shrub/pkg/urcrypt/urcrypt.c

689 lines
16 KiB
C
Raw Normal View History

#include "urcrypt.h"
static bool initialized = false;
static urcrypt_malloc_t urcrypt_malloc_ptr;
static urcrypt_realloc_t urcrypt_realloc_ptr;
static urcrypt_free_t urcrypt_free_ptr;
void* urcrypt_malloc(size_t len)
{
return (*urcrypt_malloc_ptr)(len);
}
void* urcrypt_realloc(void *ptr, size_t len)
{
return (*urcrypt_realloc_ptr)(ptr, len);
}
void urcrypt_free(void *ptr)
{
(*urcrypt_free_ptr)(ptr);
}
static void*
urcrypt_malloc_ssl(size_t len
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
, const char* file, int line
#endif
) { return urcrypt_malloc(len); }
static void*
urcrypt_realloc_ssl(void* ptr, size_t len
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
, const char* file, int line
#endif
) { return urcrypt_realloc(ptr, len); }
static void
urcrypt_free_ssl(void* ptr
#if OPENSSL_VERSION_NUMBER >= 0x10100000L
, const char* file, int line
#endif
) { urcrypt_free(ptr); }
/* IMPORTANT: it is an error (undefined behavior) to call functions in
* this library without first calling urcrypt_init() exactly once.
*/
int
urcrypt_init(urcrypt_malloc_t m, urcrypt_realloc_t r, urcrypt_free_t f)
{
if ( initialized ) {
return -1;
}
else {
initialized = true;
urcrypt_malloc_ptr = ( NULL == m ) ? &malloc : m;
urcrypt_realloc_ptr = ( NULL == r ) ? &realloc : r;
urcrypt_free_ptr = ( NULL == f ) ? &free : f;
if ( CRYPTO_set_mem_functions(&urcrypt_malloc_ssl,
&urcrypt_realloc_ssl,
&urcrypt_free_ssl) ) {
return 0;
}
else {
return -2;
}
}
}
2020-07-31 20:50:46 +03:00
int
urcrypt_ed_point_add(const uint8_t a[32],
const uint8_t b[32],
uint8_t out[32])
2020-07-31 20:50:46 +03:00
{
ge_p3 A, B;
ge_cached b_cached;
ge_p1p1 sum;
ge_p3 result;
if ( ge_frombytes_negate_vartime(&A, a) != 0 ) {
return -1;
}
if ( ge_frombytes_negate_vartime(&B, b) != 0 ) {
return -1;
}
// Undo the negation from above. See add_scalar.c in the ed25519 distro.
fe_neg(A.X, A.X);
fe_neg(A.T, A.T);
fe_neg(B.X, B.X);
fe_neg(B.T, B.T);
ge_p3_to_cached(&b_cached, &B);
ge_add(&sum, &A, &b_cached);
ge_p1p1_to_p3(&result, &sum);
ge_p3_tobytes(out, &result);
return 0;
}
int
urcrypt_ed_scalarmult(const uint8_t a[32],
const uint8_t b[32],
uint8_t out[32])
{
ge_p3 B, result;
if ( ge_frombytes_negate_vartime(&B, b) != 0 ) {
return -1;
}
// Undo the negation from above. See add_scalar.c in the ed25519 distro.
fe_neg(B.X, B.X);
fe_neg(B.T, B.T);
ge_scalarmult(&result, a, &B);
ge_p3_tobytes(out, &result);
return 0;
}
2020-07-31 00:40:47 +03:00
2020-07-31 21:55:02 +03:00
void
urcrypt_ed_scalarmult_base(const uint8_t a[32],
uint8_t out[32])
2020-07-31 21:55:02 +03:00
{
ge_p3 R;
ge_scalarmult_base(&R, a);
ge_p3_tobytes(out, &R);
}
int
urcrypt_ed_add_scalarmult_scalarmult_base(const uint8_t a[32],
const uint8_t a_point[32],
const uint8_t b[32],
uint8_t out[32])
{
ge_p2 r;
ge_p3 A;
if (ge_frombytes_negate_vartime(&A, a_point) != 0) {
return -1;
}
// Undo the negation from above. See add_scalar.c in the ed25519 distro.
fe_neg(A.X, A.X);
fe_neg(A.T, A.T);
ge_double_scalarmult_vartime(&r, a, &A, b);
ge_tobytes(out, &r);
return 0;
}
2020-08-01 00:46:19 +03:00
int
urcrypt_ed_add_double_scalarmult(const uint8_t a[32],
const uint8_t a_point[32],
const uint8_t b[32],
const uint8_t b_point[32],
2020-08-01 00:46:19 +03:00
uint8_t out[32])
{
ge_p3 A, B, a_result, b_result, final_result;
ge_cached b_result_cached;
ge_p1p1 sum;
if ( ge_frombytes_negate_vartime(&A, a_point) != 0 ) {
return -1;
}
if ( ge_frombytes_negate_vartime(&B, b_point) != 0 ) {
return -1;
}
// Undo the negation from above. See add_scalar.c in the ed25519 distro.
fe_neg(A.X, A.X);
fe_neg(A.T, A.T);
fe_neg(B.X, B.X);
fe_neg(B.T, B.T);
// Perform the multiplications of a*A and b*B
ge_scalarmult(&a_result, a, &A);
ge_scalarmult(&b_result, b, &B);
// Sum those two points
ge_p3_to_cached(&b_result_cached, &b_result);
ge_add(&sum, &a_result, &b_result_cached);
ge_p1p1_to_p3(&final_result, &sum);
ge_p3_tobytes(out, &final_result);
return 0;
}
2020-08-01 02:31:56 +03:00
void
urcrypt_ed_puck(const uint8_t seed[32],
uint8_t out[32])
2020-08-01 02:31:56 +03:00
{
uint8_t secret[64];
ed25519_create_keypair(out, secret, seed);
}
2020-08-01 02:56:39 +03:00
void
urcrypt_ed_shar(const uint8_t public[32],
const uint8_t seed[32],
uint8_t out[32])
2020-08-01 02:56:39 +03:00
{
uint8_t self[32], exp[64];
memset(self, 0, 32);
memset(exp, 0, 64);
memset(out, 0, 32);
ed25519_create_keypair(self, exp, seed);
ed25519_key_exchange(out, public, exp);
}
2020-07-31 00:40:47 +03:00
void
urcrypt_ed_sign(const uint8_t *message,
2020-07-31 00:40:47 +03:00
size_t length,
const uint8_t seed[32],
2020-07-31 00:40:47 +03:00
uint8_t out[64])
{
uint8_t public[64], secret[64];
memset(public, 0, 64);
memset(secret, 0, 64);
memset(out, 0, 64);
ed25519_create_keypair(public, secret, seed);
ed25519_sign(out, message, length, public, secret);
}
2020-08-01 03:30:09 +03:00
bool
urcrypt_ed_veri(const uint8_t *message,
size_t length,
const uint8_t public[32],
const uint8_t signature[64])
2020-08-01 03:30:09 +03:00
{
return ( ed25519_verify(signature, message, length, public) == 1 )
? true
: false;
}
2020-08-06 02:06:04 +03:00
static void
_urcrypt_reverse_copy(size_t size, const uint8_t *in, uint8_t *out) {
2020-08-06 02:06:04 +03:00
size_t i, j;
for ( i = 0, j = size - 1; i < size; i++, j-- ) {
out[i] = in[j];
}
}
2020-08-11 01:19:32 +03:00
static uint8_t*
_urcrypt_reverse_alloc(size_t size, const uint8_t *in)
{
uint8_t *out = urcrypt_malloc(size);
_urcrypt_reverse_copy(size, in, out);
return out;
}
static void
_urcrypt_reverse_inplace(size_t size, uint8_t *ptr) {
size_t i, j;
uint8_t tmp;
for ( i = 0, j = size - 1; i < j; i++, j-- ) {
tmp = ptr[i];
ptr[i] = ptr[j];
ptr[j] = tmp;
}
}
2020-08-06 02:06:04 +03:00
int
urcrypt_aes_ecba_en(const uint8_t key[16],
const uint8_t block[16],
uint8_t out[16])
2020-08-06 02:06:04 +03:00
{
AES_KEY aes_key;
uint8_t rkey[16], rblock[16];
2020-08-06 02:06:04 +03:00
_urcrypt_reverse_copy(16, key, rkey);
_urcrypt_reverse_copy(16, block, rblock);
2020-08-06 02:06:04 +03:00
if ( 0 != AES_set_encrypt_key(rkey, 128, &aes_key) ) {
return -1;
}
else {
AES_ecb_encrypt(rblock, out, &aes_key, AES_ENCRYPT);
_urcrypt_reverse_inplace(16, out);
2020-08-06 02:06:04 +03:00
return 0;
}
}
int
urcrypt_aes_ecba_de(const uint8_t key[16],
const uint8_t block[16],
uint8_t out[16])
2020-08-06 02:06:04 +03:00
{
AES_KEY aes_key;
uint8_t rkey[16], rblock[16];
2020-08-06 02:06:04 +03:00
_urcrypt_reverse_copy(16, key, rkey);
_urcrypt_reverse_copy(16, block, rblock);
2020-08-06 02:06:04 +03:00
if ( 0 != AES_set_decrypt_key(rkey, 128, &aes_key) ) {
return -1;
}
else {
AES_ecb_encrypt(rblock, out, &aes_key, AES_DECRYPT);
_urcrypt_reverse_inplace(16, out);
2020-08-06 02:06:04 +03:00
return 0;
}
}
int
urcrypt_aes_ecbb_en(const uint8_t key[24],
const uint8_t block[16],
uint8_t out[16])
2020-08-06 02:06:04 +03:00
{
AES_KEY aes_key;
uint8_t rkey[24], rblock[16];
2020-08-06 02:06:04 +03:00
_urcrypt_reverse_copy(24, key, rkey);
_urcrypt_reverse_copy(16, block, rblock);
2020-08-06 02:06:04 +03:00
if ( 0 != AES_set_encrypt_key(rkey, 192, &aes_key) ) {
return -1;
}
else {
AES_ecb_encrypt(rblock, out, &aes_key, AES_ENCRYPT);
_urcrypt_reverse_inplace(16, out);
2020-08-06 02:06:04 +03:00
return 0;
}
}
int
urcrypt_aes_ecbb_de(const uint8_t key[24],
const uint8_t block[16],
uint8_t out[16])
2020-08-06 02:06:04 +03:00
{
AES_KEY aes_key;
uint8_t rkey[24], rblock[16];
2020-08-06 02:06:04 +03:00
_urcrypt_reverse_copy(24, key, rkey);
_urcrypt_reverse_copy(16, block, rblock);
2020-08-06 02:06:04 +03:00
if ( 0 != AES_set_decrypt_key(rkey, 192, &aes_key) ) {
return -1;
}
else {
AES_ecb_encrypt(rblock, out, &aes_key, AES_DECRYPT);
_urcrypt_reverse_inplace(16, out);
2020-08-06 02:06:04 +03:00
return 0;
}
}
int
urcrypt_aes_ecbc_en(const uint8_t key[32],
const uint8_t block[16],
uint8_t out[16])
2020-08-06 02:06:04 +03:00
{
AES_KEY aes_key;
uint8_t rkey[32], rblock[16];
2020-08-06 02:06:04 +03:00
_urcrypt_reverse_copy(32, key, rkey);
_urcrypt_reverse_copy(16, block, rblock);
2020-08-06 02:06:04 +03:00
if ( 0 != AES_set_encrypt_key(rkey, 256, &aes_key) ) {
return -1;
}
else {
AES_ecb_encrypt(rblock, out, &aes_key, AES_ENCRYPT);
_urcrypt_reverse_inplace(16, out);
2020-08-06 02:06:04 +03:00
return 0;
}
}
int
urcrypt_aes_ecbc_de(const uint8_t key[32],
const uint8_t block[16],
uint8_t out[16])
2020-08-06 02:06:04 +03:00
{
AES_KEY aes_key;
uint8_t rkey[32], rblock[16];
2020-08-06 02:06:04 +03:00
_urcrypt_reverse_copy(32, key, rkey);
_urcrypt_reverse_copy(16, block, rblock);
2020-08-06 02:06:04 +03:00
if ( 0 != AES_set_decrypt_key(rkey, 256, &aes_key) ) {
return -1;
}
else {
AES_ecb_encrypt(rblock, out, &aes_key, AES_DECRYPT);
_urcrypt_reverse_inplace(16, out);
2020-08-06 02:06:04 +03:00
return 0;
}
}
static uint8_t*
_urcrypt_cbc_pad(size_t *length_ptr, const uint8_t *message)
{
size_t length = *length_ptr,
rem = length % 16,
padding = rem ? 16 - rem : 0,
padded = length + padding;
uint8_t *buf = urcrypt_malloc(padded);
memset(buf, 0, padding);
_urcrypt_reverse_copy(length, message, buf + padding);
*length_ptr = padded;
return buf;
}
uint8_t*
_urcrypt_cbc_help(const uint8_t *message,
size_t length,
const AES_KEY *key,
const uint8_t ivec[16],
const int enc,
size_t *out_length)
{
uint8_t riv[16], *in, *out;
_urcrypt_reverse_copy(16, ivec, riv);
in = _urcrypt_cbc_pad(&length, message);
out = urcrypt_malloc(length);
AES_cbc_encrypt(in, out, length, key, riv, enc);
urcrypt_free(in);
_urcrypt_reverse_inplace(length, out);
*out_length = length;
return out;
}
uint8_t*
urcrypt_aes_cbca_en(const uint8_t *message,
size_t length,
const uint8_t key[16],
const uint8_t ivec[16],
size_t *out_length)
{
AES_KEY aes_key;
uint8_t rkey[16];
_urcrypt_reverse_copy(16, key, rkey);
if ( 0 != AES_set_encrypt_key(rkey, 128, &aes_key) ) {
return NULL;
}
else {
return _urcrypt_cbc_help(message,
length,
&aes_key,
ivec,
AES_ENCRYPT,
out_length);
}
}
uint8_t*
urcrypt_aes_cbca_de(const uint8_t *message,
size_t length,
const uint8_t key[16],
const uint8_t ivec[16],
size_t *out_length)
{
AES_KEY aes_key;
uint8_t rkey[16];
_urcrypt_reverse_copy(16, key, rkey);
if ( 0 != AES_set_decrypt_key(rkey, 128, &aes_key) ) {
return NULL;
}
else {
return _urcrypt_cbc_help(message,
length,
&aes_key,
ivec,
AES_DECRYPT,
out_length);
}
}
2020-08-08 02:28:00 +03:00
uint8_t*
urcrypt_aes_cbcb_en(const uint8_t *message,
size_t length,
const uint8_t key[24],
const uint8_t ivec[16],
size_t *out_length)
{
AES_KEY aes_key;
uint8_t rkey[24];
_urcrypt_reverse_copy(24, key, rkey);
if ( 0 != AES_set_encrypt_key(rkey, 192, &aes_key) ) {
return NULL;
}
else {
return _urcrypt_cbc_help(message,
length,
&aes_key,
ivec,
AES_ENCRYPT,
out_length);
}
}
uint8_t*
urcrypt_aes_cbcb_de(const uint8_t *message,
size_t length,
const uint8_t key[24],
const uint8_t ivec[16],
size_t *out_length)
{
AES_KEY aes_key;
uint8_t rkey[24];
_urcrypt_reverse_copy(24, key, rkey);
if ( 0 != AES_set_decrypt_key(rkey, 192, &aes_key) ) {
return NULL;
}
else {
return _urcrypt_cbc_help(message,
length,
&aes_key,
ivec,
AES_DECRYPT,
out_length);
}
}
uint8_t*
urcrypt_aes_cbcc_en(const uint8_t *message,
size_t length,
const uint8_t key[32],
const uint8_t ivec[16],
size_t *out_length)
{
AES_KEY aes_key;
uint8_t rkey[32];
_urcrypt_reverse_copy(32, key, rkey);
if ( 0 != AES_set_encrypt_key(rkey, 256, &aes_key) ) {
return NULL;
}
else {
return _urcrypt_cbc_help(message,
length,
&aes_key,
ivec,
AES_ENCRYPT,
out_length);
}
}
uint8_t*
urcrypt_aes_cbcc_de(const uint8_t *message,
size_t length,
const uint8_t key[32],
const uint8_t ivec[16],
size_t *out_length)
{
AES_KEY aes_key;
uint8_t rkey[32];
_urcrypt_reverse_copy(32, key, rkey);
if ( 0 != AES_set_decrypt_key(rkey, 256, &aes_key) ) {
return NULL;
}
else {
return _urcrypt_cbc_help(message,
length,
&aes_key,
ivec,
AES_DECRYPT,
out_length);
}
}
2020-08-11 01:19:32 +03:00
static int
_urcrypt_argon2_alloc(uint8_t** output, size_t bytes)
{
*output = urcrypt_malloc(bytes);
return (NULL != output);
}
static void
_urcrypt_argon2_free(uint8_t* memory, size_t bytes)
{
urcrypt_free(memory);
}
// library convention is to have sizes in size_t, but argon2 wants them
// in uint32_t, so here's a helper macro for ensuring equivalence.
#define SZ_32(s) ( sizeof(size_t) <= sizeof(uint32_t) || s <= 0xFFFFFFFF )
// returns a constant error message string or NULL for success
// (so user doesn't have to call argon2_error_message)
const char*
urcrypt_argon2(urcrypt_argon2_type type,
uint32_t version,
uint32_t threads,
uint32_t memory_cost,
uint32_t time_cost,
size_t secret_length,
const uint8_t *secret,
size_t associated_length,
const uint8_t *associated,
size_t password_length,
const uint8_t *password,
size_t salt_length,
const uint8_t *salt,
size_t out_length,
uint8_t *out)
{
if ( !( SZ_32(secret_length) &&
SZ_32(associated_length) &&
SZ_32(password_length) &&
SZ_32(salt_length) &&
SZ_32(out_length) ) ) {
return "length > 32 bits";
}
else {
int (*f)(argon2_context*);
int result;
uint8_t *rsecret, *rassoc, *rpassword, *rsalt;
switch ( type ) {
default:
return "unknown type";
case urcrypt_argon2_d:
f = &argon2d_ctx;
break;
case urcrypt_argon2_i:
f = &argon2i_ctx;
break;
case urcrypt_argon2_id:
f = &argon2id_ctx;
break;
case urcrypt_argon2_u:
f = &argon2u_ctx;
break;
}
rsecret = _urcrypt_reverse_alloc(secret_length, secret);
rassoc = _urcrypt_reverse_alloc(associated_length, associated);
rpassword = _urcrypt_reverse_alloc(password_length, password);
rsalt = _urcrypt_reverse_alloc(salt_length, salt);
argon2_context context = {
out, // output array, at least [digest length] in size
out_length, // digest length
rpassword, // password array
password_length, // password length
rsalt, // salt array
salt_length, // salt length
rsecret, // optional secret data
secret_length,
rassoc, // optional associated data
associated_length,
time_cost, // performance cost configuration
memory_cost,
threads,
threads,
version, // algorithm version
&_urcrypt_argon2_alloc,// custom memory allocation function
&_urcrypt_argon2_free, // custom memory deallocation function
ARGON2_DEFAULT_FLAGS // by default only internal memory is cleared
};
result = (*f)(&context);
urcrypt_free(rsecret);
urcrypt_free(rassoc);
urcrypt_free(rpassword);
urcrypt_free(rsalt);
if ( ARGON2_OK != result ) {
return argon2_error_message(result);
}
else {
_urcrypt_reverse_inplace(out_length, out);
return NULL;
}
}
}