graph-store: add-nodes compiles

This commit is contained in:
Logan Allen 2020-06-05 16:11:04 -04:00
parent e52779a356
commit 8c2d9127f3
3 changed files with 334 additions and 17 deletions

View File

@ -1,10 +1,12 @@
/+ store=graph-store, default-agent, dbug
/+ store=graph-store, *or-map, default-agent, dbug
|%
+$ card card:agent:gall
+$ versioned-state
$% state-0
==
+$ state-0 [%0 network:store]
::
++ orm ((or-map atom:store node:store) lth)
--
::
=| state-0
@ -73,10 +75,10 @@
:_ state
(give [/all]~ [%add-nodes nodes])
=* resource -.i.resource-list
=* indexed-nodes +.i.resource-list
=/ graph=(unit graph) (~(get by graphs) resource)
=/ indexed-nodes=(map index:store node:store) +.i.resource-list
=/ graph=(unit graph:store) (~(get by graphs) resource)
?~ graph
~| "graph {<resource>} does not exist to add a node to!"
~& "graph {<resource>} does not exist to add a node to!"
$(resource-list t.resource-list)
%_ $
resource-list t.resource-list
@ -107,36 +109,38 @@
?~ index graph
=* atom i.index
:: last index in list
::
?~ t.index (put:orm graph atom node)
:: multiple indices left in list
:: TODO: replace normal map function with ordered-map version
:: of get. look at find-ducts in behn
=/ parent=(unit node) (~(get by graph) atom)
::
=/ parent=(unit node:store) (get:orm graph atom)
?~ parent
~| "{<atom>} does not exist to add a node to!"
~& "index does not exist to add a node to!"
graph
?+ -.children.u.parent
=/ par=node:store (need parent)
?+ -.children.par
:: replace empty graph with graph containing one child
::
%^ put:orm
graph
atom
%_ u.parent
%= par
children
^- internal-graph:store
[%graph $(graph (gas:orm ~ ~), index t.index) now.bowl]
==
::
%graph
:: recurse into children
::
%^ put:orm
graph
atom
%_ u.parent
p.children $(graph p.children.u.parent, index t.index)
%_ par
p.children $(graph p.children.par, index t.index)
q.children now.bowl
==
==
::
++ orm ((ordered-map atom:store node:store) lth)
--
::
++ remove-nodes

313
pkg/arvo/lib/or-map.hoon Normal file
View File

@ -0,0 +1,313 @@
|%
::
:: $mk-item: constructor for +ordered-map item type
::
++ mk-item |$ [key val] [key=key val=val]
:: +ordered-map: treap with user-specified horizontal order
::
:: Conceptually smaller items go on the left, so the item with the
:: smallest key can be popped off the head. If $key is `@` and
:: .compare is +lte, then the numerically smallest item is the head.
::
++ or-map
|* [key=mold val=mold]
=> |%
+$ item (mk-item key val)
--
:: +compare: item comparator for horizontal order
::
|= compare=$-([key key] ?)
|%
:: +check-balance: verify horizontal and vertical orderings
::
++ check-balance
=| [l=(unit key) r=(unit key)]
|= a=(tree item)
^- ?
:: empty tree is valid
::
?~ a %.y
:: nonempty trees must maintain several criteria
::
?& :: if .n.a is left of .u.l, assert horizontal comparator
::
?~(l %.y (compare key.n.a u.l))
:: if .n.a is right of .u.r, assert horizontal comparator
::
?~(r %.y (compare u.r key.n.a))
:: if .a is not leftmost element, assert vertical order between
:: .l.a and .n.a and recurse to the left with .n.a as right
:: neighbor
::
?~(l.a %.y &((mor key.n.a key.n.l.a) $(a l.a, l `key.n.a)))
:: if .a is not rightmost element, assert vertical order
:: between .r.a and .n.a and recurse to the right with .n.a as
:: left neighbor
::
?~(r.a %.y &((mor key.n.a key.n.r.a) $(a r.a, r `key.n.a)))
==
:: +put: ordered item insert
::
++ put
|= [a=(tree item) =key =val]
^- (tree item)
:: base case: replace null with single-item tree
::
?~ a [n=[key val] l=~ r=~]
:: base case: overwrite existing .key with new .val
::
?: =(key.n.a key) a(val.n val)
:: if item goes on left, recurse left then rebalance vertical order
::
?: (compare key key.n.a)
=/ l $(a l.a)
?> ?=(^ l)
?: (mor key.n.a key.n.l)
a(l l)
l(r a(l r.l))
:: item goes on right; recurse right then rebalance vertical order
::
=/ r $(a r.a)
?> ?=(^ r)
?: (mor key.n.a key.n.r)
a(r r)
r(l a(r l.r))
:: +peek: produce head (smallest item) or null
::
++ peek
|= a=(tree item)
^- (unit item)
::
?~ a ~
?~ l.a `n.a
$(a l.a)
:: +pop: produce .head (smallest item) and .rest or crash if empty
::
++ pop
|= a=(tree item)
^- [head=item rest=(tree item)]
::
?~ a !!
?~ l.a [n.a r.a]
::
=/ l $(a l.a)
:- head.l
:: load .rest.l back into .a and rebalance
::
?: |(?=(~ rest.l) (mor key.n.a key.n.rest.l))
a(l rest.l)
rest.l(r a(r r.rest.l))
:: +del: delete .key from .a if it exists, producing value iff deleted
::
++ del
|= [a=(tree item) =key]
^- [(unit val) (tree item)]
::
?~ a [~ ~]
:: we found .key at the root; delete and rebalance
::
?: =(key key.n.a)
[`val.n.a (nip a)]
:: recurse left or right to find .key
::
?: (compare key key.n.a)
=+ [found lef]=$(a l.a)
[found a(l lef)]
=+ [found rig]=$(a r.a)
[found a(r rig)]
:: +nip: remove root; for internal use
::
++ nip
|= a=(tree item)
^- (tree item)
::
?> ?=(^ a)
:: delete .n.a; merge and balance .l.a and .r.a
::
|- ^- (tree item)
?~ l.a r.a
?~ r.a l.a
?: (mor key.n.l.a key.n.r.a)
l.a(r $(l.a r.l.a))
r.a(l $(r.a l.r.a))
:: +traverse: stateful partial inorder traversal
::
:: Mutates .state on each run of .f. Starts at .start key, or if
:: .start is ~, starts at the head (item with smallest key). Stops
:: when .f produces .stop=%.y. Traverses from smaller to larger
:: keys. Each run of .f can replace an item's value or delete the
:: item.
::
++ traverse
|* state=mold
|= $: a=(tree item)
=state
f=$-([state item] [(unit val) ? state])
==
^+ [state a]
:: acc: accumulator
::
:: .stop: set to %.y by .f when done traversing
:: .state: threaded through each run of .f and produced by +abet
::
=/ acc [stop=`?`%.n state=state]
=< abet =< main
|%
++ abet [state.acc a]
:: +main: main recursive loop; performs a partial inorder traversal
::
++ main
^+ .
:: stop if empty or we've been told to stop
::
?~ a .
?: stop.acc .
:: inorder traversal: left -> node -> right, until .f sets .stop
::
=> left
?: stop.acc .
=> node
?: stop.acc .
right
:: +node: run .f on .n.a, updating .a, .state, and .stop
::
++ node
^+ .
:: run .f on node, updating .stop.acc and .state.acc
::
=^ res acc
?> ?=(^ a)
(f state.acc n.a)
:: apply update to .a from .f's product
::
=. a
:: if .f requested node deletion, merge and balance .l.a and .r.a
::
?~ res (nip a)
:: we kept the node; replace its .val; order is unchanged
::
?> ?=(^ a)
a(val.n u.res)
::
..node
:: +left: recurse on left subtree, copying mutant back into .l.a
::
++ left
^+ .
?~ a .
=/ lef main(a l.a)
lef(a a(l a.lef))
:: +right: recurse on right subtree, copying mutant back into .r.a
::
++ right
^+ .
?~ a .
=/ rig main(a r.a)
rig(a a(r a.rig))
--
:: +tap: convert to list, smallest to largest
::
++ tap
|= a=(tree item)
^- (list item)
::
=| b=(list item)
|- ^+ b
?~ a b
::
$(a l.a, b [n.a $(a r.a)])
:: +gas: put a list of items
::
++ gas
|= [a=(tree item) b=(list item)]
^- (tree item)
::
?~ b a
$(b t.b, a (put a i.b))
:: +uni: unify two ordered maps
::
:: .b takes precedence over .a if keys overlap.
::
++ uni
|= [a=(tree item) b=(tree item)]
^- (tree item)
::
?~ b a
?~ a b
?: =(key.n.a key.n.b)
::
[n=n.b l=$(a l.a, b l.b) r=$(a r.a, b r.b)]
::
?: (mor key.n.a key.n.b)
::
?: (compare key.n.b key.n.a)
$(l.a $(a l.a, r.b ~), b r.b)
$(r.a $(a r.a, l.b ~), b l.b)
::
?: (compare key.n.a key.n.b)
$(l.b $(b l.b, r.a ~), a r.a)
$(r.b $(b r.b, l.a ~), a l.a)
::
:: +get: get val at key or return ~
::
++ get
|= [a=(tree item) b=key]
^- (unit val)
?~ a ~
?: =(b key.n.a)
`val.n.a
?: (compare b key.n.a)
$(a l.a)
$(a r.a)
::
:: +subset: take a range excluding start and/or end and all elements
:: outside the range
::
++ subset
|= $: tre=(tree item)
start=(unit key)
end=(unit key)
==
^- (tree item)
|^
?: ?&(?=(~ start) ?=(~ end))
tre
?~ start
(del-span tre %end end)
?~ end
(del-span tre %start start)
?> (lth u.start u.end)
=. tre (del-span tre %start start)
(del-span tre %end end)
::
++ del-span
|= [a=(tree item) b=?(%start %end) c=(unit key)]
^- (tree item)
?~ a a
?~ c a
?- b
%start
:: found key
?: =(key.n.a u.c)
(nip a(l ~))
:: traverse to find key
?: (compare key.n.a u.c)
:: found key to the left of start
$(a (nip a(l ~)))
:: found key to the right of start
a(l $(a l.a))
::
%end
:: found key
?: =(u.c key.n.a)
(nip a(r ~))
:: traverse to find key
?: (compare key.n.a u.c)
:: found key to the left of end
a(r $(a r.a))
:: found key to the right of end
$(a (nip a(r ~)))
==
--
--
--

View File

@ -16,12 +16,12 @@
::
+$ graph ((mop atom node) lth)
+$ internal-graph
$~ [%not-loaded ~]
$~ [%empty ~]
$% ::
:: a graph and timestamp of when it was last modified
[%graph p=graph q=time]
[%empty-when-fetched p=time]
[%not-loaded ~]
[%empty ~]
[%empty-at-time p=time]
==
::
+$ node [=post children=internal-graph]