ares/cps-interpreter/third-pass/nock-a.rkt
2022-01-11 10:25:29 -06:00

266 lines
9.8 KiB
Racket

#lang racket
(require rackunit)
(define (nock cell)
(cdr (mink-cell (car cell) (cdr cell) '() '())))
(define (nock-noun subject formula)
(cdr (mink-cell subject formula '() '())))
(define (mink-cell subject formula trace gates)
(let
[(recur-on-noun (lambda (subject formula) (mink-cell subject formula trace gates)))
(recur-on-noun-with-hint (lambda (subject formula hint) (mink-cell subject formula (cons hint trace) gates)))
(recur-on-top-gate (lambda (ref path)
(let*
[(gate (car gates))
(gates (cdr gates))
(cor (cons (car gate) (cons (cons ref path) (cdr (cdr gate)))))]
(mink-cell cor (car gate) trace gates))))]
(match formula
;; A cell of two formulae computes both against the same subject
;; and returns their result as a cell
([cons (cons (var b) (var c)) (var d)]
(let
[(head (recur-on-noun subject (cons b c)))]
(if (not (= 0 (car head)))
head
(let
[(tail (recur-on-noun subject d))]
(if (not (= 0 (car tail)))
tail
(cons 0 (car head) (car tail)))))))
;; Get an axis from the subject
([cons 0 (var axis)]
(let
[(part (frag axis subject))]
(if (equal? 0 part)
(cons 2 trace)
(cons 0 (cdr part)))))
;; Return a constant noun
([cons 1 (var constant)]
(cons 0 constant))
;; Compute both arguments as formulae against the subject,
;; then treat the first result as the subject and the second
;; as the formula and compute again
([cons 2 (cons (var subject^) (var formula))]
(let
[(subject^ (recur-on-noun subject subject^))]
(if (not (= 0 (car subject^)))
subject^
(let
[(formula (recur-on-noun subject formula))]
(if (not (= 0 (car formula)))
formula
(recur-on-noun subject^ formula))))))
;; 0 result if argument computes to cell, 1 if atom
([cons 3 (var argument)]
(let
[(argument (recur-on-noun subject argument))]
(if (not (= 0 (car argument)))
argument
(if (pair? (cdr argument)) 0 1))))
;; Compute argument which must compute to atom, then increment that atom
([cons 4 (var argument)]
(let
[(argument (recur-on-noun subject argument))]
(if (not (= 0 (car argument)))
argument
(+ 1 (cdr argument)))))
;; Test equality of two nouns, 0 if equal, 1 if not
([cons 5 (cons (var a) (var b))]
(let
[(a (recur-on-noun subject a))]
(if (not (= 0 (car a)))
a
(let
[(b (recur-on-noun subject b))]
(if (not = 0 (car b))
b
(if (equal? (cdr a) (cdr b)) 0 1))))))
;; If then else: evaluate test argument, which must return 0 or 1.
;; If 0 then evaluate 'yes' argument
;; If 1 then evaluate 'no' argument
([cons 6 (cons (var test) (cons (var yes) (var no)))]
(let
[(result (recur-on-noun subject test))]
(if (not (= 0 (car result)))
result
(match (cdr result)
(0 (recur-on-noun subject yes))
(1 (recur-on-noun subject no))
(_ (cons 2 trace))))))
;; Compute a subject, then evaluate next against the subject
;; cf => in Hoon
([cons 7 (cons (var subject^) (var next))]
(let
[(subject (recur-on-noun subject subject^))]
(if (not (= 0 (car subject)))
subject
(recur-on-noun subject next))))
;; Compute a value, then cons it onto the subject
;; cf =+ in Hoon
([cons 8 (cons (var head) (var next))]
(let
[(head (recur-on-noun subject head))]
(if (not (= 0 (car head)))
head
(recur-on-noun (cons head subject) next))))
;; Compute a core, then call an arm of the core with the core as the subject
([cons 9 (cons (var axis) (var core))]
(let
[(core (recur-on-noun subject core))]
(if (not (= 0 (car core)))
core
(let
[(arm (frag axis (cdr core)))]
(if (equal? 0 arm)
(cons 2 trace)
(recur-on-noun (cdr core) (cdr arm)))))))
;; Evaluate a noun 'target', then replace the subnoun at the given axis
;; with the noun 'value'
([cons 10 (cons (cons (var axis) (var value)) (var target))]
(if (= 0 axis)
(cons 2 trace)
(let
[(target (recur-on-noun subject target))]
(if (not (= 0 (car target)))
target
(let
[(value (recur-on-noun subject value))]
(if (not (= 0 (car value)))
value
(let
[(mutant (edit axis (cdr target) (cdr value)))]
(if (= 0 mutant)
(cons 2 trace)
(cons 0 (cdr mutant))))))))))
;; Dynamic hint: compute and a hint, fail if hint computation fails
;; If hint succeeds discard result and compute 'next'
([cons 11 (cons (cons (var tag) (var clue)) (var next))]
(let
[(clue (recur-on-noun subject clue gates))]
(if (not (= 0 (car clue)))
clue
(if (member tag (list (tas "hunk") (tas "hand") (tas "lose") (tas "mean") (tas "spot")))
(recur-on-noun-with-hint subject next (cons tag (cdr clue)))
(recur-on-noun subject next)))))
;; Static hint, discard hint and compute 'next'
([cons 11 (cons (var tag) (var next))]
(recur-on-noun subject next))
;; Call a gate in the sky
;;
;; Compute 'ref' and 'path',
;; then pop the top gate from the scry gate stack and
;; slam it with [ref path]
([cons 12 (cons (var ref) (var path))]
(let
[(ref (recur-on-noun subject ref))]
(if (not (= 0 (car ref)))
ref
(let
[(path (recur-on-noun subject path))]
(if (not (= 0 (car path)))
path
(let
[(result (recur-on-top-gate (cdr ref) (cdr path)))]
(if (not (= 0 (car result)))
result
(if (equal? 0 (cdr result))
(cons 1 (cdr path))
(if (equal? 0 (cdr (cdr result)))
(cons 2 (cons (cons (tas "hunk") (cons (cdr ref) (cdr path))) trace))
(cdr (cdr (cdr result)))))))))))))))
(define (frag axis noun)
(if (= 0 axis)
0
(cons 0 (if (= 1 axis)
noun
(if (even? axis)
(car (cdr (frag axis (quotient axis 2))))
(cdr (cdr (frag axis (quotient axis 2)))))))))
(define (mas axis)
(quotient axis 2))
(define (cap axis)
(if (= axis 2)
2
(if (= axis 3)
3
(cap (mas axis)))))
(define (edit axis target value)
(if (= 1 axis)
(cons 0 value)
(if (not (pair? target))
0
(let*
[(pick (cap axis))
(mutant (edit (mas axis) (if (= 2 pick) (car target) (cdr target)) value))]
(if (= mutant 0)
0
(if (= 2 pick)
(cons 0 (cons (cdr mutant) (cdr target)))
(cons 0 (cons (car target) (cdr mutant)))))))))
;; macro for %tas literals:
;; converts input string into a numeric literal of that string represented as a %tas, i.e. an
;; atom with the ascii bytes of the string in sequence (first->LSB, last->MSB)
(define-syntax (tas str)
(quasisyntax
(unsyntax
(foldr
(lambda (char atom) (bitwise-ior (bitwise-and #xFF (char->integer char)) (arithmetic-shift atom 8)))
0
(string->list (car (cdr (syntax->datum str))))))))
(define nock-here 1)
(define (nock-car address) (* address 2))
(define (nock-cdr address) (+ 1 (* address 2)))
(define (get-0 x) (cons 0 x))
(define (literal-1 x) (cons 1 x))
(define (eval-2 x y) (cons 2 (cons x y)))
(define (cell?-3 x) (cons 3 x))
(define (inc-4 x) (cons 4 x))
(define (=-5 x y) (cons 5 (cons x y)))
(define (if-6 x y z) (cons 6 (cons x (cons y z))))
(define (compose-7 x y) (cons 7 (cons x y)))
(define (declare-8 x y) (cons 8 (cons x y)))
(define (call-9 x y) (cons 9 (cons x y)))
(define (update-10 x y z) (cons 10 (cons (cons x y) z)))
(define (hint-11 x y) (cons 11 (cons x y)))
(define lootru 0)
(define loofal 1)
(define test-tree (cons (cons 4 5) 3))
(define decrement-4-core
(cons
(if-6 (=-5 (get-0 (nock-car (nock-cdr nock-here))) (inc-4 (get-0 (nock-cdr (nock-cdr nock-here)))))
(get-0 (nock-cdr (nock-cdr nock-here)))
(call-9 (nock-car nock-here) (update-10 (nock-cdr (nock-cdr nock-here)) (inc-4 (get-0 (nock-cdr (nock-cdr nock-here)))) (get-0 nock-here))))
(cons 4 0)))
(check-equal? (nock-noun test-tree (get-0 nock-here)) test-tree "tree address 1")
(check-equal? (nock-noun test-tree (get-0 (nock-car nock-here))) (car test-tree) "tree address 2")
(check-equal? (nock-noun test-tree (get-0 (nock-cdr nock-here))) (cdr test-tree) "tree address 3")
(check-equal? (nock-noun test-tree (get-0 (nock-car (nock-car nock-here)))) (car (car test-tree)) "tree address 4")
(check-equal? (nock-noun test-tree (get-0 (nock-cdr (nock-car nock-here)))) (cdr (car test-tree)) "tree address 5")
(check-equal? (nock-noun 0 (literal-1 test-tree)) test-tree "literal")
(check-equal? (nock-noun 0 (eval-2 (literal-1 test-tree) (literal-1 (get-0 2)))) (car test-tree) "eval")
(check-equal? (nock-noun test-tree (cell?-3 (get-0 1))) lootru "test cell true")
(check-equal? (nock-noun test-tree (cell?-3 (get-0 3))) loofal "test cell false")
(check-equal? (nock-noun 0 (inc-4 (literal-1 0))) 1 "increment")
(check-equal? (nock-noun test-tree (=-5 (literal-1 test-tree) (get-0 1))) lootru "test equals true")
(check-equal? (nock-noun test-tree (=-5 (literal-1 test-tree) (get-0 2))) loofal "test equals false")
(check-equal? (nock-noun test-tree (if-6 (literal-1 lootru) (literal-1 5) (get-0 100))) 5 "test if tru")
(check-equal? (nock-noun test-tree (if-6 (literal-1 loofal) (get-0 100) (literal-1 5))) 5 "test if false")
(check-equal? (nock-noun 0 (compose-7 (literal-1 test-tree) (get-0 2))) (car test-tree) "test compose")
(check-equal? (nock-noun 0 (declare-8 (literal-1 test-tree) (get-0 2))) test-tree "test declare")
(check-equal? (nock-noun 0 (call-9 (nock-car nock-here) (literal-1 decrement-4-core))) 3 "test call")
(check-equal? (nock-noun 0 (update-10 (nock-cdr nock-here) (literal-1 (cons 6 7)) (literal-1 test-tree))) (cons (cons 4 5) (cons 6 7)) "test update")
(check-equal? (nock-noun 0 (call-9 (nock-car nock-here) (update-10 (nock-car (nock-cdr nock-here)) (literal-1 8) (literal-1 decrement-4-core)))) 7 "test slam i.e. update sample and call")
; test 11 static and dynamic