||||
pub struct PendingPassthroughConnection {
|
||||
pub target: NodeId,
|
||||
pub write_stream: SplitSink<WebSocketStream<MaybeTlsStream<TcpStream>>, tungstenite::Message>,
|
||||
pub read_stream: SplitStream<WebSocketStream<MaybeTlsStream<TcpStream>>>,
|
||||
}
|
||||
|
||||
// TODO upgrade from hashmaps
|
||||
pub type Peers = HashMap<String, Arc<Peer>>;
|
||||
pub type PKINames = HashMap<String, NodeId>; // TODO maybe U256 to String
|
||||
pub type OnchainPKI = HashMap<String, Identity>;
|
||||
pub type PendingPassthroughs = HashMap<(NodeId, NodeId), PendingPassthroughConnection>;
|
||||
|
||||
pub struct Peer {
|
||||
pub identity: Identity,
|
||||
/// If true, we are routing for them and have a RoutingClientConnection
|
||||
/// associated with them. We can send them prompts to establish Passthroughs.
|
||||
pub routing_for: bool,
|
||||
pub sender: UnboundedSender<KernelMessage>,
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
pub enum NetActions {
|
||||
/// Received from a router of ours when they have a new pending passthrough for us.
|
||||
/// We should respond (if we desire) by using them to initialize a routed connection
|
||||
/// with the NodeId given.
|
||||
ConnectionRequest(NodeId),
|
||||
/// can only receive from trusted source, for now just ourselves locally,
|
||||
/// in the future could get from remote provider
|
||||
QnsUpdate(QnsUpdate),
|
||||
QnsBatchUpdate(Vec<QnsUpdate>),
|
||||
}
|
||||
|
||||
/// For now, only sent in response to a ConnectionRequest
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
pub enum NetResponses {
|
||||
Attempting(NodeId),
|
||||
Rejected(NodeId),
|
||||
}
|
||||
|
||||
#[derive(Clone, Debug, Serialize, Deserialize)]
|
||||
pub struct QnsUpdate {
|
||||
pub name: String, // actual username / domain name
|
||||
pub owner: String,
|
||||
pub node: String, // hex namehash of node
|
||||
pub public_key: String,
|
||||
pub ip: String,
|
||||
pub port: u16,
|
||||
pub routers: Vec<String>,
|
||||
}
|
Loading…
Reference in New Issue
Block a user