overwrite inputs instead of copying in urcrypt

This commit is contained in:
Paul Driver 2020-08-18 12:35:07 -07:00
parent ca14af11a7
commit 2fdffe1e82
2 changed files with 272 additions and 360 deletions

View File

@ -1,69 +1,45 @@
#include "urcrypt.h" #include "urcrypt.h"
static bool initialized = false; static urcrypt_malloc_t _urcrypt_ssl_malloc_ptr;
static urcrypt_malloc_t urcrypt_malloc_ptr; static urcrypt_realloc_t _urcrypt_ssl_realloc_ptr;
static urcrypt_realloc_t urcrypt_realloc_ptr; static urcrypt_free_t _urcrypt_ssl_free_ptr;
static urcrypt_free_t urcrypt_free_ptr;
static void* _urcrypt_malloc(size_t len)
{
return (*urcrypt_malloc_ptr)(len);
}
static void* _urcrypt_realloc(void *ptr, size_t len)
{
return (*urcrypt_realloc_ptr)(ptr, len);
}
void urcrypt_free(void *ptr)
{
(*urcrypt_free_ptr)(ptr);
}
static void* static void*
_urcrypt_malloc_ssl(size_t len _urcrypt_malloc_ssl(size_t len
#if OPENSSL_VERSION_NUMBER >= 0x10100000L #if OPENSSL_VERSION_NUMBER >= 0x10100000L
, const char* file, int line , const char* file, int line
#endif #endif
) { return _urcrypt_malloc(len); } ) { return (*_urcrypt_ssl_malloc_ptr)(len); }
static void* static void*
_urcrypt_realloc_ssl(void* ptr, size_t len _urcrypt_realloc_ssl(void* ptr, size_t len
#if OPENSSL_VERSION_NUMBER >= 0x10100000L #if OPENSSL_VERSION_NUMBER >= 0x10100000L
, const char* file, int line , const char* file, int line
#endif #endif
) { return _urcrypt_realloc(ptr, len); } ) { return (*_urcrypt_ssl_realloc_ptr)(ptr, len); }
static void static void
_urcrypt_free_ssl(void* ptr _urcrypt_free_ssl(void* ptr
#if OPENSSL_VERSION_NUMBER >= 0x10100000L #if OPENSSL_VERSION_NUMBER >= 0x10100000L
, const char* file, int line , const char* file, int line
#endif #endif
) { urcrypt_free(ptr); } ) { (*_urcrypt_ssl_free_ptr)(ptr); }
int int
urcrypt_init(_urcrypt_malloc_t m, _urcrypt_realloc_t r, urcrypt_free_t f) urcrypt_set_openssl_functions(urcrypt_malloc_t malloc_ptr,
urcrypt_realloc_t realloc_ptr,
urcrypt_free_t free_ptr)
{ {
if ( initialized ) { int ret = CRYPTO_set_mem_functions(&_urcrypt_malloc_ssl,
return -1; &_urcrypt_realloc_ssl,
} &_urcrypt_free_ssl);
else if ( (NULL == m) || (NULL == r) || (NULL == f) ) { if ( 0 == ret ) {
return -2; _urcrypt_ssl_malloc_ptr = malloc_ptr;
} _urcrypt_ssl_realloc_ptr = realloc_ptr;
else { _urcrypt_ssl_free_ptr = free_ptr;
initialized = true;
urcrypt_malloc_ptr = m;
urcrypt_realloc_ptr = r;
urcrypt_free_ptr = f;
if ( CRYPTO_set_mem_functions(&_urcrypt_malloc_ssl,
&_urcrypt_realloc_ssl,
&_urcrypt_free_ssl) ) {
return 0;
}
else {
return -3;
}
} }
return ret;
} }
int int
@ -241,23 +217,7 @@ urcrypt_ed_veri(const uint8_t *message,
} }
static void static void
_urcrypt_reverse_copy(size_t size, const uint8_t *in, uint8_t *out) { _urcrypt_reverse(size_t size, uint8_t *ptr) {
size_t i, j;
for ( i = 0, j = size - 1; i < size; i++, j-- ) {
out[i] = in[j];
}
}
static uint8_t*
_urcrypt_reverse_alloc(size_t size, const uint8_t *in)
{
uint8_t *out = _urcrypt_malloc(size);
_urcrypt_reverse_copy(size, in, out);
return out;
}
static void
_urcrypt_reverse_inplace(size_t size, uint8_t *ptr) {
size_t i, j; size_t i, j;
uint8_t tmp; uint8_t tmp;
for ( i = 0, j = size - 1; i < j; i++, j-- ) { for ( i = 0, j = size - 1; i < j; i++, j-- ) {
@ -268,329 +228,306 @@ _urcrypt_reverse_inplace(size_t size, uint8_t *ptr) {
} }
int int
urcrypt_aes_ecba_en(const uint8_t key[16], urcrypt_aes_ecba_en(uint8_t key[16], uint8_t block[16], uint8_t out[16])
const uint8_t block[16],
uint8_t out[16])
{ {
AES_KEY aes_key; AES_KEY aes_key;
uint8_t rkey[16], rblock[16];
_urcrypt_reverse_copy(16, key, rkey); _urcrypt_reverse(16, key);
_urcrypt_reverse_copy(16, block, rblock); _urcrypt_reverse(16, block);
if ( 0 != AES_set_encrypt_key(rkey, 128, &aes_key) ) { if ( 0 != AES_set_encrypt_key(key, 128, &aes_key) ) {
return -1; return -1;
} }
else { else {
AES_ecb_encrypt(rblock, out, &aes_key, AES_ENCRYPT); AES_ecb_encrypt(block, out, &aes_key, AES_ENCRYPT);
_urcrypt_reverse_inplace(16, out); _urcrypt_reverse(16, out);
return 0; return 0;
} }
} }
int int
urcrypt_aes_ecba_de(const uint8_t key[16], urcrypt_aes_ecba_de(uint8_t key[16], uint8_t block[16], uint8_t out[16])
const uint8_t block[16],
uint8_t out[16])
{ {
AES_KEY aes_key; AES_KEY aes_key;
uint8_t rkey[16], rblock[16];
_urcrypt_reverse_copy(16, key, rkey); _urcrypt_reverse(16, key);
_urcrypt_reverse_copy(16, block, rblock); _urcrypt_reverse(16, block);
if ( 0 != AES_set_decrypt_key(rkey, 128, &aes_key) ) { if ( 0 != AES_set_decrypt_key(key, 128, &aes_key) ) {
return -1; return -1;
} }
else { else {
AES_ecb_encrypt(rblock, out, &aes_key, AES_DECRYPT); AES_ecb_encrypt(block, out, &aes_key, AES_DECRYPT);
_urcrypt_reverse_inplace(16, out); _urcrypt_reverse(16, out);
return 0; return 0;
} }
} }
int int
urcrypt_aes_ecbb_en(const uint8_t key[24], urcrypt_aes_ecbb_en(uint8_t key[24], uint8_t block[16], uint8_t out[16])
const uint8_t block[16],
uint8_t out[16])
{ {
AES_KEY aes_key; AES_KEY aes_key;
uint8_t rkey[24], rblock[16];
_urcrypt_reverse_copy(24, key, rkey); _urcrypt_reverse(24, key);
_urcrypt_reverse_copy(16, block, rblock); _urcrypt_reverse(16, block);
if ( 0 != AES_set_encrypt_key(rkey, 192, &aes_key) ) { if ( 0 != AES_set_encrypt_key(key, 192, &aes_key) ) {
return -1; return -1;
} }
else { else {
AES_ecb_encrypt(rblock, out, &aes_key, AES_ENCRYPT); AES_ecb_encrypt(block, out, &aes_key, AES_ENCRYPT);
_urcrypt_reverse_inplace(16, out); _urcrypt_reverse(16, out);
return 0; return 0;
} }
} }
int int
urcrypt_aes_ecbb_de(const uint8_t key[24], urcrypt_aes_ecbb_de(uint8_t key[24], uint8_t block[16], uint8_t out[16])
const uint8_t block[16],
uint8_t out[16])
{ {
AES_KEY aes_key; AES_KEY aes_key;
uint8_t rkey[24], rblock[16];
_urcrypt_reverse_copy(24, key, rkey); _urcrypt_reverse(24, key);
_urcrypt_reverse_copy(16, block, rblock); _urcrypt_reverse(16, block);
if ( 0 != AES_set_decrypt_key(rkey, 192, &aes_key) ) { if ( 0 != AES_set_decrypt_key(key, 192, &aes_key) ) {
return -1; return -1;
} }
else { else {
AES_ecb_encrypt(rblock, out, &aes_key, AES_DECRYPT); AES_ecb_encrypt(block, out, &aes_key, AES_DECRYPT);
_urcrypt_reverse_inplace(16, out); _urcrypt_reverse(16, out);
return 0; return 0;
} }
} }
int int
urcrypt_aes_ecbc_en(const uint8_t key[32], urcrypt_aes_ecbc_en(uint8_t key[32], uint8_t block[16], uint8_t out[16])
const uint8_t block[16],
uint8_t out[16])
{ {
AES_KEY aes_key; AES_KEY aes_key;
uint8_t rkey[32], rblock[16];
_urcrypt_reverse_copy(32, key, rkey); _urcrypt_reverse(32, key);
_urcrypt_reverse_copy(16, block, rblock); _urcrypt_reverse(16, block);
if ( 0 != AES_set_encrypt_key(rkey, 256, &aes_key) ) { if ( 0 != AES_set_encrypt_key(key, 256, &aes_key) ) {
return -1; return -1;
} }
else { else {
AES_ecb_encrypt(rblock, out, &aes_key, AES_ENCRYPT); AES_ecb_encrypt(block, out, &aes_key, AES_ENCRYPT);
_urcrypt_reverse_inplace(16, out); _urcrypt_reverse(16, out);
return 0; return 0;
} }
} }
int int
urcrypt_aes_ecbc_de(const uint8_t key[32], urcrypt_aes_ecbc_de(uint8_t key[32], uint8_t block[16], uint8_t out[16])
const uint8_t block[16],
uint8_t out[16])
{ {
AES_KEY aes_key; AES_KEY aes_key;
uint8_t rkey[32], rblock[16];
_urcrypt_reverse_copy(32, key, rkey); _urcrypt_reverse(32, key);
_urcrypt_reverse_copy(16, block, rblock); _urcrypt_reverse(16, block);
if ( 0 != AES_set_decrypt_key(rkey, 256, &aes_key) ) { if ( 0 != AES_set_decrypt_key(key, 256, &aes_key) ) {
return -1; return -1;
} }
else { else {
AES_ecb_encrypt(rblock, out, &aes_key, AES_DECRYPT); AES_ecb_encrypt(block, out, &aes_key, AES_DECRYPT);
_urcrypt_reverse_inplace(16, out); _urcrypt_reverse(16, out);
return 0; return 0;
} }
} }
static uint8_t* int
_urcrypt_cbc_pad(size_t *length_ptr, const uint8_t *message) _urcrypt_cbc_pad(uint8_t **message_ptr,
size_t *length_ptr,
urcrypt_realloc_t realloc_ptr)
{ {
size_t length = *length_ptr, size_t length = *length_ptr,
rem = length % 16, rem = length % 16;
padding = rem ? 16 - rem : 0,
padded = length + padding;
uint8_t *buf = _urcrypt_malloc(padded);
memset(buf, 0, padding); if ( 0 == rem ) {
_urcrypt_reverse_copy(length, message, buf + padding); // no padding necessary
return 0;
}
else {
size_t padding = 16 - rem,
padded = length + padding;
*length_ptr = padded; if ( padded < length ) {
return buf; return -1;
}
else {
uint8_t *out = (*realloc_ptr)(*message_ptr, padded);
if ( NULL == out ) {
return -2;
}
else {
*message_ptr = out;
*length_ptr = padded;
memset(out + length, 0, padding);
_urcrypt_reverse(padded, out);
return 0;
}
}
}
} }
uint8_t* int
_urcrypt_cbc_help(const uint8_t *message, _urcrypt_cbc_help(uint8_t **message_ptr,
size_t length, size_t *length_ptr,
const AES_KEY *key, const AES_KEY *key,
const uint8_t ivec[16], uint8_t ivec[16],
const int enc, const int enc,
size_t *out_length) urcrypt_realloc_t realloc_ptr)
{ {
uint8_t riv[16], *in, *out; if ( 0 != _urcrypt_cbc_pad(message_ptr, length_ptr, realloc_ptr) ) {
return -1;
_urcrypt_reverse_copy(16, ivec, riv);
in = _urcrypt_cbc_pad(&length, message);
out = _urcrypt_malloc(length);
AES_cbc_encrypt(in, out, length, key, riv, enc);
urcrypt_free(in);
_urcrypt_reverse_inplace(length, out);
*out_length = length;
return out;
}
uint8_t*
urcrypt_aes_cbca_en(const uint8_t *message,
size_t length,
const uint8_t key[16],
const uint8_t ivec[16],
size_t *out_length)
{
AES_KEY aes_key;
uint8_t rkey[16];
_urcrypt_reverse_copy(16, key, rkey);
if ( 0 != AES_set_encrypt_key(rkey, 128, &aes_key) ) {
return NULL;
} }
else { else {
return _urcrypt_cbc_help(message, uint8_t *out = *message_ptr;
length, size_t length = *length_ptr;
&aes_key, _urcrypt_reverse(16, ivec);
ivec, AES_cbc_encrypt(out, out, length, key, ivec, enc);
AES_ENCRYPT, _urcrypt_reverse(length, out);
out_length); return 0;
} }
} }
uint8_t* int
urcrypt_aes_cbca_de(const uint8_t *message, urcrypt_aes_cbca_en(uint8_t **message_ptr,
size_t length, size_t *length_ptr,
const uint8_t key[16], uint8_t key[16],
const uint8_t ivec[16], uint8_t ivec[16],
size_t *out_length) urcrypt_realloc_t realloc_ptr)
{ {
AES_KEY aes_key; AES_KEY aes_key;
uint8_t rkey[16];
_urcrypt_reverse_copy(16, key, rkey); _urcrypt_reverse(16, key);
if ( 0 != AES_set_decrypt_key(rkey, 128, &aes_key) ) { if ( 0 != AES_set_encrypt_key(key, 128, &aes_key) ) {
return NULL; return -1;
} }
else { else {
return _urcrypt_cbc_help(message, return _urcrypt_cbc_help(message_ptr, length_ptr,
length, &aes_key, ivec, AES_ENCRYPT, realloc_ptr);
&aes_key,
ivec,
AES_DECRYPT,
out_length);
} }
} }
uint8_t* int
urcrypt_aes_cbcb_en(const uint8_t *message, urcrypt_aes_cbca_de(uint8_t **message_ptr,
size_t length, size_t *length_ptr,
const uint8_t key[24], uint8_t key[16],
const uint8_t ivec[16], uint8_t ivec[16],
size_t *out_length) urcrypt_realloc_t realloc_ptr)
{ {
AES_KEY aes_key; AES_KEY aes_key;
uint8_t rkey[24];
_urcrypt_reverse_copy(24, key, rkey); _urcrypt_reverse(16, key);
if ( 0 != AES_set_encrypt_key(rkey, 192, &aes_key) ) { if ( 0 != AES_set_decrypt_key(key, 128, &aes_key) ) {
return NULL; return -1;
} }
else { else {
return _urcrypt_cbc_help(message, return _urcrypt_cbc_help(message_ptr, length_ptr,
length, &aes_key, ivec, AES_DECRYPT, realloc_ptr);
&aes_key,
ivec,
AES_ENCRYPT,
out_length);
} }
} }
uint8_t* int
urcrypt_aes_cbcb_de(const uint8_t *message, urcrypt_aes_cbcb_en(uint8_t **message_ptr,
size_t length, size_t *length_ptr,
const uint8_t key[24], uint8_t key[24],
const uint8_t ivec[16], uint8_t ivec[16],
size_t *out_length) urcrypt_realloc_t realloc_ptr)
{ {
AES_KEY aes_key; AES_KEY aes_key;
uint8_t rkey[24];
_urcrypt_reverse_copy(24, key, rkey); _urcrypt_reverse(24, key);
if ( 0 != AES_set_decrypt_key(rkey, 192, &aes_key) ) { if ( 0 != AES_set_encrypt_key(key, 192, &aes_key) ) {
return NULL; return -1;
} }
else { else {
return _urcrypt_cbc_help(message, return _urcrypt_cbc_help(message_ptr, length_ptr,
length, &aes_key, ivec, AES_ENCRYPT, realloc_ptr);
&aes_key,
ivec,
AES_DECRYPT,
out_length);
} }
} }
uint8_t* int
urcrypt_aes_cbcc_en(const uint8_t *message, urcrypt_aes_cbcb_de(uint8_t **message_ptr,
size_t length, size_t *length_ptr,
const uint8_t key[32], uint8_t key[24],
const uint8_t ivec[16], uint8_t ivec[16],
size_t *out_length) urcrypt_realloc_t realloc_ptr)
{ {
AES_KEY aes_key; AES_KEY aes_key;
uint8_t rkey[32];
_urcrypt_reverse_copy(32, key, rkey); _urcrypt_reverse(24, key);
if ( 0 != AES_set_encrypt_key(rkey, 256, &aes_key) ) { if ( 0 != AES_set_decrypt_key(key, 192, &aes_key) ) {
return NULL; return -1;
} }
else { else {
return _urcrypt_cbc_help(message, return _urcrypt_cbc_help(message_ptr, length_ptr,
length, &aes_key, ivec, AES_DECRYPT, realloc_ptr);
&aes_key,
ivec,
AES_ENCRYPT,
out_length);
} }
} }
uint8_t* int
urcrypt_aes_cbcc_de(const uint8_t *message, urcrypt_aes_cbcc_en(uint8_t **message_ptr,
size_t length, size_t *length_ptr,
const uint8_t key[32], uint8_t key[32],
const uint8_t ivec[16], uint8_t ivec[16],
size_t *out_length) urcrypt_realloc_t realloc_ptr)
{ {
AES_KEY aes_key; AES_KEY aes_key;
uint8_t rkey[32];
_urcrypt_reverse_copy(32, key, rkey); _urcrypt_reverse(32, key);
if ( 0 != AES_set_decrypt_key(rkey, 256, &aes_key) ) { if ( 0 != AES_set_encrypt_key(key, 256, &aes_key) ) {
return NULL; return -1;
} }
else { else {
return _urcrypt_cbc_help(message, return _urcrypt_cbc_help(message_ptr, length_ptr,
length, &aes_key, ivec, AES_ENCRYPT, realloc_ptr);
&aes_key,
ivec,
AES_DECRYPT,
out_length);
} }
} }
int
urcrypt_aes_cbcc_de(uint8_t **message_ptr,
size_t *length_ptr,
uint8_t key[32],
uint8_t ivec[16],
urcrypt_realloc_t realloc_ptr)
{
AES_KEY aes_key;
_urcrypt_reverse(32, key);
if ( 0 != AES_set_decrypt_key(key, 256, &aes_key) ) {
return -1;
}
else {
return _urcrypt_cbc_help(message_ptr, length_ptr,
&aes_key, ivec, AES_DECRYPT, realloc_ptr);
}
}
/* argon2 does memory allocation, but takes function pointers in the context.
* the signatures don't match, so we need these wrappers.
*/
static urcrypt_malloc_t _urcrypt_argon2_malloc_ptr;
static urcrypt_free_t _urcrypt_argon2_free_ptr;
static int static int
_urcrypt_argon2_alloc(uint8_t** output, size_t bytes) _urcrypt_argon2_alloc(uint8_t** output, size_t bytes)
{ {
*output = _urcrypt_malloc(bytes); *output = (*_urcrypt_argon2_malloc_ptr)(bytes);
return (NULL != output); return (NULL != output);
} }
static void static void
_urcrypt_argon2_free(uint8_t* memory, size_t bytes) _urcrypt_argon2_free(uint8_t* memory, size_t bytes)
{ {
urcrypt_free(memory); (*_urcrypt_argon2_free_ptr)(memory);
} }
// library convention is to have sizes in size_t, but argon2 wants them // library convention is to have sizes in size_t, but argon2 wants them
@ -604,15 +541,17 @@ urcrypt_argon2(urcrypt_argon2_type type,
uint32_t memory_cost, uint32_t memory_cost,
uint32_t time_cost, uint32_t time_cost,
size_t secret_length, size_t secret_length,
const uint8_t *secret, uint8_t *secret,
size_t associated_length, size_t associated_length,
const uint8_t *associated, uint8_t *associated,
size_t password_length, size_t password_length,
const uint8_t *password, uint8_t *password,
size_t salt_length, size_t salt_length,
const uint8_t *salt, uint8_t *salt,
size_t out_length, size_t out_length,
uint8_t *out) uint8_t *out,
urcrypt_malloc_t malloc_ptr,
urcrypt_free_t free_ptr)
{ {
if ( !( SZ_32(secret_length) && if ( !( SZ_32(secret_length) &&
SZ_32(associated_length) && SZ_32(associated_length) &&
@ -624,7 +563,6 @@ urcrypt_argon2(urcrypt_argon2_type type,
else { else {
int (*f)(argon2_context*); int (*f)(argon2_context*);
int result; int result;
uint8_t *rsecret, *rassoc, *rpassword, *rsalt;
switch ( type ) { switch ( type ) {
default: default:
@ -643,20 +581,21 @@ urcrypt_argon2(urcrypt_argon2_type type,
break; break;
} }
rsecret = _urcrypt_reverse_alloc(secret_length, secret); _urcrypt_reverse(secret_length, secret);
rassoc = _urcrypt_reverse_alloc(associated_length, associated); _urcrypt_reverse(associated_length, associated);
rpassword = _urcrypt_reverse_alloc(password_length, password); _urcrypt_reverse(password_length, password);
rsalt = _urcrypt_reverse_alloc(salt_length, salt); _urcrypt_reverse(salt_length, salt);
argon2_context context = { argon2_context context = {
out, // output array, at least [digest length] in size out, // output array, at least [digest length] in size
out_length, // digest length out_length, // digest length
rpassword, // password array password, // password array
password_length, // password length password_length, // password length
rsalt, // salt array salt, // salt array
salt_length, // salt length salt_length, // salt length
rsecret, // optional secret data secret, // optional secret data
secret_length, secret_length,
rassoc, // optional associated data associated, // optional associated data
associated_length, associated_length,
time_cost, // performance cost configuration time_cost, // performance cost configuration
memory_cost, memory_cost,
@ -668,17 +607,15 @@ urcrypt_argon2(urcrypt_argon2_type type,
ARGON2_DEFAULT_FLAGS // by default only internal memory is cleared ARGON2_DEFAULT_FLAGS // by default only internal memory is cleared
}; };
_urcrypt_argon2_malloc_ptr = malloc_ptr;
_urcrypt_argon2_free_ptr = free_ptr;
result = (*f)(&context); result = (*f)(&context);
urcrypt_free(rsecret);
urcrypt_free(rassoc);
urcrypt_free(rpassword);
urcrypt_free(rsalt);
if ( ARGON2_OK != result ) { if ( ARGON2_OK != result ) {
return argon2_error_message(result); return argon2_error_message(result);
} }
else { else {
_urcrypt_reverse_inplace(out_length, out); _urcrypt_reverse(out_length, out);
return NULL; return NULL;
} }
} }
@ -686,33 +623,27 @@ urcrypt_argon2(urcrypt_argon2_type type,
int int
urcrypt_blake2(size_t message_length, urcrypt_blake2(size_t message_length,
const uint8_t *message, uint8_t *message,
size_t key_length, size_t key_length,
const uint8_t key[64], uint8_t key[64],
size_t out_length, size_t out_length,
uint8_t *out) uint8_t *out)
{ {
int ret;
uint8_t rkey[64];
uint8_t *rmessage;
if ( key_length > 64 ) { if ( key_length > 64 ) {
return -1; return -1;
} }
rmessage = _urcrypt_reverse_alloc(message_length, message);
_urcrypt_reverse_copy(key_length, key, rkey);
ret = blake2b(out, out_length,
rmessage, message_length,
rkey, key_length);
urcrypt_free(rmessage);
if ( 0 != ret ) {
return -1;
}
else { else {
_urcrypt_reverse_inplace(out_length, out); _urcrypt_reverse(message_length, message);
return 0; _urcrypt_reverse(key_length, key);
if ( 0 != blake2b(out, out_length,
message, message_length,
key, key_length)) {
return -1;
}
else {
_urcrypt_reverse(out_length, out);
return 0;
}
} }
} }

View File

@ -23,32 +23,28 @@ typedef void (*urcrypt_free_t)(void*);
/* We depend on OpenSSL for various reasons, which doesn't promise not to /* We depend on OpenSSL for various reasons, which doesn't promise not to
* allocate memory and has the annoying CRYPTO_set_mem_functions api. We * allocate memory and has the annoying CRYPTO_set_mem_functions api. We
* are therefore forced to use it, so we adopt a similar approach with * are therefore forced to support it in some fashion.
* urcrypt_init().
* *
* This creates an issue for certain link configurations when the client of * If you need to control urcrypt's internal OpenSSL allocation, you can call
* urcrypt also uses the CRYPTO_set_mem_functions() api. The simplest thing * this function. It just wraps the OpenSSL function.
* that is guaranteed to work is to call first CRYPTO_set_mem_functions() and
* then urcrypt_init() with the same arguments during process initialization.
* *
* You should call this function once. It will return 0 on success. Calling * urcrypt will not use these functions directly.
* any other library functions without exactly one successful call to
* urcrypt_init() will result in undefined behavior.
*/ */
int urcrypt_init(urcrypt_malloc_t, urcrypt_realloc_t, urcrypt_free_t); int urcrypt_set_openssl_functions(urcrypt_malloc_t malloc_ptr,
urcrypt_realloc_t realloc_ptr,
urcrypt_free_t free_ptr);
/* We can transparently deal with padding since we already use memory // const arguments are not written to, non-const arguments may be
* allocation; in cases where we return allocated memory, it should // array sizes[64] are purely documentary
* be freed with urcrypt_free() by the caller.
*/
void urcrypt_free(void*);
// 0 on success, result in out
int urcrypt_ed_point_add(const uint8_t a[32], int urcrypt_ed_point_add(const uint8_t a[32],
const uint8_t b[32], const uint8_t b[32],
uint8_t out[32]); uint8_t out[32]);
int urcrypt_ed_scalarmult(const uint8_t a[32], int urcrypt_ed_scalarmult(const uint8_t a[32],
const uint8_t b[32], const uint8_t b[32],
uint8_t out[32]); uint8_t out[32]);
// void functions have no failure mode
void urcrypt_ed_scalarmult_base(const uint8_t a[32], void urcrypt_ed_scalarmult_base(const uint8_t a[32],
uint8_t out[32]); uint8_t out[32]);
int urcrypt_ed_add_scalarmult_scalarmult_base(const uint8_t a[32], int urcrypt_ed_add_scalarmult_scalarmult_base(const uint8_t a[32],
@ -70,68 +66,51 @@ void urcrypt_ed_sign(const uint8_t *message,
size_t length, size_t length,
const uint8_t seed[32], const uint8_t seed[32],
uint8_t out[64]); uint8_t out[64]);
// return value means the signature was (not) verified
bool urcrypt_ed_veri(const uint8_t *message, bool urcrypt_ed_veri(const uint8_t *message,
size_t length, size_t length,
const uint8_t signature[64], const uint8_t signature[64],
const uint8_t public[32]); const uint8_t public[32]);
// XX let's de-const the reversed arrays and promise to trash them instead, int urcrypt_aes_ecba_en(uint8_t key[16], uint8_t block[16], uint8_t out[16]);
// it will save us a malloc in some cases and it's a better API since int urcrypt_aes_ecba_de(uint8_t key[16], uint8_t block[16], uint8_t out[16]);
// it puts the decision to copy in the caller's hands. int urcrypt_aes_ecbb_en(uint8_t key[24], uint8_t block[16], uint8_t out[16]);
int urcrypt_aes_ecbb_de(uint8_t key[24], uint8_t block[16], uint8_t out[16]);
int urcrypt_aes_ecbc_en(uint8_t key[32], uint8_t block[16], uint8_t out[16]);
int urcrypt_aes_ecbc_de(uint8_t key[32], uint8_t block[16], uint8_t out[16]);
int urcrypt_aes_ecba_en(const uint8_t key[16], // message and length are read/write so
const uint8_t block[16], // realloc_ptr can be used as realloc to pad message
uint8_t out[16]); int urcrypt_aes_cbca_en(uint8_t **message_ptr,
int urcrypt_aes_ecba_de(const uint8_t key[16], size_t *length_ptr,
const uint8_t block[16], uint8_t key[16],
uint8_t out[16]); uint8_t ivec[16],
int urcrypt_aes_ecbb_en(const uint8_t key[24], urcrypt_realloc_t realloc_ptr);
const uint8_t block[16], int urcrypt_aes_cbca_de(uint8_t **message_ptr,
uint8_t out[16]); size_t *length_ptr,
int urcrypt_aes_ecbb_de(const uint8_t key[24], uint8_t key[16],
const uint8_t block[16], uint8_t ivec[16],
uint8_t out[16]); urcrypt_realloc_t realloc_ptr);
int urcrypt_aes_ecbc_en(const uint8_t key[32], int urcrypt_aes_cbcb_en(uint8_t **message_ptr,
const uint8_t block[16], size_t *length_ptr,
uint8_t out[16]); uint8_t key[24],
int urcrypt_aes_ecbc_de(const uint8_t key[32], uint8_t ivec[16],
const uint8_t block[16], urcrypt_realloc_t realloc_ptr);
uint8_t out[16]); int urcrypt_aes_cbcb_de(uint8_t **message_ptr,
size_t *length_ptr,
/* return an alloc'd output pointer and write its length to out_length uint8_t key[24],
* caller should urcrypt_free() the returned pointer. The return value uint8_t ivec[16],
* is NULL on an error. */ urcrypt_realloc_t realloc_ptr);
int urcrypt_aes_cbcc_en(uint8_t **message_ptr,
uint8_t* urcrypt_aes_cbca_en(const uint8_t *message, size_t *length_ptr,
size_t length, uint8_t key[32],
const uint8_t key[16], uint8_t ivec[16],
const uint8_t ivec[16], urcrypt_realloc_t realloc_ptr);
size_t *out_length); int urcrypt_aes_cbcc_de(uint8_t **message_ptr,
uint8_t* urcrypt_aes_cbca_de(const uint8_t *message, size_t *length_ptr,
size_t length, uint8_t key[32],
const uint8_t key[16], uint8_t ivec[16],
const uint8_t ivec[16], urcrypt_realloc_t realloc_ptr);
size_t *out_length);
uint8_t* urcrypt_aes_cbcb_en(const uint8_t *message,
size_t length,
const uint8_t key[24],
const uint8_t ivec[16],
size_t *out_length);
uint8_t* urcrypt_aes_cbcb_de(const uint8_t *message,
size_t length,
const uint8_t key[24],
const uint8_t ivec[16],
size_t *out_length);
uint8_t* urcrypt_aes_cbcc_en(const uint8_t *message,
size_t length,
const uint8_t key[32],
const uint8_t ivec[16],
size_t *out_length);
uint8_t* urcrypt_aes_cbcc_de(const uint8_t *message,
size_t length,
const uint8_t key[32],
const uint8_t ivec[16],
size_t *out_length);
typedef enum urcrypt_argon2_type { typedef enum urcrypt_argon2_type {
urcrypt_argon2_d = 0, urcrypt_argon2_d = 0,
@ -147,20 +126,22 @@ const char* urcrypt_argon2(urcrypt_argon2_type type,
uint32_t memory_cost, uint32_t memory_cost,
uint32_t time_cost, uint32_t time_cost,
size_t secret_length, size_t secret_length,
const uint8_t *secret, uint8_t *secret,
size_t associated_length, size_t associated_length,
const uint8_t *associated, uint8_t *associated,
size_t password_length, size_t password_length,
const uint8_t *password, uint8_t *password,
size_t salt_length, size_t salt_length,
const uint8_t *salt, uint8_t *salt,
size_t out_length, size_t out_length,
uint8_t *out); uint8_t *out,
urcrypt_malloc_t malloc_ptr,
urcrypt_free_t free_ptr);
int urcrypt_blake2(size_t message_length, int urcrypt_blake2(size_t message_length,
const uint8_t *message, uint8_t *message,
size_t key_length, size_t key_length,
const uint8_t key[64], uint8_t key[64],
size_t out_length, size_t out_length,
uint8_t *out); uint8_t *out);