/* v/raft.c ** ** This file is in the public domain. */ #include #include #include #include #include #include "all.h" #include "v/vere.h" /* u2_rent: Log entry wire format. */ typedef struct { c3_w tem_w; // Log entry term c3_w typ_w; // Entry type, %ra|%ov c3_w len_w; // Word length of blob c3_w* bob_w; // Blob } u2_rent; /* u2_rmsg: Raft RPC wire format. */ typedef struct _u2_rmsg { c3_w ver_w; // version, mug('a')... c3_d len_d; // Words in message c3_w tem_w; // Current term c3_w typ_w; // %apen|%revo|%rasp union { struct { c3_w suc_w; // Request successful } rasp; struct { c3_d lai_d; // Last log index c3_w lat_w; // Last log term c3_w nam_w; // Name word length c3_c* nam_c; // Requestor name union { struct { c3_d cit_d; // Leader commitIndex c3_d ent_d; // Number of entries u2_rent* ent_u; // Entries } apen; }; } rest; }; } u2_rmsg; static ssize_t _raft_rmsg_read(const u2_rbuf* buf_u, u2_rmsg* msg_u); static void _raft_rmsg_send(u2_rcon* ron_u, const u2_rmsg* msg_u); static void _raft_rmsg_free(u2_rmsg* msg_u); static void _raft_conn_dead(u2_rcon* ron_u); static u2_bean _raft_remove_run(u2_rcon* ron_u); static void _raft_send_rasp(u2_rcon* ron_u, c3_t suc_t); static void _raft_rreq_free(u2_rreq* req_u); static void _raft_time_cb(uv_timer_t* tim_u, c3_i sas_i); static void _raft_rnam_free(u2_rnam* nam_u) { if ( nam_u ) { c3_assert(0 == nam_u->ron_u); c3_assert(0 == nam_u->nex_u); free(nam_u->str_c); free(nam_u->nam_c); free(nam_u->por_c); } free(nam_u); } /* _raft_readname(): parse a raft host:port peer name. */ static u2_rnam* _raft_readname(const c3_c* str_c, c3_w siz_w) { u2_rnam* nam_u = calloc(1, sizeof(*nam_u)); c3_c* col_c; c3_w nam_w; nam_u->str_c = c3_malloc(siz_w + 1); strncpy(nam_u->str_c, str_c, siz_w); nam_u->str_c[siz_w] = '\0'; if ( 0 == (col_c = strchr(nam_u->str_c, ':')) ) { uL(fprintf(uH, "raft: invalid name %s\n", nam_u->str_c)); _raft_rnam_free(nam_u); nam_u = 0; } else { nam_w = col_c - nam_u->str_c + 1; nam_u->nam_c = c3_malloc(nam_w); uv_strlcpy(nam_u->nam_c, nam_u->str_c, nam_w); nam_u->por_c = strdup(col_c + 1); } return nam_u; } /* u2_raft_readopt(): parse a string into a list of raft peers. */ u2_rnam* u2_raft_readopt(const c3_c* arg_c, c3_c* our_c, c3_s oup_s) { u2_rnam* nam_u; u2_rnam* nex_u; c3_c* com_c; if ( 0 == (com_c = strchr(arg_c, ',')) ) { nam_u = _raft_readname(arg_c, strlen(arg_c)); nex_u = 0; } else { nam_u = _raft_readname(arg_c, com_c - arg_c); nex_u = u2_raft_readopt(com_c + 1, our_c, oup_s); } if ( nam_u ) { c3_c* end_c; c3_w por_w = strtoul(nam_u->por_c, &end_c, 10); if ( '\0' == *nam_u->por_c || '\0' != *end_c || por_w >= 65536 ) { uL(fprintf(uH, "raft: invalid port %s\n", nam_u->por_c)); _raft_rnam_free(nam_u); _raft_rnam_free(nex_u); nam_u = 0; } else { if ( oup_s == por_w && 0 == strcmp(our_c, nam_u->nam_c) ) { _raft_rnam_free(nam_u); nam_u = nex_u; } else nam_u->nex_u = nex_u; } } else _raft_rnam_free(nex_u); return nam_u; } /* _raft_alloc(): libuv-style allocator for raft. */ static uv_buf_t _raft_alloc(uv_handle_t* had_u, size_t siz_i) { uv_buf_t buf_u = { .base = c3_malloc(siz_i), .len = siz_i }; return buf_u; } /* _raft_election_rand(): election timeout. */ static c3_w _raft_election_rand() { c3_w ret = (1.0 + (float) rand() / RAND_MAX) * 150; //uL(fprintf(uH, "raft: timeout %d\n", ret)); return ret; } /* _raft_promote(): actions on raft leader election. */ static void _raft_promote(u2_raft* raf_u) { if ( u2_raty_lead == raf_u->typ_e ) { uL(fprintf(uH, "raft: double promote; ignoring\n")); } else { c3_i sas_i; if ( 1 == raf_u->pop_w ) { uL(fprintf(uH, "raft: -> lead\n")); raf_u->typ_e = u2_raty_lead; // TODO boot in multiuser mode u2_sist_boot(); if ( u2_no == u2_Host.ops_u.bat ) { u2_lo_lead(u2A); } } else { c3_assert(u2_raty_cand == raf_u->typ_e); uL(fprintf(uH, "raft: cand -> lead\n")); raf_u->typ_e = u2_raty_lead; sas_i = uv_timer_stop(&raf_u->tim_u); c3_assert(0 == sas_i); sas_i = uv_timer_start(&raf_u->tim_u, _raft_time_cb, 50, 50); c3_assert(0 == sas_i); } } } /* _raft_demote(): demote to follower. */ static void _raft_demote(u2_raft* raf_u) { u2_raty typ_e = raf_u->typ_e; raf_u->vog_c = 0; u2_sist_nil("vote"); raf_u->vot_w = 0; raf_u->typ_e = u2_raty_foll; if ( u2_raty_lead == typ_e ) { c3_i sas_i; uL(fprintf(uH, "raft: lead -> foll\n")); sas_i = uv_timer_stop(&raf_u->tim_u); c3_assert(0 == sas_i); sas_i = uv_timer_start(&raf_u->tim_u, _raft_time_cb, _raft_election_rand(), 0); c3_assert(0 == sas_i); // TODO dump not-yet-committed events } else { c3_assert(u2_raty_cand == typ_e); uL(fprintf(uH, "raft: cand -> foll\n")); } } /* _raft_note_term(): note a term from the network, demoting if it is newer. */ static void _raft_note_term(u2_raft* raf_u, c3_w tem_w) { if ( raf_u->tem_w < tem_w ) { uL(fprintf(uH, "raft: got term from network: %d\n", tem_w)); raf_u->tem_w = tem_w; u2_sist_put("term", (c3_y*)&raf_u->tem_w, sizeof(c3_w)); c3_assert(raf_u->typ_e != u2_raty_none); if ( raf_u->typ_e == u2_raty_foll ) { c3_assert(0 == raf_u->vot_w); } else _raft_demote(raf_u); } } /* _raft_rest_name(): update conn name from incoming request. ** ** If this connection already has a name, make sure the passed name ** matches. Otherwise, try to associate it with a name, killing old ** connections to that name. */ static void // TODO indicate whether conn died _raft_rest_name(u2_rcon* ron_u, const c3_c* nam_c) { if ( 0 != ron_u->nam_u ) { if ( 0 != strcmp(ron_u->nam_u->str_c, nam_c) ) { uL(fprintf(uH, "raft: names disagree o:%s n:%s\n", ron_u->nam_u->str_c, nam_c)); _raft_conn_dead(ron_u); } } else { u2_raft* raf_u = ron_u->raf_u; u2_rnam* nam_u = raf_u->nam_u; while ( nam_u ) { if ( 0 == strcmp(nam_u->str_c, nam_c) ) { if ( nam_u->ron_u ) { c3_assert(nam_u->ron_u != ron_u); //uL(fprintf(uH, "raft: closing old conn %p to %s (%p)\n", // nam_u->ron_u, nam_u->str_c, ron_u)); _raft_conn_dead(nam_u->ron_u); } uL(fprintf(uH, "raft: incoming conn from %s\n", nam_u->str_c)); nam_u->ron_u = ron_u; ron_u->nam_u = nam_u; _raft_remove_run(ron_u); break; } else nam_u = nam_u->nex_u; } if ( 0 == ron_u->nam_u ) { uL(fprintf(uH, "connection from unkown peer %s\n", nam_c)); _raft_conn_dead(ron_u); } } } /* _raft_do_rest(): effects of an incoming request. */ static void _raft_do_rest(u2_rcon* ron_u, const u2_rmsg* msg_u) { u2_raft* raf_u = ron_u->raf_u; if ( u2_raty_cand == raf_u->typ_e || u2_raty_foll == raf_u->typ_e ) { c3_i sas_i; sas_i = uv_timer_stop(&raf_u->tim_u); c3_assert(0 == sas_i); sas_i = uv_timer_start(&raf_u->tim_u, _raft_time_cb, _raft_election_rand(), 0); c3_assert(0 == sas_i); } _raft_rest_name(ron_u, msg_u->rest.nam_c); _raft_note_term(raf_u, msg_u->tem_w); } /* _raft_do_apen(): Handle incoming AppendEntries. */ static void _raft_do_apen(u2_rcon* ron_u, const u2_rmsg* msg_u) { c3_assert(c3__apen == msg_u->typ_w); _raft_do_rest(ron_u, msg_u); /* TODO respond */ } /* _raft_apen_done(): process AppendEntries response. */ static void _raft_apen_done(u2_rreq* req_u, c3_w suc_w) { c3_assert(c3__apen == req_u->msg_u->typ_w); /* TODO */ } /* _raft_do_revo(): Handle incoming RequestVote. */ static void _raft_do_revo(u2_rcon* ron_u, const u2_rmsg* msg_u) { u2_raft* raf_u = ron_u->raf_u; c3_assert(c3__revo == msg_u->typ_w); _raft_do_rest(ron_u, msg_u); c3_assert(0 != ron_u->nam_u); if ( msg_u->tem_w >= raf_u->tem_w && (0 == raf_u->vog_c || 0 == strcmp(raf_u->vog_c, ron_u->nam_u->str_c)) && (raf_u->lat_w < msg_u->rest.lat_w || (raf_u->lat_w == msg_u->rest.lat_w && raf_u->ent_d <= msg_u->rest.lai_d)) ) { raf_u->vog_c = ron_u->nam_u->str_c; u2_sist_put("vote", (c3_y*)raf_u->vog_c, strlen(raf_u->vog_c)); uL(fprintf(uH, "raft: granting vote to %s\n", raf_u->vog_c)); _raft_send_rasp(ron_u, 1); } else _raft_send_rasp(ron_u, 0); } /* _raft_revo_done(): process RequestVote response. */ static void _raft_revo_done(u2_rreq* req_u, c3_w suc_w) { u2_rcon* ron_u = req_u->ron_u; u2_raft* raf_u = ron_u->raf_u; c3_assert(c3__revo == req_u->msg_u->typ_w); if ( suc_w && req_u->msg_u->tem_w == raf_u->tem_w ) { if ( u2_no == ron_u->nam_u->vog ) { ron_u->nam_u->vog = u2_yes; raf_u->vot_w++; } else { uL(fprintf(uH, "XX raft: duplicate response for %s [tem:%d]\n", ron_u->nam_u->str_c, raf_u->tem_w)); } } if ( raf_u->vot_w > raf_u->pop_w / 2 ) { uL(fprintf(uH, "raft: got majority of %d for term %d\n", raf_u->vot_w, raf_u->tem_w)); _raft_promote(raf_u); } } /* _raft_do_rasp(): act on an incoming raft RPC response. */ static void _raft_do_rasp(u2_rcon* ron_u, u2_rmsg* msg_u) { u2_raft* raf_u = ron_u->raf_u; c3_assert(c3__rasp == msg_u->typ_w); if ( 0 == ron_u->nam_u ) { uL(fprintf(uH, "raft: invalid connection from unknown host\n")); _raft_conn_dead(ron_u); } else { u2_rreq* req_u = ron_u->out_u; if ( !req_u ) { uL(fprintf(uH, "raft: response with no request from %s\n", ron_u->nam_u->str_c)); _raft_conn_dead(ron_u); } else { switch ( req_u->msg_u->typ_w ) { default: { uL(fprintf(uH, "raft: bogus request type %x?!\n", req_u->msg_u->typ_w)); c3_assert(0); } case c3__apen: { _raft_apen_done(req_u, msg_u->rasp.suc_w); break; } case c3__revo: { _raft_revo_done(req_u, msg_u->rasp.suc_w); break; } } _raft_note_term(raf_u, msg_u->tem_w); ron_u->out_u = req_u->nex_u; if ( 0 == req_u->nex_u ) { c3_assert(req_u == ron_u->tou_u); ron_u->tou_u = 0; } _raft_rreq_free(req_u); } } } /* _raft_rmsg_read(): read a u2_rmsg from a buffer. ** ** Returns <0 on parse failure. ** Returns 0 on partial data. ** Returns bytes read on successful read. ** ** If successful, caller must eventually call _raft_free_rmsg() on msg_u. */ static ssize_t _raft_rmsg_read(const u2_rbuf* buf_u, u2_rmsg* msg_u) { ssize_t red_i = 0; c3_d ben_d; if ( buf_u->len_w < sizeof(c3_w) + sizeof(c3_d) ) { return 0; } memcpy(&msg_u->ver_w, buf_u->buf_y + red_i, sizeof(c3_w)); red_i += sizeof(c3_w); if ( msg_u->ver_w != u2_cr_mug('a') ) { uL(fprintf(uH, "raft: versions don't match: %x %x\n", msg_u->ver_w, u2_cr_mug('a'))); return -1; } memcpy(&msg_u->len_d, buf_u->buf_y + red_i, sizeof(c3_d)); red_i += sizeof(c3_d); if ( msg_u->len_d < 4 ) { uL(fprintf(uH, "raft: length too short (a) %llu\n", msg_u->len_d)); return -1; } ben_d = 4ULL * msg_u->len_d; if ( buf_u->len_w < ben_d ) { return 0; } if ( ben_d < red_i + 2 * sizeof(c3_w) ) { uL(fprintf(uH, "raft: length too short (b) %llu\n", msg_u->len_d)); return -1; } memcpy(&msg_u->tem_w, buf_u->buf_y + red_i, sizeof(c3_w)); red_i += sizeof(c3_w); memcpy(&msg_u->typ_w, buf_u->buf_y + red_i, sizeof(c3_w)); red_i += sizeof(c3_w); switch ( msg_u->typ_w ) { default: { uL(fprintf(uH, "raft: unknown msg type %x\n", msg_u->typ_w)); return -1; } case c3__rasp: { if ( ben_d < red_i + sizeof(c3_w) ) { uL(fprintf(uH, "raft: length too short (c) %llu\n", msg_u->len_d)); return -1; } memcpy(&msg_u->rasp.suc_w, buf_u->buf_y + red_i, sizeof(c3_w)); red_i += sizeof(c3_w); break; } case c3__apen: case c3__revo: { if ( ben_d < red_i + sizeof(c3_d) + 2 * sizeof(c3_w) ) { uL(fprintf(uH, "raft: length too short (d) %llu\n", msg_u->len_d)); return -1; } memcpy(&msg_u->rest.lai_d, buf_u->buf_y + red_i, sizeof(c3_d)); red_i += sizeof(c3_d); memcpy(&msg_u->rest.lat_w, buf_u->buf_y + red_i, sizeof(c3_w)); red_i += sizeof(c3_w); memcpy(&msg_u->rest.nam_w, buf_u->buf_y + red_i, sizeof(c3_w)); red_i += sizeof(c3_w); if ( ben_d < red_i + 4 * msg_u->rest.nam_w ) { uL(fprintf(uH, "raft: length too short (e) %llu\n", msg_u->len_d)); return -1; } msg_u->rest.nam_c = c3_malloc(4 * msg_u->rest.nam_w); uv_strlcpy(msg_u->rest.nam_c, (const char*)(buf_u->buf_y + red_i), 4 * msg_u->rest.nam_w); red_i += 4 * msg_u->rest.nam_w; break; } } if ( c3__apen == msg_u->typ_w ) { if ( ben_d < red_i + 2 * sizeof(c3_d) ) { uL(fprintf(uH, "raft: length too short (f) %llu\n", msg_u->len_d)); red_i = -1; goto fail; } memcpy(&msg_u->rest.apen.cit_d, buf_u->buf_y + red_i, sizeof(c3_d)); red_i += sizeof(c3_d); memcpy(&msg_u->rest.apen.ent_d, buf_u->buf_y + red_i, sizeof(c3_d)); red_i += sizeof(c3_d); msg_u->rest.apen.ent_u = calloc( 1, msg_u->rest.apen.ent_d * sizeof(u2_rent)); { c3_d i_d; u2_rent* ent_u = msg_u->rest.apen.ent_u; for ( i_d = 0; i_d < msg_u->rest.apen.ent_d; i_d++ ) { if ( ben_d < red_i + 3 * sizeof(c3_w) ) { uL(fprintf(uH, "raft: length too short (g) %llu\n", msg_u->len_d)); red_i = -1; goto fail; } memcpy(&ent_u[i_d].tem_w, buf_u->buf_y + red_i, sizeof(c3_w)); red_i += sizeof(c3_w); memcpy(&ent_u[i_d].typ_w, buf_u->buf_y + red_i, sizeof(c3_w)); red_i += sizeof(c3_w); memcpy(&ent_u[i_d].len_w, buf_u->buf_y + red_i, sizeof(c3_w)); red_i += sizeof(c3_w); if ( ben_d < red_i + 4 * ent_u[i_d].len_w ) { uL(fprintf(uH, "raft: length too short (h) %llu\n", msg_u->len_d)); red_i = -1; goto fail; } ent_u[i_d].bob_w = c3_malloc(4 * ent_u[i_d].len_w); memcpy(ent_u[i_d].bob_w, buf_u->buf_y + red_i, 4 * ent_u[i_d].len_w); red_i += 4 * ent_u[i_d].len_w; } } } if ( red_i != ben_d ) { uL(fprintf(uH, "raft: sizes don't match r:%ld w:%llu\n", red_i, ben_d)); red_i = -1; goto fail; } out: return red_i; fail: _raft_rmsg_free(msg_u); goto out; } /* _raft_rbuf_grow(): append data to the buffer, reallocating if needed. ** ** Returns new buffer location, as realloc. */ static u2_rbuf* _raft_rbuf_grow(u2_rbuf* buf_u, const c3_y* buf_y, size_t siz_i) { if ( 0 == buf_u ) { buf_u = c3_malloc(sizeof(*buf_u) + siz_i); buf_u->len_w = 0; buf_u->cap_w = siz_i; } if ( buf_u->cap_w < buf_u->len_w + siz_i ) { c3_w cap_w = c3_max(2 * buf_u->cap_w, buf_u->len_w + siz_i); buf_u = realloc(buf_u, sizeof(*buf_u) + cap_w); buf_u->cap_w = cap_w; } memcpy(buf_u->buf_y + buf_u->len_w, buf_y, siz_i); buf_u->len_w += siz_i; return buf_u; } /* _raft_bytes_send(): */ static void _raft_bytes_send(u2_rcon* ron_u, const void* ptr_v, size_t siz_i) { ron_u->wri_u = _raft_rbuf_grow(ron_u->wri_u, ptr_v, siz_i); } /* _raft_rmsg_send(): send a u2_rmsg over the wire. */ static void _raft_rmsg_send(u2_rcon* ron_u, const u2_rmsg* msg_u) { c3_d len_d = sizeof(c3_d) + 3 * sizeof(c3_w); _raft_bytes_send(ron_u, &msg_u->ver_w, sizeof(c3_w)); _raft_bytes_send(ron_u, &msg_u->len_d, sizeof(c3_d)); _raft_bytes_send(ron_u, &msg_u->tem_w, sizeof(c3_w)); _raft_bytes_send(ron_u, &msg_u->typ_w, sizeof(c3_w)); switch ( msg_u->typ_w ) { default: { uL(fprintf(uH, "raft: send: unknown message type\n")); c3_assert(0); } case c3__rasp: { len_d += sizeof(c3_w); _raft_bytes_send(ron_u, &msg_u->rasp.suc_w, sizeof(c3_w)); break; } case c3__apen: case c3__revo: { len_d += sizeof(c3_d) + 2 * sizeof(c3_w) + 4 * msg_u->rest.nam_w; _raft_bytes_send(ron_u, &msg_u->rest.lai_d, sizeof(c3_d)); _raft_bytes_send(ron_u, &msg_u->rest.lat_w, sizeof(c3_w)); _raft_bytes_send(ron_u, &msg_u->rest.nam_w, sizeof(c3_w)); _raft_bytes_send(ron_u, msg_u->rest.nam_c, 4 * msg_u->rest.nam_w); break; } } if ( c3__apen == msg_u->typ_w ) { c3_d i_d; u2_rent* ent_u = msg_u->rest.apen.ent_u; len_d += 2 * sizeof(c3_d); _raft_bytes_send(ron_u, &msg_u->rest.apen.cit_d, sizeof(c3_d)); _raft_bytes_send(ron_u, &msg_u->rest.apen.ent_d, sizeof(c3_d)); for ( i_d = 0; i_d < msg_u->rest.apen.ent_d; i_d++ ) { len_d += 3 * sizeof(c3_w) + ent_u[i_d].len_w; _raft_bytes_send(ron_u, &ent_u[i_d].tem_w, sizeof(c3_w)); _raft_bytes_send(ron_u, &ent_u[i_d].typ_w, sizeof(c3_w)); _raft_bytes_send(ron_u, &ent_u[i_d].len_w, sizeof(c3_w)); _raft_bytes_send(ron_u, ent_u[i_d].bob_w, ent_u[i_d].len_w); } } //uL(fprintf(uH, "raft: sent %llu (%llu) [%x]\n", // len_d, msg_u->len_d, msg_u->typ_w)); c3_assert(len_d == 4 * msg_u->len_d); } /* _raft_rmsg_free(): free a u2_rmsg's resources (but not the msg itself). */ static void _raft_rmsg_free(u2_rmsg* msg_u) { if ( c3__apen == msg_u->typ_w && msg_u->rest.apen.ent_u ) { c3_d i_d; for ( i_d = 0; i_d < msg_u->rest.apen.ent_d; i_d++ ) { free(msg_u->rest.apen.ent_u[i_d].bob_w); } free(msg_u->rest.apen.ent_u); msg_u->rest.apen.ent_u = 0; } if ( c3__apen == msg_u->typ_w || c3__revo == msg_u->typ_w ) { free(msg_u->rest.nam_c); msg_u->rest.nam_c = 0; } } /* An unusual lameness in libuv. */ struct _u2_write_t { uv_write_t wri_u; c3_y* buf_y; }; /* _raft_write_cb(): generic write callback. */ static void _raft_write_cb(uv_write_t* wri_u, c3_i sas_i) { struct _u2_write_t* req_u = (struct _u2_write_t*)wri_u; if ( 0 != sas_i ) { uL(fprintf(uH, "raft: write_cb: %s\n", uv_strerror(uv_last_error(u2L)))); _raft_conn_dead((u2_rcon*)wri_u->handle); } free(req_u->buf_y); free(req_u); } /* _raft_conn_work(): read and write requests and responses. */ static void _raft_conn_work(u2_rcon* ron_u) { c3_assert(u2_yes == ron_u->liv); if ( u2_yes == ron_u->red ) { c3_assert(ron_u->red_u); ron_u->red = u2_no; while (1) { u2_rmsg msg_u; ssize_t ret_i = _raft_rmsg_read(ron_u->red_u, &msg_u); if ( ret_i < 0 ) { if ( ron_u->nam_u ) { uL(fprintf(uH, "raft: conn_work: error reading from %s\n", ron_u->nam_u->str_c)); } else { uL(fprintf(uH, "raft: conn_work: error reading\n")); } _raft_conn_dead(ron_u); break; } else if ( ret_i == 0 ) { break; } else { if ( 4 * msg_u.len_d != ret_i ) { uL(fprintf(uH, "raft: conn_work: lengths don't match\n")); c3_assert(0); } else { c3_assert(ron_u->red_u->len_w >= ret_i); memmove(ron_u->red_u->buf_y, ron_u->red_u->buf_y + ret_i, ron_u->red_u->len_w - ret_i); ron_u->red_u->len_w -= ret_i; switch ( msg_u.typ_w ) { default: { uL(fprintf(uH, "raft: work: unknown message type %x\n", msg_u.typ_w)); break; } case c3__apen: { _raft_do_apen(ron_u, &msg_u); break; } case c3__revo: { _raft_do_revo(ron_u, &msg_u); break; } case c3__rasp: { _raft_do_rasp(ron_u, &msg_u); break; } } _raft_rmsg_free(&msg_u); } } } } if ( ron_u->wri_u && ron_u->wri_u->len_w > 0 ) { uv_buf_t buf_u; struct _u2_write_t* req_u = c3_malloc(sizeof(*req_u)); req_u->buf_y = c3_malloc(ron_u->wri_u->len_w); memcpy(req_u->buf_y, ron_u->wri_u->buf_y, ron_u->wri_u->len_w); buf_u.base = (char*)req_u->buf_y; buf_u.len = ron_u->wri_u->len_w; if ( 0 != uv_write((uv_write_t*)req_u, (uv_stream_t*)&ron_u->wax_u, &buf_u, 1, _raft_write_cb) ) { uL(fprintf(uH, "raft: conn_work (write): %s\n", uv_strerror(uv_last_error(u2L)))); free(req_u->buf_y); free(req_u); } else { ron_u->wri_u->len_w = 0; } } } /* _raft_conn_read_cb(): generic connection read callback. */ static void _raft_conn_read_cb(uv_stream_t* tcp_u, ssize_t siz_i, uv_buf_t buf_u) { u2_rcon* ron_u = (u2_rcon*)tcp_u; u2_lo_open(); { if ( siz_i < 0 ) { uv_err_t las_u = uv_last_error(u2L); if ( UV_EOF != las_u.code ) { uL(fprintf(uH, "raft: read: %s\n", uv_strerror(las_u))); } _raft_conn_dead(ron_u); } else if ( siz_i == 0 ) { // do nothing } else { if ( u2_yes == ron_u->liv ) { ron_u->red_u = _raft_rbuf_grow(ron_u->red_u, (c3_y*)buf_u.base, siz_i); ron_u->red = u2_yes; _raft_conn_work(ron_u); } else uL(fprintf(uH, "XX raft: read on dead conn %p\n", ron_u)); } } free(buf_u.base); u2_lo_shut(u2_no); } /* _raft_conn_new(): allocate a new raft connection. */ static u2_rcon* _raft_conn_new(u2_raft* raf_u) { u2_rcon* ron_u = c3_malloc(sizeof(*ron_u)); uv_tcp_init(u2L, &ron_u->wax_u); ron_u->red_u = 0; ron_u->out_u = ron_u->tou_u = 0; ron_u->red_u = 0; ron_u->red = u2_no; ron_u->wri_u = 0; ron_u->nam_u = 0; ron_u->raf_u = raf_u; ron_u->nex_u = 0; ron_u->liv = u2_no; return ron_u; } /* _raft_remove_run(): remove a connection from the list of unknowns. */ static u2_bean _raft_remove_run(u2_rcon* ron_u) { u2_raft* raf_u = ron_u->raf_u; u2_bean suc = u2_no; if ( raf_u->run_u == ron_u ) { raf_u->run_u = ron_u->nex_u; suc = u2_yes; } else { u2_rcon* pre_u = raf_u->run_u; while ( pre_u ) { if ( pre_u->nex_u == ron_u ) { pre_u->nex_u = ron_u->nex_u; suc = u2_yes; break; } else pre_u = pre_u->nex_u; } } return suc; } static u2_rreq* _raft_rreq_new(u2_rcon* ron_u) { u2_rreq* req_u = c3_malloc(sizeof(*req_u)); req_u->msg_u = c3_malloc(sizeof(*req_u->msg_u)); req_u->nex_u = 0; req_u->ron_u = ron_u; if ( ron_u->tou_u ) { c3_assert(ron_u->out_u); ron_u->tou_u->nex_u = req_u; ron_u->tou_u = req_u; } else { c3_assert(0 == ron_u->out_u); ron_u->tou_u = ron_u->out_u = req_u; } return req_u; } static void _raft_rreq_free(u2_rreq* req_u) { _raft_rmsg_free(req_u->msg_u); free(req_u->msg_u); // XX free(req_u); } /* _raft_conn_free(): unlink a connection and free its resources. */ static void _raft_conn_free(uv_handle_t* had_u) { u2_rcon* ron_u = (void*)had_u; u2_raft* raf_u = ron_u->raf_u; //uL(fprintf(uH, "raft: conn_free %p\n", ron_u)); // Unlink references. if ( ron_u->nam_u ) { c3_assert(u2_no == _raft_remove_run(ron_u)); if ( ron_u->nam_u->ron_u == ron_u ) { ron_u->nam_u->ron_u = 0; } } else { u2_bean suc = _raft_remove_run(ron_u); c3_assert(u2_yes == suc); // Slow, expensive debug assert. { u2_rnam* nam_u = raf_u->nam_u; while ( nam_u ) { c3_assert(nam_u->ron_u != ron_u); nam_u = nam_u->nex_u; } } } // Free requests. { u2_rreq* req_u = ron_u->out_u; if ( 0 == req_u ) { c3_assert(0 == ron_u->tou_u); } else { while ( req_u ) { if ( 0 == req_u->nex_u ) { c3_assert(req_u == ron_u->tou_u); } ron_u->out_u = req_u->nex_u; _raft_rreq_free(req_u); req_u = ron_u->out_u; } } } free(ron_u->red_u); free(ron_u->wri_u); free(ron_u); } /* _raft_conn_dead(): kill a connection. */ static void _raft_conn_dead(u2_rcon* ron_u) { if ( u2_no == ron_u->liv ) { //uL(fprintf(uH, "raft: conn already dead %p\n", ron_u)); return; } else { uL(fprintf(uH, "raft: conn_dead %p\n", ron_u)); ron_u->liv = u2_no; } uv_read_stop((uv_stream_t*)&ron_u->wax_u); uv_close((uv_handle_t*)&ron_u->wax_u, _raft_conn_free); } /* _raft_listen_cb(): generic listen callback. */ static void _raft_listen_cb(uv_stream_t* str_u, c3_i sas_i) { u2_raft* raf_u = (u2_raft*)str_u; if ( 0 != sas_i ) { uL(fprintf(uH, "raft: listen_cb: %s\n", uv_strerror(uv_last_error(u2L)))); } else { u2_rcon* ron_u = _raft_conn_new(raf_u); if ( 0 != uv_accept((uv_stream_t*)&raf_u->wax_u, (uv_stream_t*)&ron_u->wax_u) ) { uL(fprintf(uH, "raft: accept: %s\n", uv_strerror(uv_last_error(u2L)))); uv_close((uv_handle_t*)&ron_u->wax_u, 0); free(ron_u); } else { ron_u->liv = u2_yes; uv_read_start((uv_stream_t*)&ron_u->wax_u, _raft_alloc, _raft_conn_read_cb); ron_u->nex_u = raf_u->run_u; raf_u->run_u = ron_u; } } } /* _raft_connect_cb(): generic connection callback. */ static void _raft_connect_cb(uv_connect_t* con_u, c3_i sas_i) { u2_rcon* ron_u = con_u->data; free(con_u); if ( 0 != sas_i ) { uL(fprintf(uH, "raft: connect_cb: %s\n", uv_strerror(uv_last_error(u2L)))); uv_close((uv_handle_t*)&ron_u->wax_u, _raft_conn_free); } else { c3_assert(ron_u->nam_u); uL(fprintf(uH, "raft: connected to %s\n", ron_u->nam_u->str_c)); ron_u->liv = u2_yes; uv_read_start((uv_stream_t*)&ron_u->wax_u, _raft_alloc, _raft_conn_read_cb); _raft_conn_work(ron_u); } } /* _raft_getaddrinfo_cb(): generic getaddrinfo callback. */ static void _raft_getaddrinfo_cb(uv_getaddrinfo_t* raq_u, c3_i sas_i, struct addrinfo* add_u) { struct addrinfo* res_u; uv_connect_t* con_u = c3_malloc(sizeof(*con_u)); u2_rcon* ron_u = raq_u->data; //uL(fprintf(uH, "getaddrinfo_cb %s\n", ron_u->nam_u->nam_c)); con_u->data = ron_u; for ( res_u = add_u; res_u; res_u = res_u->ai_next ) { if ( 0 != uv_tcp_connect(con_u, &ron_u->wax_u, *(struct sockaddr_in*)res_u->ai_addr, _raft_connect_cb) ) { uL(fprintf(uH, "raft: getaddrinfo_cb: %s\n", uv_strerror(uv_last_error(u2L)))); uv_close((uv_handle_t*)&ron_u->wax_u, 0); continue; } else { #if 0 c3_c add_c[17] = {'\0'}; uv_ip4_name((struct sockaddr_in*)res_u->ai_addr, add_c, 16); uL(fprintf(uH, "raft: conn %s\n", add_c)); #endif break; // Found one } } if ( !res_u ) { uL(fprintf(uH, "raft: getaddrinfo_cb: no address matched\n")); _raft_conn_free((uv_handle_t*)&ron_u->wax_u); free(con_u); } uv_freeaddrinfo(add_u); free(raq_u); } /* _raft_conn_all(): ensure that we are connected to each peer. */ static void _raft_conn_all(u2_raft* raf_u, void (*con_f)(u2_rcon* ron_u)) { u2_rnam* nam_u = raf_u->nam_u; u2_rcon* ron_u; while ( nam_u ) { if ( 0 == nam_u->ron_u || u2_no == nam_u->ron_u->liv ) { struct addrinfo hit_u; uv_getaddrinfo_t* raq_u = c3_malloc(sizeof(*raq_u)); ron_u = _raft_conn_new(raf_u); //uL(fprintf(uH, "raft: new conn to %s:%s %p\n", // nam_u->nam_c, nam_u->por_c, ron_u)); memset(&hit_u, 0, sizeof(hit_u)); hit_u.ai_family = AF_INET; hit_u.ai_socktype = SOCK_STREAM; hit_u.ai_protocol = IPPROTO_TCP; raq_u->data = ron_u; if ( 0 != uv_getaddrinfo(u2L, raq_u, _raft_getaddrinfo_cb, nam_u->nam_c, nam_u->por_c, &hit_u) ) { uL(fprintf(uH, "raft: getaddrinfo: %s\n", uv_strerror(uv_last_error(u2L)))); uv_close((uv_handle_t*)&ron_u->wax_u, 0); free(raq_u); free(ron_u); c3_assert(0); } else { ron_u->nam_u = nam_u; nam_u->ron_u = ron_u; } con_f(nam_u->ron_u); } else { //uL(fprintf(uH, "raft: existing connection %p for %s\n", // nam_u->ron_u, nam_u->str_c)); con_f(nam_u->ron_u); if ( u2_yes == nam_u->ron_u->liv ) { _raft_conn_work(nam_u->ron_u); } } nam_u = nam_u->nex_u; } } /* _raft_write_base(): Populate the base fields of a u2_rmsg. ** ** Should not be called directly. */ static void _raft_write_base(u2_rcon* ron_u, u2_rmsg* msg_u) { u2_raft* raf_u = ron_u->raf_u; msg_u->ver_w = u2_cr_mug('a'); msg_u->tem_w = raf_u->tem_w; msg_u->len_d = 5; } /* _raft_write_rest(): Write fields for an RPC request to msg_u. ** ** Should not be called directly. */ static void _raft_write_rest(u2_rcon* ron_u, c3_d lai_d, c3_w lat_w, u2_rmsg* msg_u) { u2_raft* raf_u = ron_u->raf_u; c3_assert(ron_u->nam_u); _raft_write_base(ron_u, msg_u); msg_u->rest.lai_d = lai_d; msg_u->rest.lat_w = lat_w; msg_u->rest.nam_w = 1 + strlen(raf_u->str_c) / 4; msg_u->rest.nam_c = calloc(1, 4 * msg_u->rest.nam_w); uv_strlcpy(msg_u->rest.nam_c, raf_u->str_c, 4 * msg_u->rest.nam_w); msg_u->len_d += 4 + msg_u->rest.nam_w; } /* _raft_write_apen(): Write fields for an AppendEntries request. */ static void _raft_write_apen(u2_rcon* ron_u, c3_d lai_d, c3_w lat_w, c3_d cit_d, c3_d ent_d, u2_rent* ent_u, u2_rmsg* msg_u) { _raft_write_rest(ron_u, lai_d, lat_w, msg_u); msg_u->typ_w = c3__apen; msg_u->rest.apen.cit_d = cit_d; msg_u->rest.apen.ent_d = ent_d; msg_u->len_d += 4; msg_u->rest.apen.ent_u = ent_u; { c3_d i_d; for ( i_d = 0; i_d < ent_d; i_d++ ) { msg_u->len_d += 3 + ent_u[i_d].len_w; } } } /* _raft_write_revo(): Write fields for a RequestVote request. */ static void _raft_write_revo(u2_rcon* ron_u, u2_rmsg* msg_u) { u2_raft* raf_u = ron_u->raf_u; _raft_write_rest(ron_u, raf_u->ent_d, raf_u->lat_w, msg_u); msg_u->typ_w = c3__revo; } /* _raft_send_rasp(): Send a rasp (raft response) to a peer. */ static void _raft_send_rasp(u2_rcon* ron_u, c3_t suc_t) { u2_rmsg msg_u; _raft_write_base(ron_u, &msg_u); msg_u.typ_w = c3__rasp; msg_u.rasp.suc_w = suc_t; msg_u.len_d += 1; _raft_rmsg_send(ron_u, &msg_u); } /* _raft_send_beat(): send a heartbeat (empty AppendEntries) to a peer. ** ** Creates a new request. */ static void _raft_send_beat(u2_rcon* ron_u) { u2_rreq* req_u = _raft_rreq_new(ron_u); u2_rmsg* msg_u = req_u->msg_u; c3_log_every(50, "raft: beat 50\n"); _raft_write_apen(ron_u, 0, 0, 0, 0, 0, msg_u); _raft_rmsg_send(ron_u, msg_u); } /* _raft_send_revo(): send a RequestVote to a peer. ** ** Creates a new request. */ static void _raft_send_revo(u2_rcon* ron_u) { u2_rreq* req_u = _raft_rreq_new(ron_u); u2_rmsg* msg_u = req_u->msg_u; _raft_write_revo(ron_u, msg_u); _raft_rmsg_send(ron_u, msg_u); } /* _raft_start_election(): bump term, vote for self, solicit votes from peers. */ static void _raft_start_election(u2_raft* raf_u) { c3_i sas_i; c3_assert(0 == uv_is_active((uv_handle_t*)&raf_u->tim_u)); sas_i = uv_timer_start(&raf_u->tim_u, _raft_time_cb, _raft_election_rand(), 0); c3_assert(sas_i == 0); raf_u->tem_w++; u2_sist_put("term", (c3_y*)&raf_u->tem_w, sizeof(c3_w)); uL(fprintf(uH, "raft: starting election [tem:%d]\n", raf_u->tem_w)); { u2_rnam* nam_u; for ( nam_u = raf_u->nam_u; nam_u; nam_u = nam_u->nex_u ) { nam_u->vog = u2_no; } } raf_u->vot_w = 1; raf_u->vog_c = raf_u->str_c; u2_sist_put("vote", (c3_y*)raf_u->vog_c, strlen(raf_u->vog_c)); _raft_conn_all(raf_u, _raft_send_revo); } /* _raft_heartbeat(): send a heartbeat to all peers. */ static void _raft_heartbeat(u2_raft* raf_u) { _raft_conn_all(raf_u, _raft_send_beat); } /* _raft_time_cb(): generic timer callback. ** ** Called on election timeouts for non-leaders, and at heartbeat interval for ** leaders. */ static void _raft_time_cb(uv_timer_t* tim_u, c3_i sas_i) { u2_raft* raf_u = tim_u->data; //uL(fprintf(uH, "raft: time\n")); c3_assert(sas_i == 0); switch ( raf_u->typ_e ) { default: { uL(fprintf(uH, "raft: time_cb: unknown server state\n")); c3_assert(0); } case u2_raty_foll: { uL(fprintf(uH, "raft: foll -> cand\n")); raf_u->typ_e = u2_raty_cand; // continue to cand } case u2_raty_cand: { _raft_start_election(raf_u); break; } case u2_raty_lead: { _raft_heartbeat(raf_u); break; } } } /* _raft_foll_init(): begin, follower mode. */ static void _raft_foll_init(u2_raft* raf_u) { uL(fprintf(uH, "raft: none -> foll\n")); raf_u->typ_e = u2_raty_foll; // Initialize and count peers. { u2_rnam* nam_u = u2_raft_readopt(u2_Host.ops_u.raf_c, u2_Host.ops_u.nam_c, u2_Host.ops_u.rop_s); if ( 0 == nam_u ) { uL(fprintf(uH, "raft: couldn't parse arg '%s'\n", u2_Host.ops_u.raf_c)); u2_lo_bail(u2A); } raf_u->pop_w = 1; raf_u->nam_u = nam_u; while ( nam_u ) { raf_u->pop_w++; nam_u = nam_u->nex_u; } } // Set our name. { c3_i wri_i, siz_i; siz_i = strlen(u2_Host.ops_u.nam_c) + strlen(":65536") + 1; raf_u->str_c = c3_malloc(siz_i); wri_i = snprintf(raf_u->str_c, siz_i, "%s:%d", u2_Host.ops_u.nam_c, u2_Host.ops_u.rop_s); c3_assert(wri_i < siz_i); } // Load persisted settings. { c3_w tem_w = 0; c3_c* vog_c = 0; c3_i ret_i; if ( (ret_i = u2_sist_has("term")) >= 0 ) { c3_assert(sizeof(c3_w) == ret_i); u2_sist_get("term", (c3_y*)&tem_w); uL(fprintf(uH, "raft: term from sist: %u\n", tem_w)); } if ( (ret_i = u2_sist_has("vote")) >= 0 ) { c3_assert(ret_i > 0); vog_c = c3_malloc(ret_i); u2_sist_get("vote", (c3_y*)vog_c); uL(fprintf(uH, "raft: vote from sist: %s\n", vog_c)); } raf_u->tem_w = tem_w; if ( vog_c ) { if ( 0 == strcmp(vog_c, raf_u->str_c) ) { raf_u->vog_c = raf_u->str_c; raf_u->vot_w = 1; raf_u->typ_e = u2_raty_cand; } else { u2_rnam* nam_u; for ( nam_u = raf_u->nam_u; nam_u; nam_u = nam_u->nex_u ) { if ( 0 == strcmp(vog_c, nam_u->str_c) ) { raf_u->vog_c = nam_u->str_c; break; } } if ( 0 == nam_u ) { uL(fprintf(uH, "raft: discarding unknown vote %s\n", vog_c)); } } free(vog_c); } } // Bind the listener. { struct sockaddr_in add_u = uv_ip4_addr("0.0.0.0", u2_Host.ops_u.rop_s); if ( 0 != uv_tcp_init(u2L, &raf_u->wax_u) ) { uL(fprintf(uH, "raft: init: %s\n", uv_strerror(uv_last_error(u2L)))); c3_assert(0); } if ( 0 != uv_tcp_bind(&raf_u->wax_u, add_u) ) { uL(fprintf(uH, "raft: bind: %s\n", uv_strerror(uv_last_error(u2L)))); c3_assert(0); } if ( 0 != uv_listen((uv_stream_t*)&raf_u->wax_u, 16, _raft_listen_cb) ) { uL(fprintf(uH, "raft: listen: %s\n", uv_strerror(uv_last_error(u2L)))); c3_assert(0); } else { uL(fprintf(uH, "raft: on TCP %d\n", u2_Host.ops_u.rop_s)); } } // Start the initial election timeout. uv_timer_start(&raf_u->tim_u, _raft_time_cb, _raft_election_rand(), 0); } /* _raft_lone_init(): begin, single-instance mode. */ static void _raft_lone_init(u2_raft* raf_u) { uL(fprintf(uH, "raft: single-instance mode\n")); raf_u->pop_w = 1; _raft_promote(raf_u); } /* u2_raft_init(): start Raft process. */ void u2_raft_init() { u2_raft* raf_u = u2R; // Initialize timer -- used in both single and multi-instance mode, // for different things. uv_timer_init(u2L, &raf_u->tim_u); raf_u->tim_u.data = raf_u; if ( 0 == u2_Host.ops_u.raf_c ) { _raft_lone_init(raf_u); } else { _raft_foll_init(raf_u); } } /* _raft_sure(): apply and save an input ovum and its result. */ static void _raft_sure(u2_reck* rec_u, u2_noun ovo, u2_noun vir, u2_noun cor) { // Whatever worked, save it. (XX - should be concurrent with execute.) // We'd like more events that don't change the state but need work here. { u2_mug(cor); u2_mug(rec_u->roc); if ( u2_no == u2_sing(cor, rec_u->roc) ) { rec_u->roe = u2nc(u2nc(vir, ovo), rec_u->roe); u2z(rec_u->roc); rec_u->roc = cor; } else { u2z(ovo); rec_u->roe = u2nc(u2nc(vir, u2_nul), rec_u->roe); u2z(cor); } } } /* _raft_lame(): handle an application failure. */ static void _raft_lame(u2_reck* rec_u, u2_noun ovo, u2_noun why, u2_noun tan) { u2_noun bov, gon; #if 1 { c3_c* oik_c = u2_cr_string(u2h(u2t(ovo))); // uL(fprintf(uH, "lame: %s\n", oik_c)); free(oik_c); } #endif // Formal error in a network packet generates a hole card. // // There should be a separate path for crypto failures, // to prevent timing attacks, but isn't right now. To deal // with a crypto failure, just drop the packet. // if ( (c3__exit == why) && (c3__hear == u2h(u2t(ovo))) ) { u2_lo_punt(2, u2_ckb_flop(u2k(tan))); bov = u2nc(u2k(u2h(ovo)), u2nc(c3__hole, u2k(u2t(u2t(ovo))))); u2z(why); } else { bov = u2nc(u2k(u2h(ovo)), u2nt(c3__crud, why, u2k(tan))); u2_hevn_at(lad) = u2_nul; } // u2_lo_show("data", u2k(u2t(u2t(ovo)))); u2z(ovo); gon = u2_lo_soft(rec_u, 0, u2_reck_poke, u2k(bov)); if ( u2_blip == u2h(gon) ) { _raft_sure(rec_u, bov, u2k(u2h(u2t(gon))), u2k(u2t(u2t(gon)))); u2z(gon); } else { u2z(gon); { u2_noun vab = u2nc(u2k(u2h(bov)), u2nc(c3__warn, u2_ci_tape("crude crash!"))); u2_noun nog = u2_lo_soft(rec_u, 0, u2_reck_poke, u2k(vab)); if ( u2_blip == u2h(nog) ) { _raft_sure(rec_u, vab, u2k(u2h(u2t(nog))), u2k(u2t(u2t(nog)))); u2z(nog); } else { u2z(nog); u2z(vab); uL(fprintf(uH, "crude: all delivery failed!\n")); } } } } /* _raft_punk(): insert and apply an input ovum (unprotected). */ static void _raft_punk(u2_reck* rec_u, u2_noun ovo) { // c3_c* txt_c = u2_cr_string(u2h(u2t(ovo))); c3_w sec_w; // static c3_w num_w; u2_noun gon; // uL(fprintf(uH, "punk: %s: %d\n", u2_cr_string(u2h(u2t(ovo))), num_w++)); // XX this is wrong - the timer should be on the original hose. // if ( (c3__term == u2h(u2t(u2h(ovo)))) || (c3__batz == u2h(u2t(u2h(ovo)))) ) { sec_w = 0; } else sec_w = 60; // Control alarm loops. // if ( c3__wake != u2h(u2t(ovo)) ) { u2_Host.beh_u.run_w = 0; } gon = u2_lo_soft(rec_u, sec_w, u2_reck_poke, u2k(ovo)); if ( u2_blip != u2h(gon) ) { u2_noun why = u2k(u2h(gon)); u2_noun tan = u2k(u2t(gon)); u2z(gon); _raft_lame(rec_u, ovo, why, tan); } else { u2_noun vir = u2k(u2h(u2t(gon))); u2_noun cor = u2k(u2t(u2t(gon))); u2_noun nug; u2z(gon); nug = u2_reck_nick(rec_u, vir, cor); if ( u2_blip != u2h(nug) ) { u2_noun why = u2k(u2h(nug)); u2_noun tan = u2k(u2t(nug)); u2z(nug); _raft_lame(rec_u, ovo, why, tan); } else { vir = u2k(u2h(u2t(nug))); cor = u2k(u2t(u2t(nug))); u2z(nug); _raft_sure(rec_u, ovo, vir, cor); } } // uL(fprintf(uH, "punk oot %s\n", txt_c)); } static void _raft_comm(u2_reck* rec_u, c3_d bid_d) { u2_cart* egg_u; u2_lo_open(); egg_u = rec_u->ova.egg_u; while ( egg_u ) { if ( egg_u->ent_d <= bid_d ) { egg_u->did = u2_yes; egg_u->cit = u2_yes; } else break; egg_u = egg_u->nex_u; } u2_lo_shut(u2_yes); } static void _raft_comm_cb(uv_timer_t* tim_u, c3_i sas_i) { u2_raft* raf_u = tim_u->data; _raft_comm(u2A, raf_u->ent_d); } static c3_d _raft_push(u2_raft* raf_u, c3_w* bob_w, c3_w len_w) { c3_assert(raf_u->typ_e == u2_raty_lead); c3_assert(0 != bob_w && 0 < len_w); if ( 1 == raf_u->pop_w ) { c3_assert(u2_raty_lead == raf_u->typ_e); raf_u->ent_d = u2_sist_pack(u2A, raf_u->tem_w, c3__ov, bob_w, len_w); raf_u->lat_w = raf_u->tem_w; // XX if ( !uv_is_active((uv_handle_t*)&raf_u->tim_u) ) { uv_timer_start(&raf_u->tim_u, _raft_comm_cb, 0, 0); } return raf_u->ent_d; } else { // TODO uL(fprintf(uH, "raft: multi-instance push\n")); c3_assert(0); } } /* _raft_kick_all(): kick a list of events, transferring. */ static void _raft_kick_all(u2_reck* rec_u, u2_noun vir) { while ( u2_nul != vir ) { u2_noun ovo = u2k(u2h(vir)); u2_noun nex = u2k(u2t(vir)); u2z(vir); vir = nex; u2_reck_kick(rec_u, ovo); } } /* u2_raft_work(): work in rec_u. */ void u2_raft_work(u2_reck* rec_u) { if ( u2R->typ_e != u2_raty_lead ) { c3_assert(rec_u->ova.egg_u == 0); if ( u2_nul != rec_u->roe ) { uL(fprintf(uH, "raft: dropping roe!!\n")); u2z(rec_u->roe); rec_u->roe = u2_nul; } } else { u2_cart* egg_u; u2_noun ova; u2_noun vir; u2_noun nex; // Apply effects from just-committed events, and delete finished events. // while ( rec_u->ova.egg_u ) { egg_u = rec_u->ova.egg_u; if ( u2_yes == egg_u->did ) { vir = egg_u->vir; if ( egg_u == rec_u->ova.geg_u ) { c3_assert(egg_u->nex_u == 0); rec_u->ova.geg_u = rec_u->ova.egg_u = 0; free(egg_u); } else { c3_assert(egg_u->nex_u != 0); rec_u->ova.egg_u = egg_u->nex_u; free(egg_u); } if ( u2_yes == egg_u->cit ) { _raft_kick_all(rec_u, vir); } else { // We poked an event, but Raft failed to persist it. // TODO: gracefully recover. uL(fprintf(uH, "vere: event executed but not persisted\n")); c3_assert(0); } } else break; } // Poke pending events, leaving the poked events and errors on rec_u->roe. // { if ( 0 == u2R->lug_u.len_d ) { return; } ova = u2_ckb_flop(rec_u->roe); rec_u->roe = u2_nul; while ( u2_nul != ova ) { _raft_punk(rec_u, u2k(u2t(u2h(ova)))); c3_assert(u2_nul == u2h(u2h(ova))); nex = u2k(u2t(ova)); u2z(ova); ova = nex; } } // Cartify, jam, and encrypt this batch of events. Take a number, Raft will // be with you shortly. { c3_d bid_d; c3_w len_w; c3_w* bob_w; u2_noun ron; u2_noun ovo; ova = u2_ckb_flop(rec_u->roe); rec_u->roe = u2_nul; while ( u2_nul != ova ) { ovo = u2k(u2t(u2h(ova))); vir = u2k(u2h(u2h(ova))); nex = u2k(u2t(ova)); u2z(ova); ova = nex; if ( u2_nul != ovo ) { egg_u = c3_malloc(sizeof(*egg_u)); egg_u->nex_u = 0; egg_u->cit = u2_no; egg_u->did = u2_no; egg_u->vir = vir; ron = u2_cke_jam(u2nc(u2k(rec_u->now), ovo)); c3_assert(rec_u->key); ron = u2_dc("en:crya", u2k(rec_u->key), ron); len_w = u2_cr_met(5, ron); bob_w = c3_malloc(len_w * 4L); u2_cr_words(0, len_w, bob_w, ron); u2z(ron); bid_d = _raft_push(u2R, bob_w, len_w); egg_u->ent_d = bid_d; if ( 0 == rec_u->ova.geg_u ) { c3_assert(0 == rec_u->ova.egg_u); rec_u->ova.geg_u = rec_u->ova.egg_u = egg_u; } else { c3_assert(0 == rec_u->ova.geg_u->nex_u); rec_u->ova.geg_u->nex_u = egg_u; rec_u->ova.geg_u = egg_u; } } else { _raft_kick_all(rec_u, vir); } } } } }