ares/hoon/scaffolding/playpen.hoon
2023-09-04 15:27:28 -06:00

654 lines
14 KiB
Plaintext

:: This file aims to approach hoon.hoon, as the pieces necessary to run a live
:: ship with Ares as Serf are written. Required to run toddler.hoon as an Arvo.
::
!.
=> %a50
~% %a.50 ~ ~
|%
:: Types
::
+$ ship @p
+$ life @ud
+$ rift @ud
+$ pass @
+$ bloq @
+$ step _`@u`1
+$ bite $@(bloq [=bloq =step])
+$ octs [p=@ud q=@]
+$ mold $~(* $-(* *))
++ unit |$ [item] $@(~ [~ u=item])
++ list |$ [item] $@(~ [i=item t=(list item)])
++ lest |$ [item] [i=item t=(list item)]
++ tree |$ [node] $@(~ [n=node l=(tree node) r=(tree node)])
++ pair |$ [head tail] [p=head q=tail]
++ map
|$ [key value]
$| (tree (pair key value))
|=(a=(tree (pair)) ?:(=(~ a) & ~(apt by a)))
::
++ set
|$ [item]
$| (tree item)
|=(a=(tree) ?:(=(~ a) & ~(apt in a)))
::
++ jug |$ [key value] (map key (set value))
::
:: Basic arithmetic
::
++ add :: unsigned addition
~/ %add
|= [a=@ b=@]
~> %sham.%add
^- @
?: =(0 a) b
$(a (dec a), b +(b))
::
++ dec :: decrement
~/ %dec
|= a=@
~> %sham.%dec
~_ leaf+"decrement-underflow"
?< =(0 a)
=+ b=0
|- ^- @
?: =(a +(b)) b
$(b +(b))
::
++ div :: divide
~/ %div
|: [a=`@`1 b=`@`1]
~> %sham.%div
^- @
~_ leaf+"divide-by-zero"
?< =(0 b)
=+ c=0
|-
?: (lth a b) c
$(a (sub a b), c +(c))
::
++ dvr :: divide w/remainder
~/ %dvr
|: [a=`@`1 b=`@`1]
~> %sham.%dvr
^- [p=@ q=@]
[(div a b) (mod a b)]
::
++ gte :: greater or equal
~/ %gte
|= [a=@ b=@]
~> %sham.%gte
^- ?
!(lth a b)
::
++ gth :: greater
~/ %gth
|= [a=@ b=@]
~> %sham.%gth
^- ?
!(lte a b)
::
++ lte :: less or equal
~/ %lte
|= [a=@ b=@]
~> %sham.%lte
|(=(a b) (lth a b))
::
++ lth :: less
~/ %lth
|= [a=@ b=@]
~> %sham.%lth
^- ?
?& !=(a b)
|-
?| =(0 a)
?& !=(0 b)
$(a (dec a), b (dec b))
== == ==
::
++ mod :: modulus
~/ %mod
|: [a=`@`1 b=`@`1]
~> %sham.%mod
^- @
?< =(0 b)
(sub a (mul b (div a b)))
::
++ mul :: multiply
~/ %mul
|: [a=`@`1 b=`@`1]
~> %sham.%mul
^- @
=+ c=0
|-
?: =(0 a) c
$(a (dec a), c (add b c))
::
++ sub :: subtract
~/ %sub
|= [a=@ b=@]
~> %sham.%sub
~_ leaf+"subtract-underflow"
:: difference
^- @
?: =(0 b) a
$(a (dec a), b (dec b))
::
:: Tree addressing
::
++ cap :: index in head or tail
~/ %cap
|= a=@
~> %sham.%cap
^- ?(%2 %3)
?- a
%2 %2
%3 %3
?(%0 %1) !!
* $(a (div a 2))
==
::
++ mas :: axis within head/tail
~/ %mas
|= a=@
~> %sham.%mas
^- @
?- a
?(%2 %3) 1
?(%0 %1) !!
* (add (mod a 2) (mul $(a (div a 2)) 2))
==
::
:: List logic
::
++ flop :: reverse
~/ %flop
|* a=(list)
~> %sham.%flop
=> .(a (homo a))
^+ a
=+ b=`_a`~
|-
?~ a b
$(a t.a, b [i.a b])
::
++ lent :: length
~/ %lent
|= a=(list)
~> %sham.%lent
^- @
=+ b=0
|-
?~ a b
$(a t.a, b +(b))
::
++ reap :: replicate
~/ %reap
|* [a=@ b=*]
~> %sham.%reap
|- ^- (list _b)
?~ a ~
[b $(a (dec a))]
::
++ slag :: suffix
~/ %slag
|* [a=@ b=(list)]
~> %sham.%slag
|- ^+ b
?: =(0 a) b
?~ b ~
$(b t.b, a (dec a))
::
++ snag :: index
~/ %snag
|* [a=@ b=(list)]
~> %sham.%snag
|- ^+ ?>(?=(^ b) i.b)
?~ b
~_ leaf+"snag-fail"
!!
?: =(0 a) i.b
$(b t.b, a (dec a))
::
++ welp :: concatenate
~/ %welp
=| [* *]
~> %sham.%welp
|@
++ $
?~ +<-
+<-(. +<+)
+<-(+ $(+<- +<->))
--
::
:: Bit arithmetic
::
++ bex :: binary exponent
~/ %bex
|= a=bloq
~> %sham.%bex
^- @
?: =(0 a) 1
(mul 2 $(a (dec a)))
++ can :: assemble
~/ %can
|= [a=bloq b=(list [p=step q=@])]
~> %sham.%can
^- @
?~ b 0
(add (end [a p.i.b] q.i.b) (lsh [a p.i.b] $(b t.b)))
::
++ cat :: concatenate
~/ %cat
|= [a=bloq b=@ c=@]
~> %sham.%cat
(add (lsh [a (met a b)] c) b)
::
++ cut :: slice
~/ %cut
|= [a=bloq [b=step c=step] d=@]
~> %sham.%cut
(end [a c] (rsh [a b] d))
::
++ end :: tail
~/ %end
|= [a=bite b=@]
~> %sham.%end
=/ [=bloq =step] ?^(a a [a *step])
(mod b (bex (mul (bex bloq) step)))
::
++ lsh :: left-shift
~/ %lsh
|= [a=bite b=@]
~> %sham.%lsh
=/ [=bloq =step] ?^(a a [a *step])
(mul b (bex (mul (bex bloq) step)))
::
++ met :: measure
~/ %met
|= [a=bloq b=@]
~> %sham.%met
^- @
=+ c=0
|-
?: =(0 b) c
$(b (rsh a b), c +(c))
::
++ rep :: assemble fixed
~/ %rep
|= [a=bite b=(list @)]
~> %sham.%rep
=/ [=bloq =step] ?^(a a [a *step])
=| i=@ud
|- ^- @
?~ b 0
%+ add $(i +(i), b t.b)
(lsh [bloq (mul step i)] (end [bloq step] i.b))
::
++ rip :: disassemble
~/ %rip
|= [a=bite b=@]
~> %sham.%rip
^- (list @)
?: =(0 b) ~
[(end a b) $(b (rsh a b))]
::
++ rsh :: right-shift
~/ %rsh
|= [a=bite b=@]
~> %sham.%rsh
=/ [=bloq =step] ?^(a a [a *step])
(div b (bex (mul (bex bloq) step)))
::
++ swp :: naive rev bloq order
~/ %swp
|= [a=bloq b=@]
~> %sham.%swp
(rep a (flop (rip a b)))
::
:: Modular arithmetic
::
++ fe :: modulo bloq
|_ a=bloq
++ rol |= [b=bloq c=@ d=@] ^- @ :: roll left
=+ e=(sit d)
=+ f=(bex (sub a b))
=+ g=(mod c f)
(sit (con (lsh [b g] e) (rsh [b (sub f g)] e)))
++ sum |=([b=@ c=@] (sit (add b c))) :: wrapping add
++ sit |=(b=@ (end a b)) :: enforce modulo
--
::
:: Bit logic
::
++ con :: binary or
~/ %con
|= [a=@ b=@]
~> %sham.%con
=+ [c=0 d=0]
|- ^- @
?: ?&(=(0 a) =(0 b)) d
%= $
a (rsh 0 a)
b (rsh 0 b)
c +(c)
d %+ add d
%+ lsh [0 c]
?& =(0 (end 0 a))
=(0 (end 0 b))
==
==
::
++ dis :: binary and
~/ %dis
|= [a=@ b=@]
~> %sham.%dis
=| [c=@ d=@]
|- ^- @
?: ?|(=(0 a) =(0 b)) d
%= $
a (rsh 0 a)
b (rsh 0 b)
c +(c)
d %+ add d
%+ lsh [0 c]
?| =(0 (end 0 a))
=(0 (end 0 b))
==
==
::
++ mix :: binary xor
~/ %mix
|= [a=@ b=@]
~> %sham.%mix
^- @
=+ [c=0 d=0]
|-
?: ?&(=(0 a) =(0 b)) d
%= $
a (rsh 0 a)
b (rsh 0 b)
c +(c)
d (add d (lsh [0 c] =((end 0 a) (end 0 b))))
==
::
:: Hashes
::
++ mug :: mug with murmur3
~/ %mug
|= a=*
~> %sham.%mug
|^ ?@ a (mum 0xcafe.babe 0x7fff a)
=/ b (cat 5 $(a -.a) $(a +.a))
(mum 0xdead.beef 0xfffe b)
::
++ mum
|= [syd=@uxF fal=@F key=@]
=/ wyd (met 3 key)
=| i=@ud
|- ^- @F
?: =(8 i) fal
=/ haz=@F (muk syd wyd key)
=/ ham=@F (mix (rsh [0 31] haz) (end [0 31] haz))
?.(=(0 ham) ham $(i +(i), syd +(syd)))
--
::
++ muk :: standard murmur3
~% %muk ..muk ~
=+ ~(. fe 5)
|= [syd=@ len=@ key=@]
=. syd (end 5 syd)
=/ pad (sub len (met 3 key))
=/ data (welp (rip 3 key) (reap pad 0))
=/ nblocks (div len 4) :: intentionally off-by-one
=/ h1 syd
=+ [c1=0xcc9e.2d51 c2=0x1b87.3593]
=/ blocks (rip 5 key)
=/ i nblocks
=. h1 =/ hi h1 |-
?: =(0 i) hi
=/ k1 (snag (sub nblocks i) blocks) :: negative array index
=. k1 (sit (mul k1 c1))
=. k1 (rol 0 15 k1)
=. k1 (sit (mul k1 c2))
=. hi (mix hi k1)
=. hi (rol 0 13 hi)
=. hi (sum (sit (mul hi 5)) 0xe654.6b64)
$(i (dec i))
=/ tail (slag (mul 4 nblocks) data)
=/ k1 0
=/ tlen (dis len 3)
=. h1
?+ tlen h1 :: fallthrough switch
%3 =. k1 (mix k1 (lsh [0 16] (snag 2 tail)))
=. k1 (mix k1 (lsh [0 8] (snag 1 tail)))
=. k1 (mix k1 (snag 0 tail))
=. k1 (sit (mul k1 c1))
=. k1 (rol 0 15 k1)
=. k1 (sit (mul k1 c2))
(mix h1 k1)
%2 =. k1 (mix k1 (lsh [0 8] (snag 1 tail)))
=. k1 (mix k1 (snag 0 tail))
=. k1 (sit (mul k1 c1))
=. k1 (rol 0 15 k1)
=. k1 (sit (mul k1 c2))
(mix h1 k1)
%1 =. k1 (mix k1 (snag 0 tail))
=. k1 (sit (mul k1 c1))
=. k1 (rol 0 15 k1)
=. k1 (sit (mul k1 c2))
(mix h1 k1)
==
=. h1 (mix h1 len)
|^ (fmix32 h1)
++ fmix32
|= h=@
=. h (mix h (rsh [0 16] h))
=. h (sit (mul h 0x85eb.ca6b))
=. h (mix h (rsh [0 13] h))
=. h (sit (mul h 0xc2b2.ae35))
=. h (mix h (rsh [0 16] h))
h
--
::
:: Noun Ordering
::
++ dor :: tree order
~/ %dor
|= [a=* b=*]
~> %sham.%dor
^- ?
?: =(a b) &
?. ?=(@ a)
?: ?=(@ b) |
?: =(-.a -.b)
$(a +.a, b +.b)
$(a -.a, b -.b)
?. ?=(@ b) &
(lth a b)
::
++ gor :: mug order
~/ %gor
|= [a=* b=*]
~> %sham.%gor
^- ?
=+ [c=(mug a) d=(mug b)]
?: =(c d)
(dor a b)
(lth c d)
::
++ mor :: more mug order
~/ %mor
|= [a=* b=*]
~> %sham.%mor
^- ?
=+ [c=(mug (mug a)) d=(mug (mug b))]
?: =(c d)
(dor a b)
(lth c d)
::
:: Set logic
::
++ in
~/ %in
=| a=(tree) :: (set)
~> %sham.%in
|@
++ apt
=< $
~/ %apt
=| [l=(unit) r=(unit)]
~> %sham.%apt
|. ^- ?
?~ a &
?& ?~(l & (gor n.a u.l))
?~(r & (gor u.r n.a))
?~(l.a & ?&((mor n.a n.l.a) $(a l.a, l `n.a)))
?~(r.a & ?&((mor n.a n.r.a) $(a r.a, r `n.a)))
==
::
++ del
~/ %del
|* b=*
~> %sham.%del
|- ^+ a
?~ a
~
?. =(b n.a)
?: (gor b n.a)
a(l $(a l.a))
a(r $(a r.a))
|- ^- [$?(~ _a)]
?~ l.a r.a
?~ r.a l.a
?: (mor n.l.a n.r.a)
l.a(r $(l.a r.l.a))
r.a(l $(r.a l.r.a))
::
++ put
~/ %put
|* b=*
~> %sham.%put
|- ^+ a
?~ a
[b ~ ~]
?: =(b n.a)
a
?: (gor b n.a)
=+ c=$(a l.a)
?> ?=(^ c)
?: (mor n.a n.c)
a(l c)
c(r a(l r.c))
=+ c=$(a r.a)
?> ?=(^ c)
?: (mor n.a n.c)
a(r c)
c(l a(r l.c))
--
::
:: Map logic
::
++ by
~/ %by
=| a=(tree (pair)) :: (map)
~> %sham.%by
=* node ?>(?=(^ a) n.a)
|@
++ del
~/ %del
|* b=*
~> %sham.%del
|- ^+ a
?~ a
~
?. =(b p.n.a)
?: (gor b p.n.a)
a(l $(a l.a))
a(r $(a r.a))
|- ^- [$?(~ _a)]
?~ l.a r.a
?~ r.a l.a
?: (mor p.n.l.a p.n.r.a)
l.a(r $(l.a r.l.a))
r.a(l $(r.a l.r.a))
::
++ apt
=< $
~/ %apt
=| [l=(unit) r=(unit)]
~> %sham.%apt
|. ^- ?
?~ a &
?& ?~(l & &((gor p.n.a u.l) !=(p.n.a u.l)))
?~(r & &((gor u.r p.n.a) !=(u.r p.n.a)))
?~ l.a &
&((mor p.n.a p.n.l.a) !=(p.n.a p.n.l.a) $(a l.a, l `p.n.a))
?~ r.a &
&((mor p.n.a p.n.r.a) !=(p.n.a p.n.r.a) $(a r.a, r `p.n.a))
==
::
++ get
~/ %get
|* b=*
~> %sham.%get
=> .(b `_?>(?=(^ a) p.n.a)`b)
|- ^- (unit _?>(?=(^ a) q.n.a))
?~ a
~
?: =(b p.n.a)
`q.n.a
?: (gor b p.n.a)
$(a l.a)
$(a r.a)
::
++ put
~/ %put
|* [b=* c=*]
~> %sham.%put
|- ^+ a
?~ a
[[b c] ~ ~]
?: =(b p.n.a)
?: =(c q.n.a)
a
a(n [b c])
?: (gor b p.n.a)
=+ d=$(a l.a)
?> ?=(^ d)
?: (mor p.n.a p.n.d)
a(l d)
d(r a(l r.d))
=+ d=$(a r.a)
?> ?=(^ d)
?: (mor p.n.a p.n.d)
a(r d)
d(l a(r l.d))
--
::
:: Jug logic
::
++ ju
=| a=(tree (pair * (tree))) :: (jug)
|@
++ del
|* [b=* c=*]
^+ a
=+ d=(get b)
=+ e=(~(del in d) c)
?~ e
(~(del by a) b)
(~(put by a) b e)
::
++ get
|* b=*
=+ c=(~(get by a) b)
?~(c ~ u.c)
::
++ put
|* [b=* c=*]
^+ a
=+ d=(get b)
(~(put by a) b (~(put in d) c))
--
--