Add secp core with secp256k to zuse.

Not yet fully jet-hinted.
This commit is contained in:
Fang 2018-07-13 15:22:34 +02:00
parent 676b188d5f
commit 1e6dc842a4

View File

@ -3322,6 +3322,181 @@
:: prepend outer padding to result, hash again
(haj (add out boq) (add (lsh 3 out kop) -))
-- :: hmac
:: ::
:::: ++secp:crypto :: (2b9) secp family
:: ::::
++ secp
~% %secp ..is ~
|%
+= jaco [x=@ y=@ z=@] :: jacobian point
+= pont [x=@ y=@] :: curve point
::
++ secp256k1
%+ secp 32
:* p=0xffff.ffff.ffff.ffff.ffff.ffff.ffff.ffff. :: modulo
ffff.ffff.ffff.ffff.ffff.fffe.ffff.fc2f
a=0 :: y^2=x^3+ax+b
b=7
^= g :: "prime" point
:* x=0x79be.667e.f9dc.bbac.55a0.6295.ce87.0b07.
029b.fcdb.2dce.28d9.59f2.815b.16f8.1798
y=0x483a.da77.26a3.c465.5da4.fbfc.0e11.08a8.
fd17.b448.a685.5419.9c47.d08f.fb10.d4b8
==
n=0xffff.ffff.ffff.ffff.ffff.ffff.ffff.fffe. :: prime order of g
baae.dce6.af48.a03b.bfd2.5e8c.d036.4141
==
::
++ secp
|= [w=@ p=@ a=@ b=@ g=pont n=@]
=/ p ~(. fo p)
=/ n ~(. fo n)
|%
++ compress-point
|= pont
^- @
(can 3 ~[w^x 1^(add 0x2 (cut 0 [0 1] y))])
::
++ serialize-point
|= pont
^- @
(can 3 ~[w^y w^x 1^0x4])
::
++ decompress-point
|= dat=@
^- pont
=+ x=(end 3 w a)
=+ y=:(add (pow x 3) (mul a x) b)
=+ s=(rsh 3 32 dat)
:- x
?: =(0x2 s) y
?: =(0x3 s) y
~| [`@ux`s `@ux`dat]
!!
::
++ priv-to-pub :: get pub from priv
|= prv=@
^- pont
(jc-mul g prv)
::
++ make-k :: deterministic nonce
=, mimes:html
|= [has=@uvI prv=@]
^- @
=* hmc hmac-sha256l:hmac
=/ v (fil 3 w 1)
=/ k 0
=. k (hmc k w [+ -]:(as-octs (can 3 [w has] [w prv] [1 0x0] [w v] ~)))
=. v (hmc k w v w)
=. k (hmc k w [+ -]:(as-octs (can 3 [w has] [w prv] [1 0x1] [w v] ~)))
=. v (hmc k w v w)
(hmc k w v w)
::
++ ecdsa-raw-sign :: generate signature
|= [has=@uvI prv=@]
^- [v=@ r=@ s=@]
=/ z has
=/ k (make-k has prv)
=+ [r y]=(jc-mul g k)
=/ s (pro.n `@`(inv.n k) `@`(sum.n z (mul r prv)))
=/ big-s (gte (mul 2 s) ^n)
:* v=(add 27 (mix (end 0 1 y) ?:(big-s 1 0)))
r=r
s=?.(big-s s (sub ^n s))
==
::
++ ecdsa-raw-recover :: get pubkey from sig
|= [has=@uvI sig=[v=@ r=@ s=@]]
^- pont
?> ?&((lte 27 v.sig) (lte v.sig 34))
=/ x r.sig
=/ ysq (sum.p b (exp.p 3 x)) :: omits A=0
=/ bet (exp.p (div +(^p) 4) ysq)
=/ y ?:(=(1 (end 0 1 (mix v.sig bet))) bet (dif.p 0 bet))
?> =(0 (dif.p ysq (pro.p y y)))
?< =(0 (sit.n r.sig))
?< =(0 (sit.n s.sig))
=/ gz (mul:jc [x y 1]:g (dif.n 0 has))
=/ xy (mul:jc [x y 1] s.sig)
=/ qr (add:jc gz xy)
(from:jc (mul:jc qr (inv.n r.sig)))
::
++ jc-mul :: point x scalar
|= [a=pont n=@]
^- pont
(from:jc (mul:jc (into:jc a) n))
::
++ jc-add :: add points
|= [a=pont b=pont]
^- pont
(from:jc (add:jc (into:jc a) (into:jc b)))
::
++ jc :: jacobian core
|%
++ add :: addition
|= [a=jaco b=jaco]
^- jaco
?: =(0 y.a) b
?: =(0 y.b) a
=/ u1 :(pro.p x.a z.b z.b)
=/ u2 :(pro.p x.b z.a z.a)
=/ s1 :(pro.p y.a z.b z.b z.b)
=/ s2 :(pro.p y.b z.a z.a z.a)
?: =(u1 u2)
?. =(s1 s2)
[0 0 1]
(dub a)
=/ h (dif.p u2 u1)
=/ r (dif.p s2 s1)
=/ h2 (pro.p h h)
=/ h3 (pro.p h2 h)
=/ u1h2 (pro.p u1 h2)
=/ nx (dif.p (pro.p r r) :(sum.p h3 u1h2 u1h2))
=/ ny (dif.p (pro.p r (dif.p u1h2 nx)) (pro.p s1 h3))
=/ nz :(pro.p h z.a z.b)
[nx ny nz]
::
++ dub :: double
|= a=jaco
^- jaco
?: =(0 y.a)
[0 0 0]
=/ ysq (pro.p y.a y.a)
=/ s :(pro.p 4 x.a ysq)
=/ m :(pro.p 3 x.a x.a) :: omits A=0
=/ nx (dif.p (pro.p m m) (sum.p s s))
=/ ny (dif.p (pro.p m (dif.p s nx)) :(pro.p 8 ysq ysq))
=/ nz :(pro.p 2 y.a z.a)
[nx ny nz]
::
++ mul :: jaco x scalar
|= [a=jaco n=@]
^- jaco
?: =(0 y.a)
[0 0 1]
?: =(0 n)
[0 0 1]
?: =(1 n)
a
?: (gte n ^^n)
$(n (mod n ^^n))
?: =(0 (mod n 2))
(dub $(n (div n 2)))
(add a (dub $(n (div n 2))))
::
++ from :: jaco -> point
|= a=jaco
^- pont
=/ z (inv.p z.a)
[:(pro.p x.a z z) :(pro.p y.a z z z)]
::
++ into :: point -> jaco
|= pont
^- jaco
[x y z=1]
--
--
--
-- ::crypto
:: ::::
:::: ++unity :: (2c) unit promotion