:: protocol-version: current version of the ames wire protocol :: =/ protocol-version=?(%0 %1 %2 %3 %4 %5 %6 %7) %0 :: |% +| %generics :: $mk-item: constructor for +ordered-map item type :: +* mk-item [key val] [key=key val=val] :: +ordered-map: treap with user-specified horizontal order :: :: Conceptually smaller items go on the left, so the item with the :: smallest key can be popped off the head. If $key is `@` and :: .compare is +lte, then the numerically smallest item is the head. :: ++ ordered-map |* [key=mold val=mold] => |% +$ item (mk-item key val) -- :: +compare: item comparator for horizontal order :: |= compare=$-([key key] ?) |% :: +check-balance: verify horizontal and vertical orderings :: ++ check-balance =| [l=(unit key) r=(unit key)] |= a=(tree item) ^- ? :: empty tree is valid :: ?~ a %.y :: nonempty trees must maintain several criteria :: ?& :: if .n.a is left of .u.l, assert horizontal comparator :: ?~(l %.y (compare key.n.a u.l)) :: if .n.a is right of .u.r, assert horizontal comparator :: ?~(r %.y (compare u.r key.n.a)) :: if .a is not leftmost element, assert vertical order between :: .l.a and .n.a and recurse to the left with .n.a as right :: neighbor :: ?~(l.a %.y &((mor key.n.a key.n.l.a) $(a l.a, l `key.n.a))) :: if .a is not rightmost element, assert vertical order :: between .r.a and .n.a and recurse to the right with .n.a as :: left neighbor :: ?~(r.a %.y &((mor key.n.a key.n.r.a) $(a r.a, r `key.n.a))) == :: +put: ordered item insert :: ++ put |= [a=(tree item) =key =val] ^- (tree item) :: base case: replace null with single-item tree :: ?~ a [n=[key val] l=~ r=~] :: base case: overwrite existing .key with new .val :: ?: =(key.n.a key) a(val.n val) :: if item goes on left, recurse left then rebalance vertical order :: ?: (compare key key.n.a) =/ l $(a l.a) ?> ?=(^ l) ?: (mor key.n.a key.n.l) a(l l) l(r a(l r.l)) :: item goes on right; recurse right then rebalance vertical order :: =/ r $(a r.a) ?> ?=(^ r) ?: (mor key.n.a key.n.r) a(r r) r(l a(r l.r)) :: +peek: produce head (smallest item) or null :: ++ peek |= a=(tree item) ^- (unit item) :: ?~ a ~ ?~ l.a `n.a $(a l.a) :: +pop: produce .head (smallest item) and .rest or crash if empty :: ++ pop |= a=(tree item) ^- [head=item rest=(tree item)] :: ?~ a !! ?~ l.a [n.a r.a] :: =/ l $(a l.a) :- head.l :: load .rest.l back into .a and rebalance :: ?: |(?=(~ rest.l) (mor key.n.a key.n.rest.l)) a(l rest.l) rest.l(r a(r r.rest.l)) :: :: ++ trav |= [a=(tree item) start=key f=$-(item [val ?])] =| visited=(list key) =/ stop=? %.n =< abet =< apse |% ++ abet a ++ self . ++ apse ^+ . ?~ a . ?: stop . ?. (compare start key.n.a) ?~(r.a . rigt) => left =< ?. stop rigt self ?: stop self ?> ?=(^ a) =^ res stop (f n.a) =. visited [key.n.a visited] ~& visited=(flop visited) =. val.n.a res self ++ left ?> ?=(^ a) ^+ . =/ lef apse(a l.a) lef(a a(l a.lef)) ++ rigt ?> ?=(^ a) ^+ . =/ rig apse(a r.a) rig(a a(r a.rig)) -- :: :: ++ traverse => |% +$ frame [?(%l %r) (tree item)] -- =| stack=(list frame) =/ stop=? %.n :: |* state=mold :: |= $: a=(tree item) start=key =state $= f $- [state item] [[stop=? new-val=(unit val)] state] == ^- [^state (tree item)] :: |^ => dig => rip => unwind [state a] :: ++ self . ++ push-l ~& %push-l^`path`(turn stack head) =. stack [[%l a] stack] ?> ?=(^ a) self(a l.a) ++ push-r ~& %push-r^`path`(turn stack head) ?> ?=(^ a) =. stack [[%r a] stack] self(a r.a) ++ pop =- ~& `path`/pop/[-.-] - ?> ?=(^ stack) =/ =frame i.stack =. a =/ b +.frame ?> ?=(^ b) ?- -.frame %l b(l a) %r b(r a) == [-.frame self(stack t.stack)] ++ unwind ^+ self ?: =(~ stack) self =. self +:pop unwind :: starting from root, find .start item :: ++ dig ~& %dig ?~ a self :: ?: =(start key.n.a) self => ?: (compare start key.n.a) push-l push-r dig :: traverse left-to-right, applying .f until .stop :: ++ rip ^+ self ~& %rip :: ?: =(~ a) self =. self rip-node :: ?: stop ~& %rip-stop self ?: ?=([* * r=^] a) ~& %rip-push => push-r rip => .(a `(tree item)`a) :: |- ^+ self ?: =(~ stack) ~& %rip-stack-gone self =^ direction self pop ?- direction %l ~& %rip-popped-l => push-r rip :: %r ~& %rip-popped-r $ == :: apply .f to a single node, updating .state, .stop, and .a :: ++ rip-node ^+ self ~& %rip-node :: ?> ?=(^ a) :: run .f, mutating .state and .stop and producing .new-val :: =^ res state (f state n.a) =. stop stop.res :: =/ b :: replace .val.n.a; does not affect ordering :: ?^ new-val.res a(val.n u.new-val.res) :: delete .n.a; merge and balance .l.a and .r.a :: |- ^- (tree item) ?~ l.a r.a ?~ r.a l.a ?: (mor key.n.l.a key.n.r.a) l.a(r $(l.a r.l.a)) r.a(l $(r.a l.r.a)) :: self(a b) -- :: +sift: remove and produce all items matching .reject predicate :: :: Unrolls to a list, extracts items, then rolls back into a tree. :: Removed items are produced smallest to largest. :: ++ sift |= [a=(tree item) reject=$-(item ?)] ^- [lost=(list item) kept=(tree item)] :: =+ [l k]=(skid (tap a) reject) [l (gas ~ k)] :: +tap: convert to list, smallest to largest :: ++ tap |= a=(tree item) ^- (list item) :: =| b=(list item) |- ^+ b ?~ a b :: $(a l.a, b [n.a $(a r.a)]) :: +gas: put a list of items :: ++ gas |= [a=(tree item) b=(list item)] ^- (tree item) :: ?~ b a $(b t.b, a (put a i.b)) -- :: +ordered-set: treap with user-specified horizontal order :: :: Conceptually smaller items go on the left, so the smallest item :: can be popped off the head. If $item is `@` and .compare is +lte, :: then the numerically smallest item is the head. :: ++ ordered-set |* item=mold :: +compare: item comparator for horizontal order :: |= compare=$-([item item] ?) |% :: +check-balance: verify horizontal and vertical orderings :: ++ check-balance =| [l=(unit item) r=(unit item)] |= a=(tree item) ^- ? :: empty tree is valid :: ?~ a %.y :: nonempty trees must maintain several criteria :: ?& :: if .n.a is left of .u.l, assert horizontal comparator :: ?~(l %.y (compare n.a u.l)) :: if .n.a is right of .u.r, assert horizontal comparator :: ?~(r %.y (compare u.r n.a)) :: if .a is not leftmost element, assert vertical order between :: .l.a and .n.a and recurse to the left with .n.a as right :: neighbor :: ?~(l.a %.y &((mor n.a n.l.a) $(a l.a, l `n.a))) :: if .a is not rightmost element, assert vertical order :: between .r.a and .n.a and recurse to the right with .n.a as :: left neighbor :: ?~(r.a %.y &((mor n.a n.r.a) $(a r.a, r `n.a))) == :: +put: ordered item insert :: ++ put |= [a=(tree item) =item] ^- (tree ^item) :: base case: replace null with single-item tree :: ?~ a [n=item l=~ r=~] :: base case: ignore duplicate :: ?: =(n.a item) a :: if item goes on left, recurse left then rebalance vertical order :: ?: (compare item n.a) =/ l $(a l.a) ?> ?=(^ l) ?: (mor n.a n.l) a(l l) l(r a(l r.l)) :: item goes on right; recurse right then rebalance vertical order :: =/ r $(a r.a) ?> ?=(^ r) ?: (mor n.a n.r) a(r r) r(l a(r l.r)) :: +peek: produce head (smallest item) or null :: ++ peek |= a=(tree item) ^- (unit item) :: ?~ a ~ ?~ l.a `n.a $(a l.a) :: +pop: produce .head (smallest item) and .rest or crash if empty :: ++ pop |= a=(tree item) ^- [head=item rest=(tree item)] :: ?~ a !! ?~ l.a [n.a r.a] :: =/ l $(a l.a) :- head.l :: load .rest.l back into .a and rebalance :: ?: |(?=(~ rest.l) (mor n.a n.rest.l)) a(l rest.l) rest.l(r a(r r.rest.l)) :: +sift: remove and produce all items matching .reject predicate :: :: Unrolls to a list, extracts items, then rolls back into a tree. :: Removed items are produced smallest to largest. :: ++ sift |= [a=(tree item) reject=$-(item ?)] ^- [lost=(list item) kept=(tree item)] :: =+ [l k]=(skid (tap a) reject) [l (gas ~ k)] :: +tap: convert to list, smallest to largest :: ++ tap |= a=(tree item) ^- (list item) :: =| b=(list item) |- ^+ b ?~ a b :: $(a l.a, b [n.a $(a r.a)]) :: +gas: put a list of items :: ++ gas |= [a=(tree item) b=(list item)] ^- (tree item) :: ?~ b a $(b t.b, a (put a i.b)) -- :: +| %atomics :: +$ blob @uxblob +$ bone @udbone +$ fragment @uwfragment +$ fragment-num @udfragmentnum +$ lane @uxlane +$ message-num @udmessagenum +$ public-key @uwpublickey +$ signature @uwsignature +$ symmetric-key @uwsymmetrickey :: $rank: which kind of ship address, by length :: :: 0: galaxy or star -- 2 bytes :: 1: planet -- 4 bytes :: 2: moon -- 8 bytes :: 3: comet -- 16 bytes :: +$ rank ?(%0 %1 %2 %3) :: +| %kinetics :: :: $channel: combined sender and receiver identifying data :: +$ channel $: [our=ship her=ship] now=@da :: our data, common to all dyads :: $: =our=life crypto-core=acru:ames == :: her data, specific to this dyad :: $: =symmetric-key =her=life =her=public-key her-sponsors=(list ship) == == :: $dyad: pair of sender and receiver ships :: +$ dyad [sndr=ship rcvr=ship] :: +$ error [tag=@tas =tang] :: $message: application-level message :: :: path: internal route on the receiving ship :: payload: semantic message contents :: +$ message [=path payload=*] :: $packet: noun representation of an ames datagram packet :: :: Roundtrips losslessly through atom encoding and decoding. :: :: .origin is ~ unless the packet is being forwarded. If present, :: it's an atom that encodes a route to another ship, such as an IPv4 :: address. Routes are opaque to Arvo and only have meaning in the :: interpreter. This enforces that Ames is transport-agnostic. :: +$ packet [dyad encrypted=? origin=(unit lane) content=*] :: $open-packet: unencrypted packet payload, for comet self-attestation :: +$ open-packet $: =signature =sndr=life =rcvr=life rcvr=ship == :: $shut-packet: encrypted packet payload :: +$ shut-packet $: =sndr=life =rcvr=life =bone =message-num meat=(each fragment-meat ack-meat) == :: $fragment-meat: contents of a message-fragment packet :: +$ fragment-meat $: num-fragments=fragment-num =fragment-num =fragment == :: $ack-meat: contents of an acknowledgment packet; fragment or message :: :: Fragment acks reference the $fragment-num of the target packet. :: :: Message acks contain a success flag .ok, which is %.n in case of :: negative acknowledgment (nack), along with .lag that describes the :: time it took to process the message. .lag is zero if the message :: was processed during a single Arvo event. At the moment, .lag is :: always zero. :: +$ ack-meat (each fragment-num [ok=? lag=@dr]) :: +| %statics :: :: $ames-state: state for entire vane :: +$ ames-state $: peers=(map ship ship-state) =life crypto-core=acru:ames == :: $ship-state: all we know about a peer :: :: %alien: no PKI data, so enqueue actions to perform once we learn it :: %known: we know their life and public keys, so we have a channel :: +$ ship-state $% [%alien pending-requests] [%known peer-state] == :: $pending-requests: what to do when we learn a peer's life and keys :: :: rcv-packets: packets we've received from unix :: snd-messages: messages local vanes have asked us to send :: +$ pending-requests $: rcv-packets=(list [=lane =packet]) snd-messages=(list [=duct =message]) == :: $peer-state: state for a peer with known life and keys :: :: route: transport-layer destination for packets to peer :: ossuary: bone<->duct mapper :: snd: per-bone message pumps to send messages as fragments :: rcv: per-bone message stills to assemble messages from fragments :: nax: unprocessed nacks (negative acknowledgments) :: Each value is ~ when we've received the ack packet but not a :: naxplanation, or an error when we've received a naxplanation :: but not the ack packet. :: :: When we hear a nack packet or an explanation, if there's no :: entry in .nax, we make a new entry. Otherwise, if this new :: information completes the packet+naxplanation, we remove the :: entry and emit a nack to the local vane that asked us to send :: the message. :: +$ peer-state $: $: =symmetric-key =life =public-key sponsors=(list ship) == route=(unit [direct=? =lane]) =ossuary snd=(map bone message-pump-state) rcv=(map bone message-still-state) nax=(map [=bone =message-num] (unit error)) == :: $ossuary: bone<->duct bijection and .next-bone to map to a duct :: +$ ossuary $: =next=bone by-duct=(map duct bone) by-bone=(map bone duct) == :: $message-pump-state: persistent state for |message-pump :: :: Messages queue up in |message-pump's .unsent-messages until they :: can be packetized and fed into |packet-pump for sending. When we :: pop a message off .unsent-messages, we push as many fragments as :: we can into |packet-pump, then place the remaining in :: .unsent-fragments. We also insert an entry in .unacked-fragments :: initialized with the total number of fragments in the message. :: :: When we hear a packet ack, we send it to |packet-pump. If we :: haven't seen it before, |packet-pump reports the fresh ack. We :: then decrement that message's entry in .unacked-fragments. :: :: When we hear a message ack (positive or negative), we treat that :: as though all fragments have been acked. If this message is not :: .current, then it's a future message and .current has not yet been :: acked, so we place the message in .queued-message-acks. :: :: If we hear a message ack before we've sent all the :: fragments for that message, clear .unsent-fragments. If the :: message ack was positive, print it out because it indicates the :: peer is not behaving properly. :: :: If the ack is for the current message, emit the message ack, :: increment .current, and check if this next message is in :: .queued-message-acks. If it is, emit the message (n)ack, :: increment .current, and check the next message. Repeat until :: .current is not fully acked. :: :: When we hear a message nack, we send it to |packet-pump, which :: deletes all packets from that message. If .current gets nacked, :: clear .unsent-fragments and go into the same flow as when we hear :: the last packet ack on a message. :: :: The following equation is always true: :: .next - .current == number of messages in flight :: :: At the end of a task, |message-pump sends a %flush task to :: |packet-pump, which can trigger a timer to be set or cleared based :: on congestion control calculations. When it fires, the timer will :: generally cause one or more packets to be resent. :: :: current: sequence number of message being sent :: next: sequence number of next message to send :: unsent-messages: messages to be sent after current message :: unsent-fragments: fragments of current message waiting for sending :: unacked-fragments: number of fragments waiting on ack :: queued-message-acks: future message acks to be applied after current :: packet-pump-state: state of corresponding |packet-pump :: +$ message-pump-state $: current=message-num next=message-num unsent-messages=(qeu message) unsent-fragments=(list static-fragment) queued-message-acks=(map message-num ok=?) =packet-pump-state == :: $packet-pump-state: persistent state for |packet-pump :: :: next-wake: last timer we've set, or null :: live: packets in flight; sent but not yet acked :: lost: packets to retry, since they timed out with no ack :: pump-metrics: congestion control information :: +$ packet-pump-state $: next-wake=(unit @da) live=(tree live-fragment) lost=(tree static-fragment) =pump-metrics == +$ pump-metrics $: num-live=@ud num-lost=@ud last-sent-at=@da last-dead-at=@da rtt=@dr max-live=@ud == +$ live-fragment $: sent-at=@da dead-at=@da retried=? static-fragment == +$ static-fragment $: =message-num num-fragments=fragment-num =fragment-num =fragment == :: $message-still-state: state of |message-still to assemble messages :: :: last-acked: highest $message-num we've fully acknowledged :: last-heard: highest $message-num we've heard all fragments on :: pending-vane-ack: heard but not processed by local vane :: live-messages: partially received messages :: naxplanations: enqueued nack diagnostics :: +$ message-still-state $: last-acked=message-num last-heard=message-num pending-vane-ack=(qeu [=message-num =message]) live-messages=(map message-num partial-rcv-message) == :: $partial-rcv-message: message for which we've received some fragments :: :: num-fragments: total number of fragments in this message :: num-received: how many fragments we've received so far :: fragments: fragments we've received, eventually producing a $message :: +$ partial-rcv-message $: num-fragments=fragment-num num-received=fragment-num fragments=(map fragment-num fragment) == :: +| %dialectics :: :: $move: output effect; either request or response :: +$ move [=duct card=(wind note gift)] :: :: $task: job for ames :: :: %born: process restart notification :: %crud: crash report :: %hear: packet from unix :: %hole: report that packet handling crashed :: %init: vane boot :: %sunk: a ship breached and has a new .rift :: %vega: kernel reload notification :: %wegh: request for memory usage report :: %west: request to send message :: +$ task $% [%born ~] [%crud =error] [%hear =lane =blob] [%hole =lane =blob] [%init =ship] [%sunk =ship =rift] [%vega ~] [%wegh ~] [%west =ship =message] == :: $gift: effect from ames :: :: %east: message to vane from peer :: %send: packet to unix :: %rest: notify vane that peer (n)acked our message :: +$ gift $% [%east payload=*] [%send =lane =blob] [%rest error=(unit error)] == :: $note: request to other vane :: :: TODO: specialize gall interface for subscription management :: +$ note $% $: %b $% [%wait date=@da] [%rest date=@da] == == $: %c $% [%west =ship =message] == == $: %g $% [%west =ship =message] == == $: %j $% [%pubs =ship] [%turf ~] [%west =ship =message] [%vein ~] == == == :: $sign: response from other vane :: +$ sign $% $: %b $% [%wake error=(unit tang)] == == $: %j $% [%pubs public:able:jael] [%turf turf=(list turf)] [%vein =life vein=(map life ring)] == == == :: $message-pump-task: job for |message-pump :: :: %send: packetize and send application-level message :: %hear-fragment-ack: deal with a packet acknowledgment :: %hear-message-ack: deal with message negative acknowledgment :: %wake: handle timer firing :: +$ message-pump-task $% [%send =message] [%hear-fragment-ack =message-num =fragment-num] [%hear-message-ack =message-num ok=? lag=@dr] [%wake ~] == :: $message-pump-gift: effect from |message-pump :: :: %ack-message: report message acknowledgment :: %send: emit message fragment :: %wait: set a new timer at .date :: %rest: cancel timer at .date :: +$ message-pump-gift $% [%ack-message =message-num ok=?] [%send =static-fragment] [%wait date=@da] [%rest date=@da] == :: $packet-pump-task: job for |packet-pump :: :: %hear-fragment-ack: deal with a packet acknowledgment :: %hear-message-ack: deal with message acknowledgment :: %finalize: finish event, possibly updating timer :: %wake: handle timer firing :: +$ packet-pump-task $% [%hear-fragment-ack =message-num =fragment-num] [%hear-message-ack =message-num lag=@dr] [%finalize ~] [%wake ~] == :: $packet-pump-gift: effect from |packet-pump :: :: %send: emit message fragment :: %wait: set a new timer at .date :: %rest: cancel timer at .date :: +$ packet-pump-gift $% [%send =static-fragment] [%wait date=@da] [%rest date=@da] == :: $message-still-task: job for |message-still :: :: %hear: handle receiving a message fragment packet :: %done: receive confirmation from vane of processing completion or :: failure with diagnostic :: +$ message-still-task $% [%hear =lane =shut-packet] [%done =message-num error=(unit error)] == :: $message-still-gift: effect from |message-still :: :: %hear-message: $message assembled from received packets, to be :: sent to a local vane for processing :: %ack-fragment: emit ack in response to heard fragment :: %ack-message: emit ack in response to message processing :: +$ message-still-gift $% [%hear-message =message] [%ack-fragment =message-num =fragment-num] [%ack-message =message-num ok=? lag=@dr] == -- :: external vane interface :: =< |= pit=vase =| =ames-state |= [our=ship eny=@ now=@da scry-gate=sley] =* ames-gate . |% :: +call: handle request $task :: ++ call |= [=duct type=* wrapped-task=(hobo task)] ^- [(list move) _ames-gate] :: =/ =task ?. ?=(%soft -.wrapped-task) wrapped-task ;;(task p.wrapped-task) :: =/ event-core (per-event [our eny now scry-gate] duct ames-state) :: =^ moves ames-state =< abet ?- -.task %born !! %crud !! %hear (on-hear:event-core [lane blob]:task) %hole !! %init !! %sunk !! %vega !! %wegh !! %west !! == :: [moves ames-gate] :: +take: handle response $sign :: ++ take |= [=wire =duct type=* =sign] ^- [(list move) _ames-gate] :: !! :: +stay: extract state before reload :: ++ stay ames-state :: +load: load in old state after reload :: ++ load |= old=^ames-state ames-gate(ames-state old) :: +scry: dereference namespace :: ++ scry |= [fur=(unit (set monk)) ren=@tas why=shop syd=desk lot=coin tyl=path] ^- (unit (unit cage)) :: [~ ~] -- :: helpers :: |% ++ per-event =| moves=(list move) |= [[our=ship eny=@ now=@da scry-gate=sley] =duct =ames-state] |% ++ event-core . ++ abet [(flop moves) ames-state] ++ emit |=(=move event-core(moves [move moves])) :: :: ++ on-hear |= [=lane =blob] ^+ event-core :: =/ =packet (decode-packet blob) :: %. [lane packet] :: ?. =(our rcvr.packet) on-hear-forward :: ?: encrypted.packet on-hear-shut on-hear-open :: :: ++ on-hear-forward |= [=lane =packet] ^+ event-core :: !! :: :: ++ on-hear-open |= [=lane =packet] ^+ event-core :: !! :: :: ++ on-hear-shut |= [=lane =packet] ^+ event-core :: encrypted packet content must be an encrypted atom :: ?> ?=(@ content.packet) :: =/ sndr-state (~(get by peers.ames-state) sndr.packet) :: ?. ?=([~ %known *] sndr-state) (enqueue-alien-packet lane packet) :: =/ =peer-state +.u.sndr-state =/ =channel [[our sndr.packet] now +.ames-state -.peer-state] =/ =shut-packet (decrypt symmetric-key.channel content.packet) :: ward against replay attacks :: ?> =(sndr-life.shut-packet her-life.channel) ?> =(rcvr-life.shut-packet our-life.channel) :: ?: ?=(%& -.meat.shut-packet) %+ on-hear-fragment %- fall :_ *message-still-state (~(get by rcv.peer-state) bone.shut-packet) [channel lane shut-packet] :: %+ on-hear-ack %- fall :_ *message-pump-state (~(get by snd.peer-state) bone.shut-packet) [channel lane shut-packet] :: :: ++ on-hear-ack |= [=message-pump-state =channel =lane =shut-packet] ^+ event-core :: =/ pump (make-message-pump message-pump-state channel) :: =/ task=message-pump-task ?> ?=(%| -.meat.shut-packet) ?: ?=(%& -.p.meat.shut-packet) [%hear-fragment-ack message-num.shut-packet p.p.meat.shut-packet] [%hear-message-ack message-num.shut-packet p.p.meat.shut-packet] :: =^ pump-gifts message-pump-state (work:pump task) :: =. peers.ames-state %+ ~(jab by peers.ames-state) her.channel |= =ship-state ?> ?=(%known -.ship-state) =/ =peer-state +.ship-state =. snd.peer-state (~(put by snd.peer-state) bone.shut-packet message-pump-state) [%known peer-state] :: (process-pump-gifts pump-gifts) :: :: ++ process-pump-gifts |= pump-gifts=(list message-pump-gift) ^+ event-core :: !! :: :: ++ on-hear-fragment |= [=message-still-state =channel =lane =shut-packet] ^+ event-core :: =/ still (make-message-still message-still-state channel) :: =^ still-gifts message-still-state (work:still %hear lane shut-packet) :: =. peers.ames-state %+ ~(jab by peers.ames-state) her.channel |= =ship-state ?> ?=(%known -.ship-state) =/ =peer-state +.ship-state =. rcv.peer-state (~(put by rcv.peer-state) bone.shut-packet message-still-state) [%known peer-state] :: (process-still-gifts still-gifts) :: :: ++ process-still-gifts |= still-gifts=(list message-still-gift) ^+ event-core :: !! :: ++ enqueue-alien-packet |= [=lane =packet] ^+ event-core :: =/ sndr-state (~(get by peers.ames-state) sndr.packet) :: =+ ^- [already-pending=? todos=pending-requests] ?~ sndr-state [%.n *pending-requests] [%.y ?>(?=(%alien -.u.sndr-state) +.u.sndr-state)] :: =. rcv-packets.todos [[lane packet] rcv-packets.todos] :: =. peers.ames-state (~(put by peers.ames-state) sndr.packet %alien todos) :: =? event-core !already-pending (emit duct %pass /alien %j %pubs sndr.packet) :: event-core -- :: :: ++ make-message-pump |= [=message-pump-state =channel] =| gifts=(list message-pump-gift) :: |% ++ message-pump . ++ give |=(gift=message-pump-gift message-pump(gifts [gift gifts])) ++ packet-pump (make-packet-pump packet-pump-state.message-pump-state channel) :: +work: handle a $message-pump-task :: ++ work |= task=message-pump-task ^+ [gifts message-pump-state] :: =~ ?- -.task %send (on-send message.task) %hear-message-ack (on-hear-message-ack [message-num ok lag]:task) * (run-packet-pump task) == feed-packets (run-packet-pump %finalize ~) [(flop gifts) message-pump-state] == :: :: ++ on-send |= =message ^+ message-pump :: =. unsent-messages.message-pump-state (~(put to unsent-messages.message-pump-state) message) :: message-pump :: :: ++ on-hear-message-ack |= [=message-num ok=? lag=@dr] ^+ message-pump :: ignore acks on already-processed messages :: ?: (lth message-num current.message-pump-state) message-pump :: ignore duplicate already-processed acks waiting for emission :: ?: (~(has by queued-message-acks.message-pump-state) message-num) message-pump :: clear and print .unsent-fragments if nonempty :: =? unsent-fragments.message-pump-state :: ?& =(current next):message-pump-state ?=(^ unsent-fragments.message-pump-state) == ~& %early-message-ack^ok^her.channel ~ :: clear all packets from this message from the packet pump :: =. message-pump (run-packet-pump %hear-message-ack message-num lag) :: =. queued-message-acks.message-pump-state (~(put by queued-message-acks.message-pump-state) message-num ok) :: |- ^+ message-pump :: =/ ack %- ~(get by queued-message-acks.message-pump-state) current.message-pump-state :: ?~ ack message-pump :: =. queued-message-acks.message-pump-state %- ~(del by queued-message-acks.message-pump-state) current.message-pump-state :: =. message-pump (give %ack-message current.message-pump-state ok.u.ack) :: $(current.message-pump-state +(current.message-pump-state)) :: :: ++ feed-packets :: if nothing to send, no-op :: ?: ?& =(~ unsent-messages.message-pump-state) =(~ unsent-fragments.message-pump-state) == :: message-pump :: we have unsent fragments of the current message; feed them :: ?. =(~ unsent-fragments.message-pump-state) =/ res (send:packet-pump unsent-fragments.message-pump-state) =+ [unsent packet-pump-gifts state]=res :: =. unsent-fragments.message-pump-state unsent =. packet-pump-state.message-pump-state state :: =. message-pump (process-packet-pump-gifts packet-pump-gifts) :: if it sent all of them, feed it more; otherwise, we're done :: ?~ unsent feed-packets message-pump :: .unsent-messages is nonempty; pop a message off and feed it :: =^ message unsent-messages.message-pump-state ~(get to unsent-messages.message-pump-state) :: =. unsent-fragments.message-pump-state :: =/ chunks (rip 13 (jam message)) =/ num-fragments=fragment-num (lent chunks) =| counter=@ :: |- ^- (list static-fragment) ?~ chunks ~ :: :- [message-num=next.message-pump-state num-fragments counter i.chunks] :: $(chunks t.chunks, counter +(counter)) :: =. next.message-pump-state +(next.message-pump-state) feed-packets :: :: ++ run-packet-pump |= =packet-pump-task ^+ message-pump :: =^ packet-pump-gifts packet-pump-state.message-pump-state (work:packet-pump packet-pump-task) :: (process-packet-pump-gifts packet-pump-gifts) :: :: ++ process-packet-pump-gifts |= packet-pump-gifts=(list packet-pump-gift) ^+ message-pump :: ?~ packet-pump-gifts message-pump =. message-pump (give i.packet-pump-gifts) :: $(packet-pump-gifts t.packet-pump-gifts) -- :: :: ++ make-packet-pump |= [=packet-pump-state =channel] =| gifts=(list packet-pump-gift) |% ++ packet-pump . ++ work |= task=packet-pump-task ^+ [gifts packet-pump-state] :: =- [(flop gifts) packet-pump-state] :: ?- -.task %hear-fragment-ack !! %hear-message-ack (on-hear-message-ack message-num.task) %wake on-wake %finalize on-finalize == :: :: ++ send |= fragments=(list static-fragment) ^+ [fragments gifts packet-pump-state] :: !! :: :: ++ on-hear-message-ack |= =message-num ^+ packet-pump :: =. live.packet-pump-state =< kept %+ sift:live-set live.packet-pump-state |= item=live-fragment =(message-num.item message-num) :: !! :: :: ++ on-finalize ^+ packet-pump :: !! :: :: ++ on-wake ^+ packet-pump :: !! ++ live-set %- (ordered-set live-fragment) |= [a=live-fragment b=live-fragment] ^- ? :: ?: (lth message-num.a message-num.b) %.y ?: (gth message-num.a message-num.b) %.n (lte fragment-num.a fragment-num.b) -- :: :: ++ make-message-still |= [=message-still-state =channel] =| gifts=(list message-still-gift) |% ++ work |= task=message-still-task ^+ [gifts message-still-state] :: =- [(flop -.-) +.-] :: ?- -.task %hear (on-hear [lane shut-packet]:task) %done (on-done [message-num error]:task) == :: :: ++ on-hear |= [=lane =shut-packet] ^+ [gifts message-still-state] :: !! :: :: ++ on-done |= [=message-num error=(unit error)] ^+ [gifts message-still-state] :: !! -- :: +encrypt: encrypt $shut-packet into atomic packet content :: ++ encrypt |= [=symmetric-key plaintext=shut-packet] ^- @ :: (en:crub:crypto symmetric-key (jam plaintext)) :: +decrypt: decrypt packet content to a $shut-packet or die :: ++ decrypt |= [=symmetric-key ciphertext=@] ^- shut-packet :: ;; shut-packet %- cue %- need (de:crub:crypto symmetric-key ciphertext) :: +encode-packet: serialize a packet into a bytestream :: ++ encode-packet |= packet ^- blob :: =/ sndr-meta (encode-ship-metadata sndr) =/ rcvr-meta (encode-ship-metadata rcvr) :: body: <> :: :: The .sndr and .rcvr ship addresses are encoded with fixed :: lengths specified by the packet header. They live outside :: the jammed-data section to simplify packet filtering in the :: interpreter. :: =/ body=@ ;: mix sndr (lsh 3 size.sndr-meta rcvr) (lsh 3 (add size.sndr-meta size.rcvr-meta) (jam [origin content])) == :: header: 32-bit header assembled from bitstreams of fields :: :: <> :: 4 bits at the end of the header are unused. :: =/ header=@ %+ can 0 :~ [3 protocol-version] [20 (mug body)] [2 rank.sndr-meta] [2 rank.rcvr-meta] [5 ?:(encrypted %0 %1)] == :: result is <
> :: (mix header (lsh 5 1 body)) :: +decode-packet: deserialize packet from bytestream or crash :: ++ decode-packet |= =blob ^- packet :: first 32 (2^5) bits are header; the rest is body :: =/ header (end 5 1 blob) =/ body (rsh 5 1 blob) :: =/ version (end 0 3 header) =/ checksum (cut 0 [3 20] header) =/ sndr-size (decode-ship-size (cut 0 [23 2] header)) =/ rcvr-size (decode-ship-size (cut 0 [25 2] header)) =/ encrypted ?+((cut 0 [27 5] header) !! %0 %.y, %1 %.n) :: ?> =(protocol-version version) ?> =(checksum (end 0 20 (mug body))) :: =/ =dyad :- sndr=(end 3 sndr-size body) rcvr=(cut 3 [sndr-size rcvr-size] body) :: =+ ;; [origin=(unit @uxlane) content=*] %- cue (rsh 3 (add rcvr-size sndr-size) body) :: [dyad encrypted origin content] :: +decode-ship-size: decode a 2-bit ship type specifier into a byte width :: :: Type 0: galaxy or star -- 2 bytes :: Type 1: planet -- 4 bytes :: Type 2: moon -- 8 bytes :: Type 3: comet -- 16 bytes :: ++ decode-ship-size |= rank=@ ^- @ :: ?+ rank !! %0 2 %1 4 %2 8 %3 16 == :: +encode-ship-metadata: produce size (in bytes) and address rank for .ship :: :: 0: galaxy or star :: 1: planet :: 2: moon :: 3: comet :: ++ encode-ship-metadata |= =ship ^- [size=@ =rank] :: =/ size=@ (met 3 ship) :: ?: (lte size 2) [2 %0] ?: (lte size 4) [4 %1] ?: (lte size 8) [8 %2] [16 %3] --