mirror of
https://github.com/urbit/shrub.git
synced 2024-12-23 19:05:48 +03:00
596 lines
17 KiB
Python
596 lines
17 KiB
Python
|
## Module statistics.py
|
||
|
##
|
||
|
## Copyright (c) 2013 Steven D'Aprano <steve+python@pearwood.info>.
|
||
|
##
|
||
|
## Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
## you may not use this file except in compliance with the License.
|
||
|
## You may obtain a copy of the License at
|
||
|
##
|
||
|
## http://www.apache.org/licenses/LICENSE-2.0
|
||
|
##
|
||
|
## Unless required by applicable law or agreed to in writing, software
|
||
|
## distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
## WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
## See the License for the specific language governing permissions and
|
||
|
## limitations under the License.
|
||
|
|
||
|
|
||
|
"""
|
||
|
Basic statistics module.
|
||
|
|
||
|
This module provides functions for calculating statistics of data, including
|
||
|
averages, variance, and standard deviation.
|
||
|
|
||
|
Calculating averages
|
||
|
--------------------
|
||
|
|
||
|
================== =============================================
|
||
|
Function Description
|
||
|
================== =============================================
|
||
|
mean Arithmetic mean (average) of data.
|
||
|
median Median (middle value) of data.
|
||
|
median_low Low median of data.
|
||
|
median_high High median of data.
|
||
|
median_grouped Median, or 50th percentile, of grouped data.
|
||
|
mode Mode (most common value) of data.
|
||
|
================== =============================================
|
||
|
|
||
|
Calculate the arithmetic mean ("the average") of data:
|
||
|
|
||
|
>>> mean([-1.0, 2.5, 3.25, 5.75])
|
||
|
2.625
|
||
|
|
||
|
|
||
|
Calculate the standard median of discrete data:
|
||
|
|
||
|
>>> median([2, 3, 4, 5])
|
||
|
3.5
|
||
|
|
||
|
|
||
|
Calculate the median, or 50th percentile, of data grouped into class intervals
|
||
|
centred on the data values provided. E.g. if your data points are rounded to
|
||
|
the nearest whole number:
|
||
|
|
||
|
>>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS
|
||
|
2.8333333333...
|
||
|
|
||
|
This should be interpreted in this way: you have two data points in the class
|
||
|
interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in
|
||
|
the class interval 3.5-4.5. The median of these data points is 2.8333...
|
||
|
|
||
|
|
||
|
Calculating variability or spread
|
||
|
---------------------------------
|
||
|
|
||
|
================== =============================================
|
||
|
Function Description
|
||
|
================== =============================================
|
||
|
pvariance Population variance of data.
|
||
|
variance Sample variance of data.
|
||
|
pstdev Population standard deviation of data.
|
||
|
stdev Sample standard deviation of data.
|
||
|
================== =============================================
|
||
|
|
||
|
Calculate the standard deviation of sample data:
|
||
|
|
||
|
>>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS
|
||
|
4.38961843444...
|
||
|
|
||
|
If you have previously calculated the mean, you can pass it as the optional
|
||
|
second argument to the four "spread" functions to avoid recalculating it:
|
||
|
|
||
|
>>> data = [1, 2, 2, 4, 4, 4, 5, 6]
|
||
|
>>> mu = mean(data)
|
||
|
>>> pvariance(data, mu)
|
||
|
2.5
|
||
|
|
||
|
|
||
|
Exceptions
|
||
|
----------
|
||
|
|
||
|
A single exception is defined: StatisticsError is a subclass of ValueError.
|
||
|
|
||
|
"""
|
||
|
|
||
|
__all__ = [ 'StatisticsError',
|
||
|
'pstdev', 'pvariance', 'stdev', 'variance',
|
||
|
'median', 'median_low', 'median_high', 'median_grouped',
|
||
|
'mean', 'mode',
|
||
|
]
|
||
|
|
||
|
|
||
|
import collections
|
||
|
import math
|
||
|
|
||
|
from fractions import Fraction
|
||
|
from decimal import Decimal
|
||
|
|
||
|
|
||
|
# === Exceptions ===
|
||
|
|
||
|
class StatisticsError(ValueError):
|
||
|
pass
|
||
|
|
||
|
|
||
|
# === Private utilities ===
|
||
|
|
||
|
def _sum(data, start=0):
|
||
|
"""_sum(data [, start]) -> value
|
||
|
|
||
|
Return a high-precision sum of the given numeric data. If optional
|
||
|
argument ``start`` is given, it is added to the total. If ``data`` is
|
||
|
empty, ``start`` (defaulting to 0) is returned.
|
||
|
|
||
|
|
||
|
Examples
|
||
|
--------
|
||
|
|
||
|
>>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75)
|
||
|
11.0
|
||
|
|
||
|
Some sources of round-off error will be avoided:
|
||
|
|
||
|
>>> _sum([1e50, 1, -1e50] * 1000) # Built-in sum returns zero.
|
||
|
1000.0
|
||
|
|
||
|
Fractions and Decimals are also supported:
|
||
|
|
||
|
>>> from fractions import Fraction as F
|
||
|
>>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)])
|
||
|
Fraction(63, 20)
|
||
|
|
||
|
>>> from decimal import Decimal as D
|
||
|
>>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")]
|
||
|
>>> _sum(data)
|
||
|
Decimal('0.6963')
|
||
|
|
||
|
Mixed types are currently treated as an error, except that int is
|
||
|
allowed.
|
||
|
"""
|
||
|
# We fail as soon as we reach a value that is not an int or the type of
|
||
|
# the first value which is not an int. E.g. _sum([int, int, float, int])
|
||
|
# is okay, but sum([int, int, float, Fraction]) is not.
|
||
|
allowed_types = set([int, type(start)])
|
||
|
n, d = _exact_ratio(start)
|
||
|
partials = {d: n} # map {denominator: sum of numerators}
|
||
|
# Micro-optimizations.
|
||
|
exact_ratio = _exact_ratio
|
||
|
partials_get = partials.get
|
||
|
# Add numerators for each denominator.
|
||
|
for x in data:
|
||
|
_check_type(type(x), allowed_types)
|
||
|
n, d = exact_ratio(x)
|
||
|
partials[d] = partials_get(d, 0) + n
|
||
|
# Find the expected result type. If allowed_types has only one item, it
|
||
|
# will be int; if it has two, use the one which isn't int.
|
||
|
assert len(allowed_types) in (1, 2)
|
||
|
if len(allowed_types) == 1:
|
||
|
assert allowed_types.pop() is int
|
||
|
T = int
|
||
|
else:
|
||
|
T = (allowed_types - set([int])).pop()
|
||
|
if None in partials:
|
||
|
assert issubclass(T, (float, Decimal))
|
||
|
assert not math.isfinite(partials[None])
|
||
|
return T(partials[None])
|
||
|
total = Fraction()
|
||
|
for d, n in sorted(partials.items()):
|
||
|
total += Fraction(n, d)
|
||
|
if issubclass(T, int):
|
||
|
assert total.denominator == 1
|
||
|
return T(total.numerator)
|
||
|
if issubclass(T, Decimal):
|
||
|
return T(total.numerator)/total.denominator
|
||
|
return T(total)
|
||
|
|
||
|
|
||
|
def _check_type(T, allowed):
|
||
|
if T not in allowed:
|
||
|
if len(allowed) == 1:
|
||
|
allowed.add(T)
|
||
|
else:
|
||
|
types = ', '.join([t.__name__ for t in allowed] + [T.__name__])
|
||
|
raise TypeError("unsupported mixed types: %s" % types)
|
||
|
|
||
|
|
||
|
def _exact_ratio(x):
|
||
|
"""Convert Real number x exactly to (numerator, denominator) pair.
|
||
|
|
||
|
>>> _exact_ratio(0.25)
|
||
|
(1, 4)
|
||
|
|
||
|
x is expected to be an int, Fraction, Decimal or float.
|
||
|
"""
|
||
|
try:
|
||
|
try:
|
||
|
# int, Fraction
|
||
|
return (x.numerator, x.denominator)
|
||
|
except AttributeError:
|
||
|
# float
|
||
|
try:
|
||
|
return x.as_integer_ratio()
|
||
|
except AttributeError:
|
||
|
# Decimal
|
||
|
try:
|
||
|
return _decimal_to_ratio(x)
|
||
|
except AttributeError:
|
||
|
msg = "can't convert type '{}' to numerator/denominator"
|
||
|
raise TypeError(msg.format(type(x).__name__)) from None
|
||
|
except (OverflowError, ValueError):
|
||
|
# INF or NAN
|
||
|
if __debug__:
|
||
|
# Decimal signalling NANs cannot be converted to float :-(
|
||
|
if isinstance(x, Decimal):
|
||
|
assert not x.is_finite()
|
||
|
else:
|
||
|
assert not math.isfinite(x)
|
||
|
return (x, None)
|
||
|
|
||
|
|
||
|
# FIXME This is faster than Fraction.from_decimal, but still too slow.
|
||
|
def _decimal_to_ratio(d):
|
||
|
"""Convert Decimal d to exact integer ratio (numerator, denominator).
|
||
|
|
||
|
>>> from decimal import Decimal
|
||
|
>>> _decimal_to_ratio(Decimal("2.6"))
|
||
|
(26, 10)
|
||
|
|
||
|
"""
|
||
|
sign, digits, exp = d.as_tuple()
|
||
|
if exp in ('F', 'n', 'N'): # INF, NAN, sNAN
|
||
|
assert not d.is_finite()
|
||
|
raise ValueError
|
||
|
num = 0
|
||
|
for digit in digits:
|
||
|
num = num*10 + digit
|
||
|
if exp < 0:
|
||
|
den = 10**-exp
|
||
|
else:
|
||
|
num *= 10**exp
|
||
|
den = 1
|
||
|
if sign:
|
||
|
num = -num
|
||
|
return (num, den)
|
||
|
|
||
|
|
||
|
def _counts(data):
|
||
|
# Generate a table of sorted (value, frequency) pairs.
|
||
|
table = collections.Counter(iter(data)).most_common()
|
||
|
if not table:
|
||
|
return table
|
||
|
# Extract the values with the highest frequency.
|
||
|
maxfreq = table[0][1]
|
||
|
for i in range(1, len(table)):
|
||
|
if table[i][1] != maxfreq:
|
||
|
table = table[:i]
|
||
|
break
|
||
|
return table
|
||
|
|
||
|
|
||
|
# === Measures of central tendency (averages) ===
|
||
|
|
||
|
def mean(data):
|
||
|
"""Return the sample arithmetic mean of data.
|
||
|
|
||
|
>>> mean([1, 2, 3, 4, 4])
|
||
|
2.8
|
||
|
|
||
|
>>> from fractions import Fraction as F
|
||
|
>>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)])
|
||
|
Fraction(13, 21)
|
||
|
|
||
|
>>> from decimal import Decimal as D
|
||
|
>>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")])
|
||
|
Decimal('0.5625')
|
||
|
|
||
|
If ``data`` is empty, StatisticsError will be raised.
|
||
|
"""
|
||
|
if iter(data) is data:
|
||
|
data = list(data)
|
||
|
n = len(data)
|
||
|
if n < 1:
|
||
|
raise StatisticsError('mean requires at least one data point')
|
||
|
return _sum(data)/n
|
||
|
|
||
|
|
||
|
# FIXME: investigate ways to calculate medians without sorting? Quickselect?
|
||
|
def median(data):
|
||
|
"""Return the median (middle value) of numeric data.
|
||
|
|
||
|
When the number of data points is odd, return the middle data point.
|
||
|
When the number of data points is even, the median is interpolated by
|
||
|
taking the average of the two middle values:
|
||
|
|
||
|
>>> median([1, 3, 5])
|
||
|
3
|
||
|
>>> median([1, 3, 5, 7])
|
||
|
4.0
|
||
|
|
||
|
"""
|
||
|
data = sorted(data)
|
||
|
n = len(data)
|
||
|
if n == 0:
|
||
|
raise StatisticsError("no median for empty data")
|
||
|
if n%2 == 1:
|
||
|
return data[n//2]
|
||
|
else:
|
||
|
i = n//2
|
||
|
return (data[i - 1] + data[i])/2
|
||
|
|
||
|
|
||
|
def median_low(data):
|
||
|
"""Return the low median of numeric data.
|
||
|
|
||
|
When the number of data points is odd, the middle value is returned.
|
||
|
When it is even, the smaller of the two middle values is returned.
|
||
|
|
||
|
>>> median_low([1, 3, 5])
|
||
|
3
|
||
|
>>> median_low([1, 3, 5, 7])
|
||
|
3
|
||
|
|
||
|
"""
|
||
|
data = sorted(data)
|
||
|
n = len(data)
|
||
|
if n == 0:
|
||
|
raise StatisticsError("no median for empty data")
|
||
|
if n%2 == 1:
|
||
|
return data[n//2]
|
||
|
else:
|
||
|
return data[n//2 - 1]
|
||
|
|
||
|
|
||
|
def median_high(data):
|
||
|
"""Return the high median of data.
|
||
|
|
||
|
When the number of data points is odd, the middle value is returned.
|
||
|
When it is even, the larger of the two middle values is returned.
|
||
|
|
||
|
>>> median_high([1, 3, 5])
|
||
|
3
|
||
|
>>> median_high([1, 3, 5, 7])
|
||
|
5
|
||
|
|
||
|
"""
|
||
|
data = sorted(data)
|
||
|
n = len(data)
|
||
|
if n == 0:
|
||
|
raise StatisticsError("no median for empty data")
|
||
|
return data[n//2]
|
||
|
|
||
|
|
||
|
def median_grouped(data, interval=1):
|
||
|
""""Return the 50th percentile (median) of grouped continuous data.
|
||
|
|
||
|
>>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5])
|
||
|
3.7
|
||
|
>>> median_grouped([52, 52, 53, 54])
|
||
|
52.5
|
||
|
|
||
|
This calculates the median as the 50th percentile, and should be
|
||
|
used when your data is continuous and grouped. In the above example,
|
||
|
the values 1, 2, 3, etc. actually represent the midpoint of classes
|
||
|
0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in
|
||
|
class 3.5-4.5, and interpolation is used to estimate it.
|
||
|
|
||
|
Optional argument ``interval`` represents the class interval, and
|
||
|
defaults to 1. Changing the class interval naturally will change the
|
||
|
interpolated 50th percentile value:
|
||
|
|
||
|
>>> median_grouped([1, 3, 3, 5, 7], interval=1)
|
||
|
3.25
|
||
|
>>> median_grouped([1, 3, 3, 5, 7], interval=2)
|
||
|
3.5
|
||
|
|
||
|
This function does not check whether the data points are at least
|
||
|
``interval`` apart.
|
||
|
"""
|
||
|
data = sorted(data)
|
||
|
n = len(data)
|
||
|
if n == 0:
|
||
|
raise StatisticsError("no median for empty data")
|
||
|
elif n == 1:
|
||
|
return data[0]
|
||
|
# Find the value at the midpoint. Remember this corresponds to the
|
||
|
# centre of the class interval.
|
||
|
x = data[n//2]
|
||
|
for obj in (x, interval):
|
||
|
if isinstance(obj, (str, bytes)):
|
||
|
raise TypeError('expected number but got %r' % obj)
|
||
|
try:
|
||
|
L = x - interval/2 # The lower limit of the median interval.
|
||
|
except TypeError:
|
||
|
# Mixed type. For now we just coerce to float.
|
||
|
L = float(x) - float(interval)/2
|
||
|
cf = data.index(x) # Number of values below the median interval.
|
||
|
# FIXME The following line could be more efficient for big lists.
|
||
|
f = data.count(x) # Number of data points in the median interval.
|
||
|
return L + interval*(n/2 - cf)/f
|
||
|
|
||
|
|
||
|
def mode(data):
|
||
|
"""Return the most common data point from discrete or nominal data.
|
||
|
|
||
|
``mode`` assumes discrete data, and returns a single value. This is the
|
||
|
standard treatment of the mode as commonly taught in schools:
|
||
|
|
||
|
>>> mode([1, 1, 2, 3, 3, 3, 3, 4])
|
||
|
3
|
||
|
|
||
|
This also works with nominal (non-numeric) data:
|
||
|
|
||
|
>>> mode(["red", "blue", "blue", "red", "green", "red", "red"])
|
||
|
'red'
|
||
|
|
||
|
If there is not exactly one most common value, ``mode`` will raise
|
||
|
StatisticsError.
|
||
|
"""
|
||
|
# Generate a table of sorted (value, frequency) pairs.
|
||
|
table = _counts(data)
|
||
|
if len(table) == 1:
|
||
|
return table[0][0]
|
||
|
elif table:
|
||
|
raise StatisticsError(
|
||
|
'no unique mode; found %d equally common values' % len(table)
|
||
|
)
|
||
|
else:
|
||
|
raise StatisticsError('no mode for empty data')
|
||
|
|
||
|
|
||
|
# === Measures of spread ===
|
||
|
|
||
|
# See http://mathworld.wolfram.com/Variance.html
|
||
|
# http://mathworld.wolfram.com/SampleVariance.html
|
||
|
# http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
|
||
|
#
|
||
|
# Under no circumstances use the so-called "computational formula for
|
||
|
# variance", as that is only suitable for hand calculations with a small
|
||
|
# amount of low-precision data. It has terrible numeric properties.
|
||
|
#
|
||
|
# See a comparison of three computational methods here:
|
||
|
# http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/
|
||
|
|
||
|
def _ss(data, c=None):
|
||
|
"""Return sum of square deviations of sequence data.
|
||
|
|
||
|
If ``c`` is None, the mean is calculated in one pass, and the deviations
|
||
|
from the mean are calculated in a second pass. Otherwise, deviations are
|
||
|
calculated from ``c`` as given. Use the second case with care, as it can
|
||
|
lead to garbage results.
|
||
|
"""
|
||
|
if c is None:
|
||
|
c = mean(data)
|
||
|
ss = _sum((x-c)**2 for x in data)
|
||
|
# The following sum should mathematically equal zero, but due to rounding
|
||
|
# error may not.
|
||
|
ss -= _sum((x-c) for x in data)**2/len(data)
|
||
|
assert not ss < 0, 'negative sum of square deviations: %f' % ss
|
||
|
return ss
|
||
|
|
||
|
|
||
|
def variance(data, xbar=None):
|
||
|
"""Return the sample variance of data.
|
||
|
|
||
|
data should be an iterable of Real-valued numbers, with at least two
|
||
|
values. The optional argument xbar, if given, should be the mean of
|
||
|
the data. If it is missing or None, the mean is automatically calculated.
|
||
|
|
||
|
Use this function when your data is a sample from a population. To
|
||
|
calculate the variance from the entire population, see ``pvariance``.
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
>>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5]
|
||
|
>>> variance(data)
|
||
|
1.3720238095238095
|
||
|
|
||
|
If you have already calculated the mean of your data, you can pass it as
|
||
|
the optional second argument ``xbar`` to avoid recalculating it:
|
||
|
|
||
|
>>> m = mean(data)
|
||
|
>>> variance(data, m)
|
||
|
1.3720238095238095
|
||
|
|
||
|
This function does not check that ``xbar`` is actually the mean of
|
||
|
``data``. Giving arbitrary values for ``xbar`` may lead to invalid or
|
||
|
impossible results.
|
||
|
|
||
|
Decimals and Fractions are supported:
|
||
|
|
||
|
>>> from decimal import Decimal as D
|
||
|
>>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
|
||
|
Decimal('31.01875')
|
||
|
|
||
|
>>> from fractions import Fraction as F
|
||
|
>>> variance([F(1, 6), F(1, 2), F(5, 3)])
|
||
|
Fraction(67, 108)
|
||
|
|
||
|
"""
|
||
|
if iter(data) is data:
|
||
|
data = list(data)
|
||
|
n = len(data)
|
||
|
if n < 2:
|
||
|
raise StatisticsError('variance requires at least two data points')
|
||
|
ss = _ss(data, xbar)
|
||
|
return ss/(n-1)
|
||
|
|
||
|
|
||
|
def pvariance(data, mu=None):
|
||
|
"""Return the population variance of ``data``.
|
||
|
|
||
|
data should be an iterable of Real-valued numbers, with at least one
|
||
|
value. The optional argument mu, if given, should be the mean of
|
||
|
the data. If it is missing or None, the mean is automatically calculated.
|
||
|
|
||
|
Use this function to calculate the variance from the entire population.
|
||
|
To estimate the variance from a sample, the ``variance`` function is
|
||
|
usually a better choice.
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
>>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25]
|
||
|
>>> pvariance(data)
|
||
|
1.25
|
||
|
|
||
|
If you have already calculated the mean of the data, you can pass it as
|
||
|
the optional second argument to avoid recalculating it:
|
||
|
|
||
|
>>> mu = mean(data)
|
||
|
>>> pvariance(data, mu)
|
||
|
1.25
|
||
|
|
||
|
This function does not check that ``mu`` is actually the mean of ``data``.
|
||
|
Giving arbitrary values for ``mu`` may lead to invalid or impossible
|
||
|
results.
|
||
|
|
||
|
Decimals and Fractions are supported:
|
||
|
|
||
|
>>> from decimal import Decimal as D
|
||
|
>>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")])
|
||
|
Decimal('24.815')
|
||
|
|
||
|
>>> from fractions import Fraction as F
|
||
|
>>> pvariance([F(1, 4), F(5, 4), F(1, 2)])
|
||
|
Fraction(13, 72)
|
||
|
|
||
|
"""
|
||
|
if iter(data) is data:
|
||
|
data = list(data)
|
||
|
n = len(data)
|
||
|
if n < 1:
|
||
|
raise StatisticsError('pvariance requires at least one data point')
|
||
|
ss = _ss(data, mu)
|
||
|
return ss/n
|
||
|
|
||
|
|
||
|
def stdev(data, xbar=None):
|
||
|
"""Return the square root of the sample variance.
|
||
|
|
||
|
See ``variance`` for arguments and other details.
|
||
|
|
||
|
>>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
|
||
|
1.0810874155219827
|
||
|
|
||
|
"""
|
||
|
var = variance(data, xbar)
|
||
|
try:
|
||
|
return var.sqrt()
|
||
|
except AttributeError:
|
||
|
return math.sqrt(var)
|
||
|
|
||
|
|
||
|
def pstdev(data, mu=None):
|
||
|
"""Return the square root of the population variance.
|
||
|
|
||
|
See ``pvariance`` for arguments and other details.
|
||
|
|
||
|
>>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75])
|
||
|
0.986893273527251
|
||
|
|
||
|
"""
|
||
|
var = pvariance(data, mu)
|
||
|
try:
|
||
|
return var.sqrt()
|
||
|
except AttributeError:
|
||
|
return math.sqrt(var)
|