ares/cps-interpreter/nock-g-explicit-apply.rkt
2022-01-11 10:25:29 -06:00

210 lines
8.5 KiB
Racket

#lang racket
(require rackunit)
;; This interpreter adds an explicit function for applying continuations,
;; a necessary pre-requisite to closure conversion
(define (nock-noun subject formula gates err-k trace)
(nock-noun-cps subject formula gates err-k trace empty-k))
(define (nock-noun-cps subject formula gates err-k trace k)
(match formula
([cons (cons (var b) (var c)) (var d)]
(nock-noun-cps subject (cons b c) gates err-k trace
(lambda (u)
(nock-noun-cps subject d gates err-k trace
(lambda (v)
(apply-k k (cons u v)))))))
([cons 0 (var b)]
(nock-tree-find subject b err-k trace k))
([cons 1 (var b)]
(apply-k k b))
([cons 2 (cons (var b) (var c))]
(nock-noun-cps subject b gates err-k trace
(lambda (u)
(nock-noun-cps subject c gates err-k trace
(lambda (v)
(nock-noun-cps u v gates err-k trace k))))))
([cons 3 (var b)]
(nock-noun-cps subject b gates err-k trace
(lambda (u)
(if (pair? u)
(apply-k k 0)
(apply-k k 1)))))
([cons 4 (var b)]
(nock-noun-cps subject b gates err-k trace
(lambda (u)
(apply-k k (+ 1 u)))))
([cons 5 (cons (var b) (var c))]
(nock-noun-cps subject b gates err-k trace
(lambda (u)
(nock-noun-cps subject c gates err-k trace
(lambda (v)
(if (eqv? u v)
(apply-k k 0)
(apply-k k 1)))))))
([cons 6 (cons (var b) (cons (var c) (var d)))]
(nock-noun-cps subject b gates err-k trace
(lambda (u)
(if (= 0 u)
(nock-noun-cps subject c gates err-k trace k)
(if (= 1 u)
(nock-noun-cps subject d gates err-k trace k)
(apply-err-k err-k (cons 2 trace)))))))
([cons 7 (cons (var b) (var c))]
(nock-noun-cps subject b gates err-k trace
(lambda (u)
(nock-noun-cps u c gates err-k trace k))))
([cons 8 (cons (var b) (var c))]
(nock-noun-cps subject b gates err-k trace
(lambda (u)
(nock-noun-cps (cons u subject) c gates err-k trace k))))
([cons 9 (cons (var b) (var c))]
(nock-noun-cps subject c gates err-k trace
(lambda (u)
(nock-tree-find u b err-k trace
(lambda (v)
(nock-noun-cps u v gates err-k trace k))))))
([cons 10 (cons (cons (var b) (var c)) (var d))]
(nock-noun-cps subject c gates err-k trace
(lambda (u)
(nock-noun-cps subject d gates err-k trace
(lambda (v)
(nock-tree-edit u b v err-k trace k))))))
([cons 11 (cons (cons (var b) (var c)) (var d))]
(nock-noun-cps subject c gates err-k trace
(lambda (u)
(if (member b (list (tas "hunk") (tas "hand") (tas "lose") (tas "mean") (tas "spot")))
(nock-noun-cps subject d gates err-k (cons (cons b u) trace) k)
(nock-noun-cps subject d gates err-k trace k)))))
([cons 11 (cons (var b) (var c))]
(nock-noun-cps subject c gates err-k trace k))
([cons 12 (cons (var ref) (var path))]
(nock-noun-cps subject ref gates err-k trace
(lambda (u)
(nock-noun-cps subject path gates err-k trace
(lambda (v)
(let*
[(gate (car (car gates)))
(outer-err-k err-k)
(err-k (car (cdr (car gates))))
(outer-trace trace)
(trace (cdr (cdr (car gates))))
(gates (cdr gates))
(core (cons (car gate) (cons (cons u v) (cdr (cdr gate)))))]
(nock-noun-cps core (car core) gates err-k trace
(lambda (w)
(if (equal? 0 w)
; ~
(outer-err-k (cons 1 (cdr v)))
(if (equal? 0 (car w))
(outer-err-k (cons 2 (cons (cons (tas "hunk") (cons u v)) outer-trace)))
(apply-k k (cdr (cdr w)))))))))))))))
(define (reverse-address address k) (reverse-address-acc address 1 k))
(define (reverse-address-acc address reversed k)
(if (= address 1)
(apply-k k reversed)
(reverse-address-acc (arithmetic-shift address -1) (bitwise-ior (arithmetic-shift reversed 1) (bitwise-and address 1)) k)))
(define (nock-tree-find-reversed tree reversed k)
(if (= reversed 1)
(apply-k k tree)
(if (even? reversed)
(nock-tree-find-reversed (car tree) (arithmetic-shift reversed -1) k)
(nock-tree-find-reversed (cdr tree) (arithmetic-shift reversed -1) k))))
(define (nock-tree-find tree address err-k trace k)
(if (= address 0)
(apply-err-k err-k (cons 2 trace))
(reverse-address address (lambda (u)
(nock-tree-find-reversed tree u k)))))
(define (nock-tree-edit-reversed subtree reversed tree k)
(if (= reversed 1)
(apply-k k subtree)
(if (even? reversed)
(nock-tree-edit-reversed subtree (arithmetic-shift reversed -1) (car tree) (lambda (u)
(apply-k k (cons u (cdr tree)))))
(nock-tree-edit-reversed subtree (arithmetic-shift reversed -1) (cdr tree) (lambda (u)
(apply-k k (cons (car tree) u)))))))
; # operator in nock spec: tree editing
(define (nock-tree-edit subtree address tree err-k trace k)
(if (= address 0)
(apply-err-k err-k (cons 2 trace))
(reverse-address address
(lambda (u)
(nock-tree-edit-reversed subtree u tree k)))))
(define (empty-k v) v)
(define (apply-k k x) (k x))
(define (apply-err-k err-k err) (err-k err))
;; macro for %tas literals:
;; converts input string into a numeric literal of that string represented as a %tas, i.e. an
;; atom with the ascii bytes of the string in sequence (first->LSB, last->MSB)
(define-syntax (tas str)
(quasisyntax
(unsyntax
(foldr
(lambda (char atom) (bitwise-ior (bitwise-and #xFF (char->integer char)) (arithmetic-shift atom 8)))
0
(string->list (car (cdr (syntax->datum str))))))))
(define nock-here 1)
(define (nock-car address) (* address 2))
(define (nock-cdr address) (+ 1 (* address 2)))
(define (get-0 x) (cons 0 x))
(define (literal-1 x) (cons 1 x))
(define (eval-2 x y) (cons 2 (cons x y)))
(define (cell?-3 x) (cons 3 x))
(define (inc-4 x) (cons 4 x))
(define (=-5 x y) (cons 5 (cons x y)))
(define (if-6 x y z) (cons 6 (cons x (cons y z))))
(define (compose-7 x y) (cons 7 (cons x y)))
(define (declare-8 x y) (cons 8 (cons x y)))
(define (call-9 x y) (cons 9 (cons x y)))
(define (update-10 x y z) (cons 10 (cons (cons x y) z)))
(define (hint-11 x y) (cons 11 (cons x y)))
(define lootru 0)
(define loofal 1)
(define test-tree (cons (cons 4 5) 3))
(define decrement-4-core
(cons
(if-6 (=-5 (get-0 (nock-car (nock-cdr nock-here))) (inc-4 (get-0 (nock-cdr (nock-cdr nock-here)))))
(get-0 (nock-cdr (nock-cdr nock-here)))
(call-9 (nock-car nock-here) (update-10 (nock-cdr (nock-cdr nock-here)) (inc-4 (get-0 (nock-cdr (nock-cdr nock-here)))) (get-0 nock-here))))
(cons 4 0)))
(define (nock-test subject formula) (nock-noun subject formula '() test-err-k '()))
(define (test-err-k err)
(printf "Error: ~v" err)
(error 'nock-err))
(check-equal? (nock-test test-tree (get-0 nock-here) ) test-tree "tree address 1")
(check-equal? (nock-test test-tree (get-0 (nock-car nock-here))) (car test-tree) "tree address 2")
(check-equal? (nock-test test-tree (get-0 (nock-cdr nock-here))) (cdr test-tree) "tree address 3")
(check-equal? (nock-test test-tree (get-0 (nock-car (nock-car nock-here)))) (car (car test-tree)) "tree address 4")
(check-equal? (nock-test test-tree (get-0 (nock-cdr (nock-car nock-here)))) (cdr (car test-tree)) "tree address 5")
(check-equal? (nock-test 0 (literal-1 test-tree)) test-tree "literal")
(check-equal? (nock-test 0 (eval-2 (literal-1 test-tree) (literal-1 (get-0 2)))) (car test-tree) "eval")
(check-equal? (nock-test test-tree (cell?-3 (get-0 1))) lootru "test cell true")
(check-equal? (nock-test test-tree (cell?-3 (get-0 3))) loofal "test cell false")
(check-equal? (nock-test 0 (inc-4 (literal-1 0))) 1 "increment")
(check-equal? (nock-test test-tree (=-5 (literal-1 test-tree) (get-0 1))) lootru "test equals true")
(check-equal? (nock-test test-tree (=-5 (literal-1 test-tree) (get-0 2))) loofal "test equals false")
(check-equal? (nock-test test-tree (if-6 (literal-1 lootru) (literal-1 5) (get-0 100))) 5 "test if tru")
(check-equal? (nock-test test-tree (if-6 (literal-1 loofal) (get-0 100) (literal-1 5))) 5 "test if false")
(check-equal? (nock-test 0 (compose-7 (literal-1 test-tree) (get-0 2))) (car test-tree) "test compose")
(check-equal? (nock-test 0 (declare-8 (literal-1 test-tree) (get-0 2))) test-tree "test declare")
(check-equal? (nock-test 0 (call-9 (nock-car nock-here) (literal-1 decrement-4-core))) 3 "test call")
(check-equal? (nock-test 0 (update-10 (nock-cdr nock-here) (literal-1 (cons 6 7)) (literal-1 test-tree))) (cons (cons 4 5) (cons 6 7)) "test update")
(check-equal? (nock-test 0 (call-9 (nock-car nock-here) (update-10 (nock-car (nock-cdr nock-here)) (literal-1 8) (literal-1 decrement-4-core)))) 7 "test slam i.e. update sample and call")
; test 11 static and dynamic