Lots of FlP goodness.

Printing almost works, NaN/Inf stuff implemented but untested...

Just need to chop off the first char of the printed output
This commit is contained in:
Jared Hance 2014-06-27 09:35:16 -04:00
parent 89323f45b1
commit fb202f68eb

View File

@ -1173,7 +1173,7 @@
::
++ rlyd |= red=@rd ^- [s=? h=@ f=@] !:
~& [%rlyd `@ux`red]
[s=(sig:rd red) h=(hol:rd red) f=0]
[s=(sig:rd red) h=(hol:rd red) f=(fac:rd red)]
++ rlyh |=(reh=@rh ~|(%real-nyet ^-([s=? h=@ f=@] !!)))
++ rlyq |=(req=@rq ~|(%real-nyet ^-([s=? h=@ f=@] !!)))
++ rlys |=(res=@rs ~|(%real-nyet ^-([s=? h=@ f=@] !!)))
@ -1245,10 +1245,29 @@
++ fra |= [p=@u z=@u f=@u] ^- @u
(^div (lsh 0 p f) (den f z))
::
:: Decimal fraction of precision q [for printing only]
++ fre |= [q=@u a=@u] ^- @u
=+ d=(bex (^sub (met 0 a) 1))
(^div (^mul a (bey 10 q 0 1)) d)
:: utility for ++fre
++ rep |= [a=@ f=$+(@ @) c=@u]
^- @
?: =(c 0)
a
$(a (f a), c (dec c))
:: Decimal fraction of precision q [for printing only] mas peg
++ fre |= [q=@u n=[s=? e=@s a=@u]] ^- @u
=+ ^= b
?: =(0 (mod e.n 2))
?: (^gte (abs:si e.n) (met 0 a.n))
1
::=+ k=(lsh 0 (^sub (dec (met 0 a.n)) (abs:si e.n)) 1)
::=+ r=(end 0 (^sub (dec (met 0 a.n)) (abs:si e.n)) a.n)
::(mix k r)
(rep a.n mas (abs:si e.n))
::=+ k=(lsh 0 (^add (dec (met 0 a.n)) (abs:si e.n)) 1)
::=+ g=(lsh 0 (dec (met 0 a.n)) 1)
:::(mix k g a.n)
(rep a.n |=(a=@ (peg a 0b10)) (abs:si e.n))
=+ d=(bex (^sub (met 0 b) 1))
(^div (^mul b (bey 10 q 0 1)) d)
::
++ hol |= [p=@u n=[s=? e=@s a=@u]] ^- @u
?: =((mod `@`e.n 2) 0)
@ -1291,51 +1310,126 @@
b
+(b)
+(b) :: starts with 1, not even distance
::::::::::::
:: black magic values
++ vl
|%
++ uzer |= [b=@u p=@u]
(szer b p %.y)
++ szer |= [b=@u p=@u s=?]
[s=s e=`@s`(dec (^mul b 2)) a=(lia p 0)]
++ qnan |= [b=@u p=@u s=?]
[s=s e=`@s`(^mul 2 b) a=(lia p `@`0b101)]
++ snan |= [b=@u p=@u s=?]
[s=s e=`@s`(^mul 2 b) a=(lia p `@`0b11)]
++ inft |= [b=@u p=@u s=?]
[s=s e=`@s`(^mul 2 b) a=(lia p `@`0b1)]
--
:: black magic value tests
++ te
|%
++ zer |= [b=@u p=@u n=[s=? e=@s a=@u]]
&(=(e.n (dec (^mul b 2))) !=(0 (ira a.n)))
++ nan |= [b=@u n=[s=? e=@s a=@u]]
&(=(e.n (^mul 2 b)) !=(0 (ira a.n)))
++ snan |= [b=@u n=[s=? e=@s a=@u]]
&(=(e.n (^mul 2 b)) =((dec (met 0 a.n)) (met 0 (ira a.n))))
++ inf |= [b=@u n=[s=? e=@s a=@u]]
&(=(e.n (^mul 2 b)) =(0 (ira a.n)))
++ gar |= [b=@u n=[s=? e=@s a=@u] m=[s=? e=@s a=@u]]
^- (unit ,[s=? e=@s a=@u])
?: (snan b n) ~|(%floating-nan !!)
?: (snan b n) ~|(%floating-nan !!)
?: (nan b n) [~ n]
?: (nan b m) [~ m]
~
++ pro |= [b=@u p=@u n=[s=? e=@s a=@u]]
^- [s=? e=@s a=@u]
=+ maxexp=`@s`(^mul 2 b)
=+ minexp=`@s`(dec (^mul 2 b))
?: &(=(0 (mod e.n 2)) (^gte e.n maxexp))
(inft:vl:fl b p s.n)
?: &(=(1 (mod e.n 2)) (^gte e.n minexp))
(szer:vl:fl b p s.n) :: flush denorms
n
--
::::::::::::
++ add |= [p=@u n=[s=? e=@s a=@u] m=[s=? e=@s a=@u]] ^- [s=? e=@s a=@u]
++ add |= [b=@u p=@u n=[s=? e=@s a=@u] m=[s=? e=@s a=@u]] ^- [s=? e=@s a=@u]
=+ g=(gar:te:fl b n m)
?: ?=(^ g)
u.g
?: (zer:te:fl b p n)
m
?: (zer:te:fl b p m)
n
?: &(!s.n !s.m) :: both negative
=+ r=$(s.n %.y, s.m %.y)
[s=%.n e=e.r a=a.r]
?. &(s.n s.m) :: if not both positive
(sub p n [s=!s.m e=e.m a=a.m]) :: is actually sub
(sub b p n [s=!s.m e=e.m a=a.m]) :: is actually sub
?. (^gte e.n e.m) :: guarantee e.n > e.m
$(n m, m n)
=+ dif=(abs:si (dif:si e.n e.m)) :: always pos
=+ a2=(lsh 0 dif a.n) :: p+1+dif bits
=+ a3=(^add a.m a2) :: at least p+1+dif bits
=+ dif2=(^sub (met 0 a3) (met 0 a2)) :: (met 0 a3) > (met 0 a2)
[s=|(s.n s.m) e=(sum:si (sun:si dif2) e.n) a=(lia p a3)]
=+ e2=(sum:si (sun:si dif2) e.n)
(pro:te:fl b p [s=|(s.n s.m) e=e2 a=(lia p a3)])
++ sub |= [p=@u n=[s=? e=@s a=@u] m=[s=? e=@s a=@u]] ^- [s=? e=@s a=@u]
++ sub |= [b=@u p=@u n=[s=? e=@s a=@u] m=[s=? e=@s a=@u]] ^- [s=? e=@s a=@u]
=+ g=(gar:te:fl b n m)
?: ?=(^ g)
u.g
?: |((zer:te:fl b p n) (zer:te:fl b p m))
(add b p n m) :: why not
?: &(!s.n s.m) :: -a-b
(add p m [s=%.n e.m a.m]) :: add handles negative case
(add b p m [s=%.n e.m a.m]) :: add handles negative case
?: &(s.n !s.m) :: a+b
(add p m [s=%.y e.m a.m]) :: is actually add
(add b p m [s=%.y e.m a.m]) :: is actually add
?. |((^gth e.n e.m) &(=(e.n e.m) (^gte a.n a.m))) :: n > m
$(n m(s !s.m), m n(s !s.n))
=+ dif=(abs:si (dif:si e.n e.m))
=+ a2=(lsh 0 dif a.n) :: p+1+dif bits
=+ a3=(^sub a2 a.m) :: assume m < 0 for now
=+ dif2=(^sub (met 0 a2) (met 0 a3)) :: (met 0 a2) > (met 0 a3)
[s=s.n e=(dif:si e.n (sun:si dif2)) a=(lia p a3)] :: n > m => s=s.n
(pro:te:fl b p [s=s.n e=(dif:si e.n (sun:si dif2)) a=(lia p a3)]) :: n > m => s=s.n
++ mul |= [p=@u n=[s=? e=@s a=@u] m=[s=? e=@s a=@u]] ^- [s=? e=@ a=@]
~& [[%n [a.n e.n]] [%m [a.m e.m]]]
++ mul |= [b=@u p=@u n=[s=? e=@s a=@u] m=[s=? e=@s a=@u]] ^- [s=? e=@ a=@]
=+ g=(gar:te:fl b n m)
?: ?=(^ g)
u.g
?: |((zer:te:fl b p n) (zer:te:fl b p m))
(szer:vl:fl b p =(s.n s.m))
=+ a2=(^mul a.n a.m)
:: =+ a3=(mix (lsh 0 (^mul p 2) 1) (end 0 (^mul p 2) a2))
=+ e2=(met 0 (rsh 0 (^add 1 (^mul p 2)) a2))
:: =+ a4=(rnd p (rsh 0 e2 a3))
=+ a4=(lia p a2)
=+ s2=|(s.n s.m)
[s=s2 e=:(sum:si e.n e.m (sun:si e2)) a=a4]
=+ s2==(s.n s.m)
(pro:te:fl b p [s=s2 e=:(sum:si e.n e.m (sun:si e2)) a=a4])
++ div |= [p=@u n=[s=? e=@s a=@u] m=[s=? e=@s a=@u]] ^- [s=? e=@ a=@]
~& [[%n [a.n e.n]] [%m [a.m e.m]]]
++ div |= [b=@u p=@u n=[s=? e=@s a=@u] m=[s=? e=@s a=@u]] ^- [s=? e=@ a=@]
=+ g=(gar:te:fl b n m)
?: &((zer:te:fl b p n) (zer:te:fl b p m))
(qnan:vl:fl b p =(s.n s.m))
?: (zer:te:fl b p n)
(szer:vl:fl b p =(s.n s.m))
?: (zer:te:fl b p m)
(inft:vl:fl b p =(s.n s.m))
=+ b=(lia p (^div (lsh 0 (^mul p 3) a.n) a.m))
?: (^gte a.n a.m)
[s=|(s.n s.m) e=(dif:si e.n e.m) a=b]
[s=|(s.n s.m) e=(dif:si (dif:si e.n e.m) (sun:si 1)) a=b]
(pro:te:fl b p [s==(s.n s.m) e=(dif:si e.n e.m) a=b])
(pro:te:fl b p [s=|(s.n s.m) e=(dif:si (dif:si e.n e.m) (sun:si 1)) a=b])
++ lte |= [n=[s=? e=@s a=@u] m=[s=? e=@s a=@u]] ^- ?
?: (^lte e.n e.m)
@ -1377,7 +1471,7 @@
(dif:si (sun:si (rsh 0 52 (end 0 63 a))) (sun:si 1.023))
:: Fraction of an @rd (binary)
++ fac |= [a=@rd] ^- @u
(fre:fl 14 (ari:fl 52 (end 0 52 a)))
(fre:fl 14 (sea a))
:: Whole
++ hol |= [a=@rd] ^- @u
(hol:fl 52 (sea a))
@ -1392,23 +1486,19 @@
++ add ~/ %add
|= [a=@rd b=@rd] ^- @rd
(bit (add:fl 52 (sea a) (sea b)))
(bit (add:fl 1.023 52 (sea a) (sea b)))
++ sub ~/ %sub
|= [a=@rd b=@rd] ^- @rd
(bit (sub:fl 52 (sea a) (sea b)))
(bit (sub:fl 1.023 52 (sea a) (sea b)))
++ mul ~/ %mul
|= [a=@rd b=@rd] ^- @rd
~& [%a `@ub`a]
~& [%b `@ub`b]
(bit (mul:fl 52 (sea a) (sea b)))
(bit (mul:fl 1.023 52 (sea a) (sea b)))
++ div ~/ %div
|= [a=@rd b=@rd] ^- @rd
~& [%a `@ub`a]
~& [%b `@ub`b]
(bit (div:fl 52 (sea a) (sea b)))
(bit (div:fl 1.023 52 (sea a) (sea b)))
++ lte ~/ %lte
|= [a=@rd b=@rd] ^- ?