:: /sys/zuse :: %zuse: arvo library :: => ..lull ~% %zuse ..part ~ |% ++ zuse %420 :: :: :: :::: :: :: (2) engines :: :: :: :: :::: :::: ++number :: (2a) number theory :: :::: ++ number ^? |% :: :: ++fu:number ++ fu :: modulo (mul p q) |= a=[p=@ q=@] =+ b=?:(=([0 0] a) 0 (~(inv fo p.a) (~(sit fo p.a) q.a))) |% :: :: ++dif:fu:number ++ dif :: subtract |= [c=[@ @] d=[@ @]] [(~(dif fo p.a) -.c -.d) (~(dif fo q.a) +.c +.d)] :: :: ++exp:fu:number ++ exp :: exponent |= [c=@ d=[@ @]] :- (~(exp fo p.a) (mod c (dec p.a)) -.d) (~(exp fo q.a) (mod c (dec q.a)) +.d) :: :: ++out:fu:number ++ out :: garner's formula |= c=[@ @] %+ add +.c %+ mul q.a %+ ~(pro fo p.a) b (~(dif fo p.a) -.c (~(sit fo p.a) +.c)) :: :: ++pro:fu:number ++ pro :: multiply |= [c=[@ @] d=[@ @]] [(~(pro fo p.a) -.c -.d) (~(pro fo q.a) +.c +.d)] :: :: ++sum:fu:number ++ sum :: add |= [c=[@ @] d=[@ @]] [(~(sum fo p.a) -.c -.d) (~(sum fo q.a) +.c +.d)] :: :: ++sit:fu:number ++ sit :: represent |= c=@ [(mod c p.a) (mod c q.a)] -- ::fu :: :: ++pram:number ++ pram :: rabin-miller |= a=@ ^- ? ?: ?| =(0 (end 0 a)) =(1 a) =+ b=1 |- ^- ? ?: =(512 b) | ?|(=+(c=+((mul 2 b)) &(!=(a c) =(a (mul c (div a c))))) $(b +(b))) == | =+ ^= b =+ [s=(dec a) t=0] |- ^- [s=@ t=@] ?: =(0 (end 0 s)) $(s (rsh 0 s), t +(t)) [s t] ?> =((mul s.b (bex t.b)) (dec a)) =+ c=0 |- ^- ? ?: =(c 64) & =+ d=(~(raw og (add c a)) (met 0 a)) =+ e=(~(exp fo a) s.b d) ?& ?| =(1 e) =+ f=0 |- ^- ? ?: =(e (dec a)) & ?: =(f (dec t.b)) | $(e (~(pro fo a) e e), f +(f)) == $(c +(c)) == :: :: ++ramp:number ++ ramp :: make r-m prime |= [a=@ b=(list @) c=@] ^- @ux :: [bits snags seed] => .(c (shas %ramp c)) =+ d=*@ |- ?: =((mul 100 a) d) ~|(%ar-ramp !!) =+ e=(~(raw og c) a) ?: &((levy b |=(f=@ !=(1 (mod e f)))) (pram e)) e $(c +(c), d (shax d)) :: :: ++curt:number ++ curt :: curve25519 |= [a=@ b=@] => %= . + => + =+ =+ [p=486.662 q=(sub (bex 255) 19)] =+ fq=~(. fo q) [p=p q=q fq=fq] |% :: :: ++cla:curt:number ++ cla :: |= raw=@ =+ low=(dis 248 (cut 3 [0 1] raw)) =+ hih=(con 64 (dis 127 (cut 3 [31 1] raw))) =+ mid=(cut 3 [1 30] raw) (can 3 [[1 low] [30 mid] [1 hih] ~]) :: :: ++sqr:curt:number ++ sqr :: |=(a=@ (mul a a)) :: :: ++inv:curt:number ++ inv :: |=(a=@ (~(exp fo q) (sub q 2) a)) :: :: ++cad:curt:number ++ cad :: |= [n=[x=@ z=@] m=[x=@ z=@] d=[x=@ z=@]] =+ ^= xx ;: mul 4 z.d %- sqr %- abs:si %+ dif:si (sun:si (mul x.m x.n)) (sun:si (mul z.m z.n)) == =+ ^= zz ;: mul 4 x.d %- sqr %- abs:si %+ dif:si (sun:si (mul x.m z.n)) (sun:si (mul z.m x.n)) == [(sit.fq xx) (sit.fq zz)] :: :: ++cub:curt:number ++ cub :: |= [x=@ z=@] =+ ^= xx %+ mul %- sqr %- abs:si (dif:si (sun:si x) (sun:si z)) (sqr (add x z)) =+ ^= zz ;: mul 4 x z :(add (sqr x) :(mul p x z) (sqr z)) == [(sit.fq xx) (sit.fq zz)] -- :: == =+ one=[b 1] =+ i=253 =+ r=one =+ s=(cub one) |- ?: =(i 0) =+ x=(cub r) (sit.fq (mul -.x (inv +.x))) =+ m=(rsh [0 i] a) ?: =(0 (mod m 2)) $(i (dec i), s (cad r s one), r (cub r)) $(i (dec i), r (cad r s one), s (cub s)) :: :: ++ga:number ++ ga :: GF (bex p.a) |= a=[p=@ q=@ r=@] :: dim poly gen =+ si=(bex p.a) =+ ma=(dec si) => |% :: :: ++dif:ga:number ++ dif :: add and sub |= [b=@ c=@] ~| [%dif-ga a] ?> &((lth b si) (lth c si)) (mix b c) :: :: ++dub:ga:number ++ dub :: mul by x |= b=@ ~| [%dub-ga a] ?> (lth b si) ?: =(1 (cut 0 [(dec p.a) 1] b)) (dif (sit q.a) (sit (lsh 0 b))) (lsh 0 b) :: :: ++pro:ga:number ++ pro :: slow multiply |= [b=@ c=@] ?: =(0 b) 0 ?: =(1 (dis 1 b)) (dif c $(b (rsh 0 b), c (dub c))) $(b (rsh 0 b), c (dub c)) :: :: ++toe:ga:number ++ toe :: exp+log tables =+ ^= nu |= [b=@ c=@] ^- (map @ @) =+ d=*(map @ @) |- ?: =(0 c) d %= $ c (dec c) d (~(put by d) c b) == =+ [p=(nu 0 (bex p.a)) q=(nu ma ma)] =+ [b=1 c=0] |- ^- [p=(map @ @) q=(map @ @)] ?: =(ma c) [(~(put by p) c b) q] %= $ b (pro r.a b) c +(c) p (~(put by p) c b) q (~(put by q) b c) == :: :: ++sit:ga:number ++ sit :: reduce |= b=@ (mod b (bex p.a)) -- :: =+ toe |% :: :: ++fra:ga:number ++ fra :: divide |= [b=@ c=@] (pro b (inv c)) :: :: ++inv:ga:number ++ inv :: invert |= b=@ ~| [%inv-ga a] =+ c=(~(get by q) b) ?~ c !! =+ d=(~(get by p) (sub ma u.c)) (need d) :: :: ++pow:ga:number ++ pow :: exponent |= [b=@ c=@] =+ [d=1 e=c f=0] |- ?: =(p.a f) d ?: =(1 (cut 0 [f 1] b)) $(d (pro d e), e (pro e e), f +(f)) $(e (pro e e), f +(f)) :: :: ++pro:ga:number ++ pro :: multiply |= [b=@ c=@] ~| [%pro-ga a] =+ d=(~(get by q) b) ?~ d 0 =+ e=(~(get by q) c) ?~ e 0 =+ f=(~(get by p) (mod (add u.d u.e) ma)) (need f) -- ::ga -- ::number :: :::: :::: ++crypto :: (2b) cryptography :: :::: ++ crypto ^? =, ames =, number |% :: :: :::: ++aes:crypto :: (2b1) aes, all sizes :: :::: ++ aes !. ~% %aes ..part ~ |% :: :: ++ahem:aes:crypto ++ ahem :: kernel state |= [nnk=@ nnb=@ nnr=@] => =+ => [gr=(ga 8 0x11b 3) few==>(fe .(a 5))] [pro=pro.gr dif=dif.gr pow=pow.gr ror=ror.few] => |% :: ++ cipa $_ ^? :: AES params |% ++ co *[p=@ q=@ r=@ s=@] :: column coefficients ++ ix |~(a=@ *@) :: key index ++ ro *[p=@ q=@ r=@ s=@] :: row shifts ++ su *@ :: s-box -- ::cipa -- :: |% :: :: ++pen:ahem:aes: ++ pen :: encrypt ^- cipa |% :: :: ++co:pen:ahem:aes: ++ co :: column coefficients [0x2 0x3 1 1] :: :: ++ix:pen:ahem:aes: ++ ix :: key index |~(a=@ a) :: :: ++ro:pen:ahem:aes: ++ ro :: row shifts [0 1 2 3] :: :: ++su:pen:ahem:aes: ++ su :: s-box 0x16bb.54b0.0f2d.9941.6842.e6bf.0d89.a18c. df28.55ce.e987.1e9b.948e.d969.1198.f8e1. 9e1d.c186.b957.3561.0ef6.0348.66b5.3e70. 8a8b.bd4b.1f74.dde8.c6b4.a61c.2e25.78ba. 08ae.7a65.eaf4.566c.a94e.d58d.6d37.c8e7. 79e4.9591.62ac.d3c2.5c24.0649.0a3a.32e0. db0b.5ede.14b8.ee46.8890.2a22.dc4f.8160. 7319.5d64.3d7e.a7c4.1744.975f.ec13.0ccd. d2f3.ff10.21da.b6bc.f538.9d92.8f40.a351. a89f.3c50.7f02.f945.8533.4d43.fbaa.efd0. cf58.4c4a.39be.cb6a.5bb1.fc20.ed00.d153. 842f.e329.b3d6.3b52.a05a.6e1b.1a2c.8309. 75b2.27eb.e280.1207.9a05.9618.c323.c704. 1531.d871.f1e5.a534.ccf7.3f36.2693.fdb7. c072.a49c.afa2.d4ad.f047.59fa.7dc9.82ca. 76ab.d7fe.2b67.0130.c56f.6bf2.7b77.7c63 -- :: :: ++pin:ahem:aes: ++ pin :: decrypt ^- cipa |% :: :: ++co:pin:ahem:aes: ++ co :: column coefficients [0xe 0xb 0xd 0x9] :: :: ++ix:pin:ahem:aes: ++ ix :: key index |~(a=@ (sub nnr a)) :: :: ++ro:pin:ahem:aes: ++ ro :: row shifts [0 3 2 1] :: :: ++su:pin:ahem:aes: ++ su :: s-box 0x7d0c.2155.6314.69e1.26d6.77ba.7e04.2b17. 6199.5383.3cbb.ebc8.b0f5.2aae.4d3b.e0a0. ef9c.c993.9f7a.e52d.0d4a.b519.a97f.5160. 5fec.8027.5910.12b1.31c7.0788.33a8.dd1f. f45a.cd78.fec0.db9a.2079.d2c6.4b3e.56fc. 1bbe.18aa.0e62.b76f.89c5.291d.711a.f147. 6edf.751c.e837.f9e2.8535.ade7.2274.ac96. 73e6.b4f0.cecf.f297.eadc.674f.4111.913a. 6b8a.1301.03bd.afc1.020f.3fca.8f1e.2cd0. 0645.b3b8.0558.e4f7.0ad3.bc8c.00ab.d890. 849d.8da7.5746.155e.dab9.edfd.5048.706c. 92b6.655d.cc5c.a4d4.1698.6886.64f6.f872. 25d1.8b6d.49a2.5b76.b224.d928.66a1.2e08. 4ec3.fa42.0b95.4cee.3d23.c2a6.3294.7b54. cbe9.dec4.4443.8e34.87ff.2f9b.8239.e37c. fbd7.f381.9ea3.40bf.38a5.3630.d56a.0952 -- :: :: ++mcol:ahem:aes: ++ mcol :: |= [a=(list @) b=[p=@ q=@ r=@ s=@]] ^- (list @) =+ c=[p=*@ q=*@ r=*@ s=*@] |- ^- (list @) ?~ a ~ => .(p.c (cut 3 [0 1] i.a)) => .(q.c (cut 3 [1 1] i.a)) => .(r.c (cut 3 [2 1] i.a)) => .(s.c (cut 3 [3 1] i.a)) :_ $(a t.a) %+ rep 3 %+ turn %- limo :~ [[p.c p.b] [q.c q.b] [r.c r.b] [s.c s.b]] [[p.c s.b] [q.c p.b] [r.c q.b] [s.c r.b]] [[p.c r.b] [q.c s.b] [r.c p.b] [s.c q.b]] [[p.c q.b] [q.c r.b] [r.c s.b] [s.c p.b]] == |= [a=[@ @] b=[@ @] c=[@ @] d=[@ @]] :(dif (pro a) (pro b) (pro c) (pro d)) :: :: ++pode:ahem:aes: ++ pode :: explode to block |= [a=bloq b=@ c=@] ^- (list @) =+ d=(rip a c) =+ m=(met a c) |- ?: =(m b) d $(m +(m), d (weld d (limo [0 ~]))) :: :: ++sube:ahem:aes: ++ sube :: s-box word |= [a=@ b=@] ^- @ (rep 3 (turn (pode 3 4 a) |=(c=@ (cut 3 [c 1] b)))) -- :: |% :: :: ++be:ahem:aes:crypto ++ be :: block cipher |= [a=? b=@ c=@H] ^- @uxH ~| %be-aesc => %= . + => + |% :: :: ++ankh:be:ahem:aes: ++ ankh :: |= [a=cipa b=@ c=@] (pode 5 nnb (cut 5 [(mul (ix.a b) nnb) nnb] c)) :: :: ++sark:be:ahem:aes: ++ sark :: |= [c=(list @) d=(list @)] ^- (list @) ?~ c ~ ?~ d !! [(mix i.c i.d) $(c t.c, d t.d)] :: :: ++srow:be:ahem:aes: ++ srow :: |= [a=cipa b=(list @)] ^- (list @) =+ [c=0 d=~ e=ro.a] |- ?: =(c nnb) d :_ $(c +(c)) %+ rep 3 %+ turn (limo [0 p.e] [1 q.e] [2 r.e] [3 s.e] ~) |= [f=@ g=@] (cut 3 [f 1] (snag (mod (add g c) nnb) b)) :: :: ++subs:be:ahem:aes: ++ subs :: |= [a=cipa b=(list @)] ^- (list @) ?~ b ~ [(sube i.b su.a) $(b t.b)] -- == =+ [d=?:(a pen pin) e=(pode 5 nnb c) f=1] => .(e (sark e (ankh d 0 b))) |- ?. =(nnr f) => .(e (subs d e)) => .(e (srow d e)) => .(e (mcol e co.d)) => .(e (sark e (ankh d f b))) $(f +(f)) => .(e (subs d e)) => .(e (srow d e)) => .(e (sark e (ankh d nnr b))) (rep 5 e) :: :: ++ex:ahem:aes:crypto ++ ex :: key expand |= a=@I ^- @ =+ [b=a c=0 d=su:pen i=nnk] |- ?: =(i (mul nnb +(nnr))) b => .(c (cut 5 [(dec i) 1] b)) => ?: =(0 (mod i nnk)) => .(c (ror 3 1 c)) => .(c (sube c d)) .(c (mix c (pow (dec (div i nnk)) 2))) ?: &((gth nnk 6) =(4 (mod i nnk))) .(c (sube c d)) . => .(c (mix c (cut 5 [(sub i nnk) 1] b))) => .(b (can 5 [i b] [1 c] ~)) $(i +(i)) :: :: ++ix:ahem:aes:crypto ++ ix :: key expand, inv |= a=@ ^- @ =+ [i=1 j=*@ b=*@ c=co:pin] |- ?: =(nnr i) a => .(b (cut 7 [i 1] a)) => .(b (rep 5 (mcol (pode 5 4 b) c))) => .(j (sub nnr i)) %= $ i +(i) a %+ can 7 :~ [i (cut 7 [0 i] a)] [1 b] [j (cut 7 [+(i) j] a)] == == -- :: :: ++ecba:aes:crypto ++ ecba :: AES-128 ECB ~% %ecba +> ~ |_ key=@H :: :: ++en:ecba:aes:crypto ++ en :: encrypt ~/ %en |= blk=@H ^- @uxH =+ (ahem 4 4 10) =: key (~(net fe 7) key) blk (~(net fe 7) blk) == %- ~(net fe 7) (be & (ex key) blk) :: :: ++de:ecba:aes:crypto ++ de :: decrypt ~/ %de |= blk=@H ^- @uxH =+ (ahem 4 4 10) =: key (~(net fe 7) key) blk (~(net fe 7) blk) == %- ~(net fe 7) (be | (ix (ex key)) blk) -- ::ecba :: :: ++ecbb:aes:crypto ++ ecbb :: AES-192 ECB ~% %ecbb +> ~ |_ key=@I :: :: ++en:ecbb:aes:crypto ++ en :: encrypt ~/ %en |= blk=@H ^- @uxH =+ (ahem 6 4 12) =: key (rsh 6 (~(net fe 8) key)) blk (~(net fe 7) blk) == %- ~(net fe 7) (be & (ex key) blk) :: :: ++de:ecbb:aes:crypto ++ de :: decrypt ~/ %de |= blk=@H ^- @uxH =+ (ahem 6 4 12) =: key (rsh 6 (~(net fe 8) key)) blk (~(net fe 7) blk) == %- ~(net fe 7) (be | (ix (ex key)) blk) -- ::ecbb :: :: ++ecbc:aes:crypto ++ ecbc :: AES-256 ECB ~% %ecbc +> ~ |_ key=@I :: :: ++en:ecbc:aes:crypto ++ en :: encrypt ~/ %en |= blk=@H ^- @uxH =+ (ahem 8 4 14) =: key (~(net fe 8) key) blk (~(net fe 7) blk) == %- ~(net fe 7) (be & (ex key) blk) :: :: ++de:ecbc:aes:crypto ++ de :: decrypt ~/ %de |= blk=@H ^- @uxH =+ (ahem 8 4 14) =: key (~(net fe 8) key) blk (~(net fe 7) blk) == %- ~(net fe 7) (be | (ix (ex key)) blk) -- ::ecbc :: :: ++cbca:aes:crypto ++ cbca :: AES-128 CBC ~% %cbca +> ~ |_ [key=@H prv=@H] :: :: ++en:cbca:aes:crypto ++ en :: encrypt ~/ %en |= txt=@ ^- @ux =+ pts=?:(=(txt 0) `(list @)`~[0] (flop (rip 7 txt))) =| cts=(list @) %+ rep 7 :: logically, flop twice here |- ^- (list @) ?~ pts cts =+ cph=(~(en ecba key) (mix prv i.pts)) %= $ cts [cph cts] pts t.pts prv cph == :: :: ++de:cbca:aes:crypto ++ de :: decrypt ~/ %de |= txt=@ ^- @ux =+ cts=?:(=(txt 0) `(list @)`~[0] (flop (rip 7 txt))) =| pts=(list @) %+ rep 7 :: logically, flop twice here |- ^- (list @) ?~ cts pts =+ pln=(mix prv (~(de ecba key) i.cts)) %= $ pts [pln pts] cts t.cts prv i.cts == -- ::cbca :: :: ++cbcb:aes:crypto ++ cbcb :: AES-192 CBC ~% %cbcb +> ~ |_ [key=@I prv=@H] :: :: ++en:cbcb:aes:crypto ++ en :: encrypt ~/ %en |= txt=@ ^- @ux =+ pts=?:(=(txt 0) `(list @)`~[0] (flop (rip 7 txt))) =| cts=(list @) %+ rep 7 :: logically, flop twice here |- ^- (list @) ?~ pts cts =+ cph=(~(en ecbb key) (mix prv i.pts)) %= $ cts [cph cts] pts t.pts prv cph == :: :: ++de:cbcb:aes:crypto ++ de :: decrypt ~/ %de |= txt=@ ^- @ux =+ cts=?:(=(txt 0) `(list @)`~[0] (flop (rip 7 txt))) =| pts=(list @) %+ rep 7 :: logically, flop twice here |- ^- (list @) ?~ cts pts =+ pln=(mix prv (~(de ecbb key) i.cts)) %= $ pts [pln pts] cts t.cts prv i.cts == -- ::cbcb :: :: ++cbcc:aes:crypto ++ cbcc :: AES-256 CBC ~% %cbcc +> ~ |_ [key=@I prv=@H] :: :: ++en:cbcc:aes:crypto ++ en :: encrypt ~/ %en |= txt=@ ^- @ux =+ pts=?:(=(txt 0) `(list @)`~[0] (flop (rip 7 txt))) =| cts=(list @) %+ rep 7 :: logically, flop twice here |- ^- (list @) ?~ pts cts =+ cph=(~(en ecbc key) (mix prv i.pts)) %= $ cts [cph cts] pts t.pts prv cph == :: :: ++de:cbcc:aes:crypto ++ de :: decrypt ~/ %de |= txt=@ ^- @ux =+ cts=?:(=(txt 0) `(list @)`~[0] (flop (rip 7 txt))) =| pts=(list @) %+ rep 7 :: logically, flop twice here |- ^- (list @) ?~ cts pts =+ pln=(mix prv (~(de ecbc key) i.cts)) %= $ pts [pln pts] cts t.cts prv i.cts == -- ::cbcc :: :: ++inc:aes:crypto ++ inc :: inc. low bloq |= [mod=bloq ctr=@H] ^- @uxH =+ bqs=(rip mod ctr) ?~ bqs 0x1 %+ rep mod [(~(sum fe mod) i.bqs 1) t.bqs] :: :: ++ctra:aes:crypto ++ ctra :: AES-128 CTR ~% %ctra +> ~ |_ [key=@H mod=bloq len=@ ctr=@H] :: :: ++en:ctra:aes:crypto ++ en :: encrypt ~/ %en |= txt=@ ^- @ux =/ encrypt ~(en ecba key) =/ blocks (add (div len 16) ?:(=((^mod len 16) 0) 0 1)) ?> (gte len (met 3 txt)) %+ mix txt %+ rsh [3 (sub (mul 16 blocks) len)] %+ rep 7 =| seed=(list @ux) |- ^+ seed ?: =(blocks 0) seed %= $ seed [(encrypt ctr) seed] ctr (inc mod ctr) blocks (dec blocks) == :: :: ++de:ctra:aes:crypto ++ de :: decrypt en -- ::ctra :: :: ++ctrb:aes:crypto ++ ctrb :: AES-192 CTR ~% %ctrb +> ~ |_ [key=@I mod=bloq len=@ ctr=@H] :: :: ++en:ctrb:aes:crypto ++ en ~/ %en |= txt=@ ^- @ux =/ encrypt ~(en ecbb key) =/ blocks (add (div len 16) ?:(=((^mod len 16) 0) 0 1)) ?> (gte len (met 3 txt)) %+ mix txt %+ rsh [3 (sub (mul 16 blocks) len)] %+ rep 7 =| seed=(list @ux) |- ^+ seed ?: =(blocks 0) seed %= $ seed [(encrypt ctr) seed] ctr (inc mod ctr) blocks (dec blocks) == :: :: ++de:ctrb:aes:crypto ++ de :: decrypt en -- ::ctrb :: :: ++ctrc:aes:crypto ++ ctrc :: AES-256 CTR ~% %ctrc +> ~ |_ [key=@I mod=bloq len=@ ctr=@H] :: :: ++en:ctrc:aes:crypto ++ en :: encrypt ~/ %en |= txt=@ ^- @ux =/ encrypt ~(en ecbc key) =/ blocks (add (div len 16) ?:(=((^mod len 16) 0) 0 1)) ?> (gte len (met 3 txt)) %+ mix txt %+ rsh [3 (sub (mul 16 blocks) len)] %+ rep 7 =| seed=(list @ux) |- ^+ seed ?: =(blocks 0) seed %= $ seed [(encrypt ctr) seed] ctr (inc mod ctr) blocks (dec blocks) == :: :: ++de:ctrc:aes:crypto ++ de :: decrypt en -- ::ctrc :: :: ++doub:aes:crypto ++ doub :: double 128-bit |= :: string mod finite :: str=@H :: :: field (see spec) :: ^- @uxH %- ~(sit fe 7) ?. =((xeb str) 128) (lsh 0 str) (mix 0x87 (lsh 0 str)) :: :: ++mpad:aes:crypto ++ mpad :: |= [oct=@ txt=@] :: :: pad message to multiple of 128 bits :: by appending 1, then 0s :: the spec is unclear, but it must be octet based :: to match the test vectors :: ^- @ux =+ pad=(mod oct 16) ?: =(pad 0) 0x8000.0000.0000.0000.0000.0000.0000.0000 (lsh [3 (sub 15 pad)] (mix 0x80 (lsh 3 txt))) :: :: ++suba:aes:crypto ++ suba :: AES-128 subkeys |= key=@H =+ l=(~(en ecba key) 0) =+ k1=(doub l) =+ k2=(doub k1) ^- [@ux @ux] [k1 k2] :: :: ++subb:aes:crypto ++ subb :: AES-192 subkeys |= key=@I =+ l=(~(en ecbb key) 0) =+ k1=(doub l) =+ k2=(doub k1) ^- [@ux @ux] [k1 k2] :: :: ++subc:aes:crypto ++ subc :: AES-256 subkeys |= key=@I =+ l=(~(en ecbc key) 0) =+ k1=(doub l) =+ k2=(doub k1) ^- [@ux @ux] [k1 k2] :: :: ++maca:aes:crypto ++ maca :: AES-128 CMAC ~/ %maca |= [key=@H oct=(unit @) txt=@] ^- @ux =+ [sub=(suba key) len=?~(oct (met 3 txt) u.oct)] =+ ^= pdt ?: &(=((mod len 16) 0) !=(len 0)) [& txt] [| (mpad len txt)] =+ ^= mac %- ~(en cbca key 0) %+ mix +.pdt ?- -.pdt %& -.sub %| +.sub == :: spec says MSBs, LSBs match test vectors :: (~(sit fe 7) mac) :: :: ++macb:aes:crypto ++ macb :: AES-192 CMAC ~/ %macb |= [key=@I oct=(unit @) txt=@] ^- @ux =+ [sub=(subb key) len=?~(oct (met 3 txt) u.oct)] =+ ^= pdt ?: &(=((mod len 16) 0) !=(len 0)) [& txt] [| (mpad len txt)] =+ ^= mac %- ~(en cbcb key 0) %+ mix +.pdt ?- -.pdt %& -.sub %| +.sub == :: spec says MSBs, LSBs match test vectors :: (~(sit fe 7) mac) :: :: ++macc:aes:crypto ++ macc :: AES-256 CMAC ~/ %macc |= [key=@I oct=(unit @) txt=@] ^- @ux =+ [sub=(subc key) len=?~(oct (met 3 txt) u.oct)] =+ ^= pdt ?: &(=((mod len 16) 0) !=(len 0)) [& txt] [| (mpad len txt)] =+ ^= mac %- ~(en cbcc key 0) %+ mix +.pdt ?- -.pdt %& -.sub %| +.sub == :: spec says MSBs, LSBs match test vectors :: (~(sit fe 7) mac) :: :: ++s2va:aes:crypto ++ s2va :: AES-128 S2V ~/ %s2va |= [key=@H ads=(list @)] ?~ ads (maca key `16 0x1) =/ res (maca key `16 0x0) %+ maca key |- ^- [[~ @ud] @uxH] ?~ t.ads =/ wyt (met 3 i.ads) ?: (gte wyt 16) [`wyt (mix i.ads res)] [`16 (mix (doub res) (mpad wyt i.ads))] %= $ ads t.ads res (mix (doub res) (maca key ~ i.ads)) == :: :: ++s2vb:aes:crypto ++ s2vb :: AES-192 S2V ~/ %s2vb |= [key=@I ads=(list @)] ?~ ads (macb key `16 0x1) =/ res (macb key `16 0x0) %+ macb key |- ^- [[~ @ud] @uxH] ?~ t.ads =/ wyt (met 3 i.ads) ?: (gte wyt 16) [`wyt (mix i.ads res)] [`16 (mix (doub res) (mpad wyt i.ads))] %= $ ads t.ads res (mix (doub res) (macb key ~ i.ads)) == :: :: ++s2vc:aes:crypto ++ s2vc :: AES-256 S2V ~/ %s2vc |= [key=@I ads=(list @)] ?~ ads (macc key `16 0x1) =/ res (macc key `16 0x0) %+ macc key |- ^- [[~ @ud] @uxH] ?~ t.ads =/ wyt (met 3 i.ads) ?: (gte wyt 16) [`wyt (mix i.ads res)] [`16 (mix (doub res) (mpad wyt i.ads))] %= $ ads t.ads res (mix (doub res) (macc key ~ i.ads)) == :: :: ++siva:aes:crypto ++ siva :: AES-128 SIV ~% %siva +> ~ |_ [key=@I vec=(list @)] :: :: ++en:siva:aes:crypto ++ en :: encrypt ~/ %en |= txt=@ ^- (trel @uxH @ud @ux) =+ [k1=(rsh 7 key) k2=(end 7 key)] =+ iv=(s2va k1 (weld vec (limo ~[txt]))) =+ len=(met 3 txt) =* hib (dis iv 0xffff.ffff.ffff.ffff.7fff.ffff.7fff.ffff) :+ iv len (~(en ctra k2 7 len hib) txt) :: :: ++de:siva:aes:crypto ++ de :: decrypt ~/ %de |= [iv=@H len=@ txt=@] ^- (unit @ux) =+ [k1=(rsh 7 key) k2=(end 7 key)] =* hib (dis iv 0xffff.ffff.ffff.ffff.7fff.ffff.7fff.ffff) =+ ^= pln (~(de ctra k2 7 len hib) txt) ?. =((s2va k1 (weld vec (limo ~[pln]))) iv) ~ `pln -- ::siva :: :: ++sivb:aes:crypto ++ sivb :: AES-192 SIV ~% %sivb +> ~ |_ [key=@J vec=(list @)] :: :: ++en:sivb:aes:crypto ++ en :: encrypt ~/ %en |= txt=@ ^- (trel @uxH @ud @ux) =+ [k1=(rsh [6 3] key) k2=(end [6 3] key)] =+ iv=(s2vb k1 (weld vec (limo ~[txt]))) =* hib (dis iv 0xffff.ffff.ffff.ffff.7fff.ffff.7fff.ffff) =+ len=(met 3 txt) :+ iv len (~(en ctrb k2 7 len hib) txt) :: :: ++de:sivb:aes:crypto ++ de :: decrypt ~/ %de |= [iv=@H len=@ txt=@] ^- (unit @ux) =+ [k1=(rsh [6 3] key) k2=(end [6 3] key)] =* hib (dis iv 0xffff.ffff.ffff.ffff.7fff.ffff.7fff.ffff) =+ ^= pln (~(de ctrb k2 7 len hib) txt) ?. =((s2vb k1 (weld vec (limo ~[pln]))) iv) ~ `pln -- ::sivb :: :: ++sivc:aes:crypto ++ sivc :: AES-256 SIV ~% %sivc +> ~ |_ [key=@J vec=(list @)] :: :: ++en:sivc:aes:crypto ++ en :: encrypt ~/ %en |= txt=@ ^- (trel @uxH @ud @ux) =+ [k1=(rsh 8 key) k2=(end 8 key)] =+ iv=(s2vc k1 (weld vec (limo ~[txt]))) =* hib (dis iv 0xffff.ffff.ffff.ffff.7fff.ffff.7fff.ffff) =+ len=(met 3 txt) :+ iv len (~(en ctrc k2 7 len hib) txt) :: :: ++de:sivc:aes:crypto ++ de :: decrypt ~/ %de |= [iv=@H len=@ txt=@] ^- (unit @ux) =+ [k1=(rsh 8 key) k2=(end 8 key)] =* hib (dis iv 0xffff.ffff.ffff.ffff.7fff.ffff.7fff.ffff) =+ ^= pln (~(de ctrc k2 7 len hib) txt) ?. =((s2vc k1 (weld vec (limo ~[pln]))) iv) ~ `pln -- ::sivc -- :: :: :::: ++ed:crypto :: ed25519 :: :::: ++ ed => =+ =+ [b=256 q=(sub (bex 255) 19)] =+ fq=~(. fo q) =+ ^= l %+ add (bex 252) 27.742.317.777.372.353.535.851.937.790.883.648.493 =+ d=(dif.fq 0 (fra.fq 121.665 121.666)) =+ ii=(exp.fq (div (dec q) 4) 2) [b=b q=q fq=fq l=l d=d ii=ii] ~% %coed ..part ~ |% :: :: ++norm:ed:crypto ++ norm :: |=(x=@ ?:(=(0 (mod x 2)) x (sub q x))) :: :: ++xrec:ed:crypto ++ xrec :: recover x-coord |= y=@ ^- @ =+ ^= xx %+ mul (dif.fq (mul y y) 1) (inv.fq +(:(mul d y y))) =+ x=(exp.fq (div (add 3 q) 8) xx) ?: !=(0 (dif.fq (mul x x) (sit.fq xx))) (norm (pro.fq x ii)) (norm x) :: :: ++ward:ed:crypto ++ ward :: edwards multiply |= [pp=[@ @] qq=[@ @]] ^- [@ @] =+ dp=:(pro.fq d -.pp -.qq +.pp +.qq) =+ ^= xt %+ pro.fq %+ sum.fq (pro.fq -.pp +.qq) (pro.fq -.qq +.pp) (inv.fq (sum.fq 1 dp)) =+ ^= yt %+ pro.fq %+ sum.fq (pro.fq +.pp +.qq) (pro.fq -.pp -.qq) (inv.fq (dif.fq 1 dp)) [xt yt] :: :: ++scam:ed:crypto ++ scam :: scalar multiply |= [pp=[@ @] e=@] ^- [@ @] ?: =(0 e) [0 1] =+ qq=$(e (div e 2)) => .(qq (ward qq qq)) ?: =(1 (dis 1 e)) (ward qq pp) qq :: :: ++etch:ed:crypto ++ etch :: encode point |= pp=[@ @] ^- @ (can 0 ~[[(sub b 1) +.pp] [1 (dis 1 -.pp)]]) :: :: ++curv:ed:crypto ++ curv :: point on curve? |= [x=@ y=@] ^- ? .= 0 %+ dif.fq %+ sum.fq (pro.fq (sub q (sit.fq x)) x) (pro.fq y y) (sum.fq 1 :(pro.fq d x x y y)) :: :: ++deco:ed:crypto ++ deco :: decode point |= s=@ ^- (unit [@ @]) =+ y=(cut 0 [0 (dec b)] s) =+ si=(cut 0 [(dec b) 1] s) =+ x=(xrec y) => .(x ?:(!=(si (dis 1 x)) (sub q x) x)) =+ pp=[x y] ?. (curv pp) ~ [~ pp] :: :: ++bb:ed:crypto ++ bb :: =+ bby=(pro.fq 4 (inv.fq 5)) [(xrec bby) bby] -- :: ~% %ed + ~ |% :: ++ point-add ~/ %point-add |= [a-point=@udpoint b-point=@udpoint] ^- @udpoint :: =/ a-point-decoded=[@ @] (need (deco a-point)) =/ b-point-decoded=[@ @] (need (deco b-point)) :: %- etch (ward a-point-decoded b-point-decoded) :: ++ scalarmult ~/ %scalarmult |= [a=@udscalar a-point=@udpoint] ^- @udpoint :: =/ a-point-decoded=[@ @] (need (deco a-point)) :: %- etch (scam a-point-decoded a) :: ++ scalarmult-base ~/ %scalarmult-base |= scalar=@udscalar ^- @udpoint %- etch (scam bb scalar) :: ++ add-scalarmult-scalarmult-base ~/ %add-scalarmult-scalarmult-base |= [a=@udscalar a-point=@udpoint b=@udscalar] ^- @udpoint :: =/ a-point-decoded=[@ @] (need (deco a-point)) :: %- etch %+ ward (scam bb b) (scam a-point-decoded a) :: ++ add-double-scalarmult ~/ %add-double-scalarmult |= [a=@udscalar a-point=@udpoint b=@udscalar b-point=@udpoint] ^- @udpoint :: =/ a-point-decoded=[@ @] (need (deco a-point)) =/ b-point-decoded=[@ @] (need (deco b-point)) :: %- etch %+ ward (scam a-point-decoded a) (scam b-point-decoded b) :: :: ++puck:ed:crypto ++ puck :: public key ~/ %puck |= sk=@I ^- @ ?: (gth (met 3 sk) 32) !! =+ h=(shal (rsh [0 3] b) sk) =+ ^= a %+ add (bex (sub b 2)) (lsh [0 3] (cut 0 [3 (sub b 5)] h)) =+ aa=(scam bb a) (etch aa) :: :: ++suck:ed:crypto ++ suck :: keypair from seed |= se=@I ^- @uJ =+ pu=(puck se) (can 0 ~[[b se] [b pu]]) :: :: ++shar:ed:crypto ++ shar :: curve25519 secret ~/ %shar |= [pub=@ sek=@] ^- @ux =+ exp=(shal (rsh [0 3] b) (suck sek)) =. exp (dis exp (can 0 ~[[3 0] [251 (fil 0 251 1)]])) =. exp (con exp (lsh [3 31] 0b100.0000)) =+ prv=(end 8 exp) =+ crv=(fra.fq (sum.fq 1 pub) (dif.fq 1 pub)) (curt prv crv) :: :: ++sign:ed:crypto ++ sign :: certify ~/ %sign |= [m=@ se=@] ^- @ =+ sk=(suck se) =+ pk=(cut 0 [b b] sk) =+ h=(shal (rsh [0 3] b) sk) =+ ^= a %+ add (bex (sub b 2)) (lsh [0 3] (cut 0 [3 (sub b 5)] h)) =+ ^= r =+ hm=(cut 0 [b b] h) =+ ^= i %+ can 0 :~ [b hm] [(met 0 m) m] == (shaz i) =+ rr=(scam bb r) =+ ^= ss =+ er=(etch rr) =+ ^= ha %+ can 0 :~ [b er] [b pk] [(met 0 m) m] == (~(sit fo l) (add r (mul (shaz ha) a))) (can 0 ~[[b (etch rr)] [b ss]]) :: :: ++veri:ed:crypto ++ veri :: validate ~/ %veri |= [s=@ m=@ pk=@] ^- ? ?: (gth (div b 4) (met 3 s)) | ?: (gth (div b 8) (met 3 pk)) | =+ cb=(rsh [0 3] b) =+ rr=(deco (cut 0 [0 b] s)) ?~ rr | =+ aa=(deco pk) ?~ aa | =+ ss=(cut 0 [b b] s) =+ ha=(can 3 ~[[cb (etch u.rr)] [cb pk] [(met 3 m) m]]) =+ h=(shaz ha) =((scam bb ss) (ward u.rr (scam u.aa h))) -- ::ed :: :: :::: ++scr:crypto :: (2b3) scrypt :: :::: ++ scr ~% %scr ..part ~ |% :: :: ++sal:scr:crypto ++ sal :: salsa20 hash |= [x=@ r=@] :: with r rounds ?> =((mod r 2) 0) :: =+ few==>(fe .(a 5)) =+ ^= rot |= [a=@ b=@] (mix (end 5 (lsh [0 a] b)) (rsh [0 (sub 32 a)] b)) =+ ^= lea |= [a=@ b=@] (net:few (sum:few (net:few a) (net:few b))) => |% :: :: ++qr:sal:scr:crypto ++ qr :: quarterround |= y=[@ @ @ @ ~] =+ zb=(mix &2.y (rot 7 (sum:few &1.y &4.y))) =+ zc=(mix &3.y (rot 9 (sum:few zb &1.y))) =+ zd=(mix &4.y (rot 13 (sum:few zc zb))) =+ za=(mix &1.y (rot 18 (sum:few zd zc))) ~[za zb zc zd] :: :: ++rr:sal:scr:crypto ++ rr :: rowround |= [y=(list @)] =+ za=(qr ~[&1.y &2.y &3.y &4.y]) =+ zb=(qr ~[&6.y &7.y &8.y &5.y]) =+ zc=(qr ~[&11.y &12.y &9.y &10.y]) =+ zd=(qr ~[&16.y &13.y &14.y &15.y]) ^- (list @) :~ &1.za &2.za &3.za &4.za &4.zb &1.zb &2.zb &3.zb &3.zc &4.zc &1.zc &2.zc &2.zd &3.zd &4.zd &1.zd == :: :: ++cr:sal:scr:crypto ++ cr :: columnround |= [x=(list @)] =+ ya=(qr ~[&1.x &5.x &9.x &13.x]) =+ yb=(qr ~[&6.x &10.x &14.x &2.x]) =+ yc=(qr ~[&11.x &15.x &3.x &7.x]) =+ yd=(qr ~[&16.x &4.x &8.x &12.x]) ^- (list @) :~ &1.ya &4.yb &3.yc &2.yd &2.ya &1.yb &4.yc &3.yd &3.ya &2.yb &1.yc &4.yd &4.ya &3.yb &2.yc &1.yd == :: :: ++dr:sal:scr:crypto ++ dr :: doubleround |= [x=(list @)] (rr (cr x)) :: :: ++al:sal:scr:crypto ++ al :: add two lists |= [a=(list @) b=(list @)] |- ^- (list @) ?~ a ~ ?~ b ~ [i=(sum:few -.a -.b) t=$(a +.a, b +.b)] -- :: =+ xw=(rpp 5 16 x) =+ ^= ow |- ^- (list @) ?~ r xw $(xw (dr xw), r (sub r 2)) (rep 5 (al xw ow)) :: :: ++rpp:scr:crypto ++ rpp :: rip+filler blocks |= [a=bloq b=@ c=@] =+ q=(rip a c) =+ w=(lent q) ?. =(w b) ?. (lth w b) (slag (sub w b) q) ^+ q (weld q (reap (sub b (lent q)) 0)) q :: :: ++bls:scr:crypto ++ bls :: split to sublists |= [a=@ b=(list @)] ?> =((mod (lent b) a) 0) |- ^- (list (list @)) ?~ b ~ [i=(scag a `(list @)`b) t=$(b (slag a `(list @)`b))] :: :: ++slb:scr:crypto ++ slb :: |= [a=(list (list @))] |- ^- (list @) ?~ a ~ (weld `(list @)`-.a $(a +.a)) :: :: ++sbm:scr:crypto ++ sbm :: scryptBlockMix |= [r=@ b=(list @)] ?> =((lent b) (mul 2 r)) =+ [x=(snag (dec (mul 2 r)) b) c=0] =| [ya=(list @) yb=(list @)] |- ^- (list @) ?~ b (flop (weld yb ya)) =. x (sal (mix x -.b) 8) ?~ (mod c 2) $(c +(c), b +.b, ya [i=x t=ya]) $(c +(c), b +.b, yb [i=x t=yb]) :: :: ++srm:scr:crypto ++ srm :: scryptROMix |= [r=@ b=(list @) n=@] ?> ?& =((lent b) (mul 2 r)) =(n (bex (dec (xeb n)))) (lth n (bex (mul r 16))) == =+ [v=*(list (list @)) c=0] =. v |- ^- (list (list @)) =+ w=(sbm r b) ?: =(c n) (flop v) $(c +(c), v [i=[b] t=v], b w) =+ x=(sbm r (snag (dec n) v)) |- ^- (list @) ?: =(c n) x =+ q=(snag (dec (mul r 2)) x) =+ z=`(list @)`(snag (mod q n) v) =+ ^= w |- ^- (list @) ?~ x ~ ?~ z ~ [i=(mix -.x -.z) t=$(x +.x, z +.z)] $(x (sbm r w), c +(c)) :: :: ++hmc:scr:crypto ++ hmc :: HMAC-SHA-256 |= [k=@ t=@] (hml k (met 3 k) t (met 3 t)) :: :: ++hml:scr:crypto ++ hml :: w+length |= [k=@ kl=@ t=@ tl=@] => .(k (end [3 kl] k), t (end [3 tl] t)) =+ b=64 =? k (gth kl b) (shay kl k) =+ ^= q %+ shay (add b tl) (add (lsh [3 b] t) (mix k (fil 3 b 0x36))) %+ shay (add b 32) (add (lsh [3 b] q) (mix k (fil 3 b 0x5c))) :: :: ++pbk:scr:crypto ++ pbk :: PBKDF2-HMAC-SHA256 ~/ %pbk |= [p=@ s=@ c=@ d=@] (pbl p (met 3 p) s (met 3 s) c d) :: :: ++pbl:scr:crypto ++ pbl :: w+length ~/ %pbl |= [p=@ pl=@ s=@ sl=@ c=@ d=@] => .(p (end [3 pl] p), s (end [3 sl] s)) =+ h=32 :: :: max key length 1GB :: max iterations 2^28 :: ?> ?& (lte d (bex 30)) (lte c (bex 28)) !=(c 0) == =+ ^= l ?~ (mod d h) (div d h) +((div d h)) =+ r=(sub d (mul h (dec l))) =+ [t=0 j=1 k=1] =. t |- ^- @ ?: (gth j l) t =+ u=(add s (lsh [3 sl] (rep 3 (flop (rpp 3 4 j))))) =+ f=0 =. f |- ^- @ ?: (gth k c) f =+ q=(hml p pl u ?:(=(k 1) (add sl 4) h)) $(u q, f (mix f q), k +(k)) $(t (add t (lsh [3 (mul (dec j) h)] f)), j +(j)) (end [3 d] t) :: :: ++hsh:scr:crypto ++ hsh :: scrypt ~/ %hsh |= [p=@ s=@ n=@ r=@ z=@ d=@] (hsl p (met 3 p) s (met 3 s) n r z d) :: :: ++hsl:scr:crypto ++ hsl :: w+length ~/ %hsl |= [p=@ pl=@ s=@ sl=@ n=@ r=@ z=@ d=@] =| v=(list (list @)) => .(p (end [3 pl] p), s (end [3 sl] s)) =+ u=(mul (mul 128 r) z) :: :: n is power of 2; max 1GB memory :: ?> ?& =(n (bex (dec (xeb n)))) !=(r 0) !=(z 0) %+ lte (mul (mul 128 r) (dec (add n z))) (bex 30) (lth pl (bex 31)) (lth sl (bex 31)) == =+ ^= b =+ (rpp 3 u (pbl p pl s sl 1 u)) %+ turn (bls (mul 128 r) -) |=(a=(list @) (rpp 9 (mul 2 r) (rep 3 a))) ?> =((lent b) z) =+ ^= q =+ |- ?~ b (flop v) $(b +.b, v [i=(srm r -.b n) t=v]) %+ turn `(list (list @))`- |=(a=(list @) (rpp 3 (mul 128 r) (rep 9 a))) (pbl p pl (rep 3 (slb q)) u 1 d) :: :: ++ypt:scr:crypto ++ ypt :: 256bit {salt pass} |= [s=@ p=@] ^- @ (hsh p s 16.384 8 1 256) -- ::scr :: :: :::: ++crub:crypto :: (2b4) suite B, Ed :: :::: ++ crub !: ^- acru =| [pub=[cry=@ sgn=@] sek=(unit [cry=@ sgn=@])] |% :: :: ++as:crub:crypto ++ as :: |% :: :: ++sign:as:crub: ++ sign :: |= msg=@ ^- @ux ?~ sek ~| %pubkey-only !! (jam [(sign:ed msg sgn.u.sek) msg]) :: :: ++sure:as:crub: ++ sure :: |= txt=@ ^- (unit @ux) =+ ;;([sig=@ msg=@] (cue txt)) ?. (veri:ed sig msg sgn.pub) ~ (some msg) :: :: ++seal:as:crub: ++ seal :: |= [bpk=pass msg=@] ^- @ux ?~ sek ~| %pubkey-only !! ?> =('b' (end 3 bpk)) =+ pk=(rsh 8 (rsh 3 bpk)) =+ shar=(shax (shar:ed pk cry.u.sek)) =+ smsg=(sign msg) (jam (~(en siva:aes shar ~) smsg)) :: :: ++tear:as:crub: ++ tear :: |= [bpk=pass txt=@] ^- (unit @ux) ?~ sek ~| %pubkey-only !! ?> =('b' (end 3 bpk)) =+ pk=(rsh 8 (rsh 3 bpk)) =+ shar=(shax (shar:ed pk cry.u.sek)) =+ ;;([iv=@ len=@ cph=@] (cue txt)) =+ try=(~(de siva:aes shar ~) iv len cph) ?~ try ~ (sure:as:(com:nu:crub bpk) u.try) -- ::as :: :: ++de:crub:crypto ++ de :: decrypt |= [key=@J txt=@] ^- (unit @ux) =+ ;;([iv=@ len=@ cph=@] (cue txt)) %^ ~(de sivc:aes (shaz key) ~) iv len cph :: :: ++dy:crub:crypto ++ dy :: need decrypt |= [key=@J cph=@] (need (de key cph)) :: :: ++en:crub:crypto ++ en :: encrypt |= [key=@J msg=@] ^- @ux (jam (~(en sivc:aes (shaz key) ~) msg)) :: :: ++ex:crub:crypto ++ ex :: extract |% :: :: ++fig:ex:crub:crypto ++ fig :: fingerprint ^- @uvH (shaf %bfig pub) :: :: ++pac:ex:crub:crypto ++ pac :: private fingerprint ^- @uvG ?~ sek ~| %pubkey-only !! (end 6 (shaf %bcod sec)) :: :: ++pub:ex:crub:crypto ++ pub :: public key ^- pass (cat 3 'b' (cat 8 sgn.^pub cry.^pub)) :: :: ++sec:ex:crub:crypto ++ sec :: private key ^- ring ?~ sek ~| %pubkey-only !! (cat 3 'B' (cat 8 sgn.u.sek cry.u.sek)) -- ::ex :: :: ++nu:crub:crypto ++ nu :: |% :: :: ++pit:nu:crub:crypto ++ pit :: create keypair |= [w=@ seed=@] =+ wid=(add (div w 8) ?:(=((mod w 8) 0) 0 1)) =+ bits=(shal wid seed) =+ [c=(rsh 8 bits) s=(end 8 bits)] ..nu(pub [cry=(puck:ed c) sgn=(puck:ed s)], sek `[cry=c sgn=s]) :: :: ++nol:nu:crub:crypto ++ nol :: activate secret |= a=ring =+ [mag=(end 3 a) bod=(rsh 3 a)] ~| %not-crub-seckey ?> =('B' mag) =+ [c=(rsh 8 bod) s=(end 8 bod)] ..nu(pub [cry=(puck:ed c) sgn=(puck:ed s)], sek `[cry=c sgn=s]) :: :: ++com:nu:crub:crypto ++ com :: activate public |= a=pass =+ [mag=(end 3 a) bod=(rsh 3 a)] ~| %not-crub-pubkey ?> =('b' mag) ..nu(pub [cry=(rsh 8 bod) sgn=(end 8 bod)], sek ~) -- ::nu -- ::crub :: :: :::: ++crua:crypto :: (2b5) suite B, RSA :: :::: ++ crua !! :: :: :::: ++test:crypto :: (2b6) test crypto :: :::: ++ test ^? |% :: :: ++trub:test:crypto ++ trub :: test crub |= msg=@t :: :: make acru cores :: =/ ali (pit:nu:crub 512 (shaz 'Alice')) =/ ali-pub (com:nu:crub pub:ex.ali) =/ bob (pit:nu:crub 512 (shaz 'Robert')) =/ bob-pub (com:nu:crub pub:ex.bob) :: :: alice signs and encrypts a symmetric key to bob :: =/ secret-key %- shaz 'Let there be no duplicity when taking a stand against him.' =/ signed-key (sign:as.ali secret-key) =/ crypted-key (seal:as.ali pub:ex.bob-pub signed-key) :: bob decrypts and verifies =/ decrypt-key-attempt (tear:as.bob pub:ex.ali-pub crypted-key) =/ decrypted-key ~| %decrypt-fail (need decrypt-key-attempt) =/ verify-key-attempt (sure:as.ali-pub decrypted-key) =/ verified-key ~| %verify-fail (need verify-key-attempt) :: bob encrypts with symmetric key =/ crypted-msg (en.bob verified-key msg) :: alice decrypts with same key `@t`(dy.ali secret-key crypted-msg) -- ::test :: :: :::: ++keccak:crypto :: (2b7) keccak family :: :::: ++ keccak |% :: :: keccak :: ++ keccak-224 |=(a=octs (keccak 1.152 448 224 a)) ++ keccak-256 |=(a=octs (keccak 1.088 512 256 a)) ++ keccak-384 |=(a=octs (keccak 832 768 384 a)) ++ keccak-512 |=(a=octs (keccak 576 1.024 512 a)) :: ++ keccak (cury (cury hash keccak-f) padding-keccak) :: ++ padding-keccak (multirate-padding 0x1) :: :: sha3 :: ++ sha3-224 |=(a=octs (sha3 1.152 448 224 a)) ++ sha3-256 |=(a=octs (sha3 1.088 512 256 a)) ++ sha3-384 |=(a=octs (sha3 832 768 384 a)) ++ sha3-512 |=(a=octs (sha3 576 1.024 512 a)) :: ++ sha3 (cury (cury hash keccak-f) padding-sha3) :: ++ padding-sha3 (multirate-padding 0x6) :: :: shake :: ++ shake-128 |=([o=@ud i=octs] (shake 1.344 256 o i)) ++ shake-256 |=([o=@ud i=octs] (shake 1.088 512 o i)) :: ++ shake (cury (cury hash keccak-f) padding-shake) :: ++ padding-shake (multirate-padding 0x1f) :: :: rawshake :: ++ rawshake-128 |=([o=@ud i=octs] (rawshake 1.344 256 o i)) ++ rawshake-256 |=([o=@ud i=octs] (rawshake 1.088 512 o i)) :: ++ rawshake (cury (cury hash keccak-f) padding-rawshake) :: ++ padding-rawshake (multirate-padding 0x7) :: :: core :: ++ hash :: per: permutation function with configurable width. :: pad: padding function. :: rat: bitrate, size in bits of blocks to operate on. :: cap: capacity, bits of sponge padding. :: out: length of desired output, in bits. :: inp: input to hash. |= $: per=$-(@ud $-(@ @)) pad=$-([octs @ud] octs) rat=@ud cap=@ud out=@ud inp=octs == ^- @ :: urbit's little-endian to keccak's big-endian. =. q.inp (rev 3 inp) %. [inp out] (sponge per pad rat cap) :: ::NOTE if ++keccak ever needs to be made to operate :: on bits rather than bytes, all that needs to :: be done is updating the way this padding :: function works. (and also "octs" -> "bits") ++ multirate-padding :: dsb: domain separation byte, reverse bit order. |= dsb=@ux ?> (lte dsb 0xff) |= [inp=octs mut=@ud] ^- octs =. mut (div mut 8) =+ pal=(sub mut (mod p.inp mut)) =? pal =(pal 0) mut =. pal (dec pal) :- (add p.inp +(pal)) :: padding is provided in lane bit ordering, :: ie, LSB = left. (cat 3 (con (lsh [3 pal] dsb) 0x80) q.inp) :: ++ sponge :: sponge construction :: :: preperm: permutation function with configurable width. :: padding: padding function. :: bitrate: size of blocks to operate on. :: capacity: sponge padding. |= $: preperm=$-(@ud $-(@ @)) padding=$-([octs @ud] octs) bitrate=@ud capacity=@ud == :: :: preparing =+ bitrate-bytes=(div bitrate 8) =+ blockwidth=(add bitrate capacity) =+ permute=(preperm blockwidth) :: |= [input=octs output=@ud] |^ ^- @ :: :: padding =. input (padding input bitrate) :: :: absorbing =/ pieces=(list @) :: amount of bitrate-sized blocks. ?> =(0 (mod p.input bitrate-bytes)) =+ i=(div p.input bitrate-bytes) |- ?: =(i 0) ~ :_ $(i (dec i)) :: get the bitrate-sized block of bytes :: that ends with the byte at -. =- (cut 3 [- bitrate-bytes] q.input) (mul (dec i) bitrate-bytes) =/ state=@ :: for every piece, %+ roll pieces |= [p=@ s=@] :: pad with capacity, =. p (lsh [0 capacity] p) :: xor it into the state and permute it. (permute (mix s (bytes-to-lanes p))) :: :: squeezing =| res=@ =| len=@ud |- :: append a bitrate-sized head of state to the :: result. =. res %+ con (lsh [0 bitrate] res) (rsh [0 capacity] (lanes-to-bytes state)) =. len (add len bitrate) ?: (gte len output) :: produce the requested bits of output. (rsh [0 (sub len output)] res) $(res res, state (permute state)) :: ++ bytes-to-lanes :: flip byte order in blocks of 8 bytes. |= a=@ %^ run 6 a |=(b=@ (lsh [3 (sub 8 (met 3 b))] (swp 3 b))) :: ++ lanes-to-bytes :: unflip byte order in blocks of 8 bytes. |= a=@ %+ can 6 %+ turn =+ (rip 6 a) (weld - (reap (sub 25 (lent -)) 0x0)) |= a=@ :- 1 %+ can 3 =- (turn - |=(a=@ [1 a])) =+ (flop (rip 3 a)) (weld (reap (sub 8 (lent -)) 0x0) -) -- :: ++ keccak-f :: keccak permutation function |= [width=@ud] :: assert valid blockwidth. ?> =- (~(has in -) width) (sy 25 50 100 200 400 800 1.600 ~) :: assumes 5x5 lanes state, as is the keccak :: standard. =+ size=5 =+ lanes=(mul size size) =+ lane-bloq=(dec (xeb (div width lanes))) =+ lane-size=(bex lane-bloq) =+ rounds=(add 12 (mul 2 lane-bloq)) |= [input=@] ^- @ =* a input =+ round=0 |^ ?: =(round rounds) a :: :: theta =/ c=@ %+ roll (gulf 0 (dec size)) |= [x=@ud c=@] %+ con (lsh [lane-bloq 1] c) %+ roll (gulf 0 (dec size)) |= [y=@ud c=@] (mix c (get-lane x y a)) =/ d=@ %+ roll (gulf 0 (dec size)) |= [x=@ud d=@] %+ con (lsh [lane-bloq 1] d) %+ mix =- (get-word - size c) ?:(=(x 0) (dec size) (dec x)) %^ ~(rol fe lane-bloq) 0 1 (get-word (mod +(x) size) size c) =. a %+ roll (gulf 0 (dec lanes)) |= [i=@ud a=_a] %+ mix a %+ lsh [lane-bloq (sub lanes +(i))] (get-word i size d) :: :: rho and pi =/ b=@ %+ roll (gulf 0 (dec lanes)) |= [i=@ b=@] =+ x=(mod i 5) =+ y=(div i 5) %+ con b %+ lsh :- lane-bloq %+ sub lanes %+ add +(y) %+ mul size (mod (add (mul 2 x) (mul 3 y)) size) %^ ~(rol fe lane-bloq) 0 (rotation-offset i) (get-word i lanes a) :: :: chi =. a %+ roll (gulf 0 (dec lanes)) |= [i=@ud a=@] %+ con (lsh lane-bloq a) =+ x=(mod i 5) =+ y=(div i 5) %+ mix (get-lane x y b) %+ dis =- (get-lane - y b) (mod (add x 2) size) %^ not lane-bloq 1 (get-lane (mod +(x) size) y b) :: :: iota =. a =+ (round-constant round) (mix a (lsh [lane-bloq (dec lanes)] -)) :: :: next round $(round +(round)) :: ++ get-lane :: get the lane with coordinates |= [x=@ud y=@ud a=@] =+ i=(add x (mul size y)) (get-word i lanes a) :: ++ get-word :: get word {n} from atom {a} of {m} words. |= [n=@ud m=@ud a=@] (cut lane-bloq [(sub m +((mod n m))) 1] a) :: ++ round-constant |= c=@ud =- (snag (mod c 24) -) ^- (list @ux) :~ 0x1 0x8082 0x8000.0000.0000.808a 0x8000.0000.8000.8000 0x808b 0x8000.0001 0x8000.0000.8000.8081 0x8000.0000.0000.8009 0x8a 0x88 0x8000.8009 0x8000.000a 0x8000.808b 0x8000.0000.0000.008b 0x8000.0000.0000.8089 0x8000.0000.0000.8003 0x8000.0000.0000.8002 0x8000.0000.0000.0080 0x800a 0x8000.0000.8000.000a 0x8000.0000.8000.8081 0x8000.0000.0000.8080 0x8000.0001 0x8000.0000.8000.8008 == :: ++ rotation-offset |= x=@ud =- (snag x -) ^- (list @ud) :~ 0 1 62 28 27 36 44 6 55 20 3 10 43 25 39 41 45 15 21 8 18 2 61 56 14 == -- -- ::keccak :: :: :::: ++hmac:crypto :: (2b8) hmac family :: :::: ++ hmac ~% %hmac ..part ~ =, sha => |% ++ meet |=([k=@ m=@] [[(met 3 k) k] [(met 3 m) m]]) ++ flip |=([k=@ m=@] [(swp 3 k) (swp 3 m)]) -- |% :: :: use with @ :: ++ hmac-sha1 (cork meet hmac-sha1l) ++ hmac-sha256 (cork meet hmac-sha256l) ++ hmac-sha512 (cork meet hmac-sha512l) :: :: use with @t :: ++ hmac-sha1t (cork flip hmac-sha1) ++ hmac-sha256t (cork flip hmac-sha256) ++ hmac-sha512t (cork flip hmac-sha512) :: :: use with byts :: ++ hmac-sha1l (cury hmac sha-1l 64 20) ++ hmac-sha256l (cury hmac sha-256l 64 32) ++ hmac-sha512l (cury hmac sha-512l 128 64) :: :: main logic :: ++ hmac ~/ %hmac :: boq: block size in bytes used by haj :: out: bytes output by haj |* [[haj=$-([@u @] @) boq=@u out=@u] key=byts msg=byts] :: ensure key and message fit signaled lengths =. dat.key (end [3 wid.key] dat.key) =. dat.msg (end [3 wid.msg] dat.msg) :: keys longer than block size are shortened by hashing =? dat.key (gth wid.key boq) (haj wid.key dat.key) =? wid.key (gth wid.key boq) out :: keys shorter than block size are right-padded =? dat.key (lth wid.key boq) (lsh [3 (sub boq wid.key)] dat.key) :: pad key, inner and outer =+ kip=(mix dat.key (fil 3 boq 0x36)) =+ kop=(mix dat.key (fil 3 boq 0x5c)) :: append inner padding to message, then hash =+ (haj (add wid.msg boq) (add (lsh [3 wid.msg] kip) dat.msg)) :: prepend outer padding to result, hash again (haj (add out boq) (add (lsh [3 out] kop) -)) -- :: hmac :: :: :::: ++secp:crypto :: (2b9) secp family :: :::: ++ secp !. :: TODO: as-octs and hmc are outside of jet parent => :+ ..part hmc=hmac-sha256l:hmac:crypto as-octs=as-octs:mimes:html ~% %secp +< ~ |% +$ jacobian [x=@ y=@ z=@] :: jacobian point +$ point [x=@ y=@] :: curve point +$ domain $: p=@ :: prime modulo a=@ :: y^2=x^3+ax+b b=@ :: g=point :: base point n=@ :: prime order of g == ++ secp |_ [bytes=@ =domain] ++ field-p ~(. fo p.domain) ++ field-n ~(. fo n.domain) ++ compress-point |= =point ^- @ %+ can 3 :~ [bytes x.point] [1 (add 2 (cut 0 [0 1] y.point))] == :: ++ serialize-point |= =point ^- @ %+ can 3 :~ [bytes y.point] [bytes x.point] [1 4] == :: ++ decompress-point |= compressed=@ ^- point =/ x=@ (end [3 bytes] compressed) ?> =(3 (mod p.domain 4)) =/ fop field-p =+ [fadd fmul fpow]=[sum.fop pro.fop exp.fop] =/ y=@ %+ fpow (rsh [0 2] +(p.domain)) %+ fadd b.domain %+ fadd (fpow 3 x) (fmul a.domain x) =/ s=@ (rsh [3 bytes] compressed) ~| [`@ux`s `@ux`compressed] ?> |(=(2 s) =(3 s)) :: check parity :: =? y !=((sub s 2) (mod y 2)) (sub p.domain y) [x y] :: ++ jc :: jacobian math |% ++ from |= a=jacobian ^- point =/ fop field-p =+ [fmul fpow finv]=[pro.fop exp.fop inv.fop] =/ z (finv z.a) :- (fmul x.a (fpow 2 z)) (fmul y.a (fpow 3 z)) :: ++ into |= point ^- jacobian [x y 1] :: ++ double |= jacobian ^- jacobian ?: =(0 y) [0 0 0] =/ fop field-p =+ [fadd fsub fmul fpow]=[sum.fop dif.fop pro.fop exp.fop] =/ s :(fmul 4 x (fpow 2 y)) =/ m %+ fadd (fmul 3 (fpow 2 x)) (fmul a.domain (fpow 4 z)) =/ nx %+ fsub (fpow 2 m) (fmul 2 s) =/ ny %+ fsub (fmul m (fsub s nx)) (fmul 8 (fpow 4 y)) =/ nz :(fmul 2 y z) [nx ny nz] :: ++ add |= [a=jacobian b=jacobian] ^- jacobian ?: =(0 y.a) b ?: =(0 y.b) a =/ fop field-p =+ [fadd fsub fmul fpow]=[sum.fop dif.fop pro.fop exp.fop] =/ u1 :(fmul x.a z.b z.b) =/ u2 :(fmul x.b z.a z.a) =/ s1 :(fmul y.a z.b z.b z.b) =/ s2 :(fmul y.b z.a z.a z.a) ?: =(u1 u2) ?. =(s1 s2) [0 0 1] (double a) =/ h (fsub u2 u1) =/ r (fsub s2 s1) =/ h2 (fmul h h) =/ h3 (fmul h2 h) =/ u1h2 (fmul u1 h2) =/ nx %+ fsub (fmul r r) :(fadd h3 u1h2 u1h2) =/ ny %+ fsub (fmul r (fsub u1h2 nx)) (fmul s1 h3) =/ nz :(fmul h z.a z.b) [nx ny nz] :: ++ mul |= [a=jacobian scalar=@] ^- jacobian ?: =(0 y.a) [0 0 1] ?: =(0 scalar) [0 0 1] ?: =(1 scalar) a ?: (gte scalar n.domain) $(scalar (mod scalar n.domain)) ?: =(0 (mod scalar 2)) (double $(scalar (rsh 0 scalar))) (add a (double $(scalar (rsh 0 scalar)))) -- ++ add-points |= [a=point b=point] ^- point =/ j jc (from.j (add.j (into.j a) (into.j b))) ++ mul-point-scalar |= [p=point scalar=@] ^- point =/ j jc %- from.j %+ mul.j (into.j p) scalar :: ++ valid-hash |= has=@ (lte (met 3 has) bytes) :: ++ in-order |= i=@ ?& (gth i 0) (lth i n.domain) == ++ priv-to-pub |= private-key=@ ^- point ?> (in-order private-key) (mul-point-scalar g.domain private-key) :: ++ make-k |= [hash=@ private-key=@] ^- @ ?> (in-order private-key) ?> (valid-hash hash) =/ v (fil 3 bytes 1) =/ k 0 =. k %+ hmc [bytes k] %- as-octs %+ can 3 :~ [bytes hash] [bytes private-key] [1 0] [bytes v] == =. v (hmc bytes^k bytes^v) =. k %+ hmc [bytes k] %- as-octs %+ can 3 :~ [bytes hash] [bytes private-key] [1 1] [bytes v] == =. v (hmc bytes^k bytes^v) (hmc bytes^k bytes^v) :: ++ ecdsa-raw-sign |= [hash=@ private-key=@] ^- [r=@ s=@ y=@] :: make-k and priv-to pub will validate inputs =/ k (make-k hash private-key) =/ rp (priv-to-pub k) =* r x.rp ?< =(0 r) =/ fon field-n =+ [fadd fmul finv]=[sum.fon pro.fon inv.fon] =/ s %+ fmul (finv k) %+ fadd hash %+ fmul r private-key ?< =(0 s) [r s y.rp] :: general recovery omitted, but possible -- ++ secp256k1 ~% %secp256k1 + ~ |% ++ t :: in the battery for jet matching ^- domain :* 0xffff.ffff.ffff.ffff.ffff.ffff.ffff.ffff. ffff.ffff.ffff.ffff.ffff.fffe.ffff.fc2f 0 7 :- 0x79be.667e.f9dc.bbac.55a0.6295.ce87.0b07. 029b.fcdb.2dce.28d9.59f2.815b.16f8.1798 0x483a.da77.26a3.c465.5da4.fbfc.0e11.08a8. fd17.b448.a685.5419.9c47.d08f.fb10.d4b8 0xffff.ffff.ffff.ffff.ffff.ffff.ffff.fffe. baae.dce6.af48.a03b.bfd2.5e8c.d036.4141 == :: ++ curve ~(. secp 32 t) ++ serialize-point serialize-point:curve ++ compress-point compress-point:curve ++ decompress-point decompress-point:curve ++ add-points add-points:curve ++ mul-point-scalar mul-point-scalar:curve ++ make-k ~/ %make |= [hash=@uvI private-key=@] :: checks sizes (make-k:curve hash private-key) ++ priv-to-pub |= private-key=@ :: checks sizes (priv-to-pub:curve private-key) :: ++ ecdsa-raw-sign ~/ %sign |= [hash=@uvI private-key=@] ^- [v=@ r=@ s=@] =/ c curve :: raw-sign checks sizes =+ (ecdsa-raw-sign.c hash private-key) =/ rp=point [r y] =/ s-high (gte (mul 2 s) n.domain.c) =? s s-high (sub n.domain.c s) =? rp s-high [x.rp (sub p.domain.c y.rp)] =/ v (end 0 y.rp) =? v (gte x.rp n.domain.c) (add v 2) [v x.rp s] :: ++ ecdsa-raw-recover ~/ %reco |= [hash=@ sig=[v=@ r=@ s=@]] ^- point ?> (lte v.sig 3) =/ c curve ?> (valid-hash.c hash) ?> (in-order.c r.sig) ?> (in-order.c s.sig) =/ x ?: (gte v.sig 2) (add r.sig n.domain.c) r.sig =/ fop field-p.c =+ [fadd fmul fpow]=[sum.fop pro.fop exp.fop] =/ ysq (fadd (fpow 3 x) b.domain.c) =/ beta (fpow (rsh [0 2] +(p.domain.c)) ysq) =/ y ?: =((end 0 v.sig) (end 0 beta)) beta (sub p.domain.c beta) ?> =(0 (dif.fop ysq (fmul y y))) =/ nz (sub n.domain.c hash) =/ j jc.c =/ gz (mul.j (into.j g.domain.c) nz) =/ xy (mul.j (into.j x y) s.sig) =/ qr (add.j gz xy) =/ qj (mul.j qr (inv:field-n.c x)) =/ pub (from.j qj) ?< =([0 0] pub) pub -- -- :: ++ blake ~% %blake ..part ~ |% ::TODO generalize for both blake2 variants ++ blake2b ~/ %blake2b |= [msg=byts key=byts out=@ud] ^- @ :: initialization vector =/ iv=@ 0x6a09.e667.f3bc.c908. bb67.ae85.84ca.a73b. 3c6e.f372.fe94.f82b. a54f.f53a.5f1d.36f1. 510e.527f.ade6.82d1. 9b05.688c.2b3e.6c1f. 1f83.d9ab.fb41.bd6b. 5be0.cd19.137e.2179 :: per-round constants =/ sigma=(list (list @ud)) :~ :~ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 == :~ 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3 == :~ 11 8 12 0 5 2 15 13 10 14 3 6 7 1 9 4 == :~ 7 9 3 1 13 12 11 14 2 6 5 10 4 0 15 8 == :~ 9 0 5 7 2 4 10 15 14 1 11 12 6 8 3 13 == :~ 2 12 6 10 0 11 8 3 4 13 7 5 15 14 1 9 == :~ 12 5 1 15 14 13 4 10 0 7 6 3 9 2 8 11 == :~ 13 11 7 14 12 1 3 9 5 0 15 4 8 6 2 10 == :~ 6 15 14 9 11 3 0 8 12 2 13 7 1 4 10 5 == :~ 10 2 8 4 7 6 1 5 15 11 9 14 3 12 13 0 == :~ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 == :~ 14 10 4 8 9 15 13 6 1 12 0 2 11 7 5 3 == == => |% ++ get-word-list |= [h=@ w=@ud] ^- (list @) %- flop =+ l=(rip 6 h) =- (weld - l) (reap (sub w (lent l)) 0) :: ++ get-word |= [h=@ i=@ud w=@ud] ^- @ %+ snag i (get-word-list h w) :: ++ put-word |= [h=@ i=@ud w=@ud d=@] ^- @ %+ rep 6 =+ l=(get-word-list h w) %- flop %+ weld (scag i l) [d (slag +(i) l)] :: ++ mod-word |* [h=@ i=@ud w=@ud g=$-(@ @)] (put-word h i w (g (get-word h i w))) :: ++ pad |= [byts len=@ud] (lsh [3 (sub len wid)] dat) :: ++ compress |= [h=@ c=@ t=@ud l=?] ^- @ :: set up local work vector =+ v=(add (lsh [6 8] h) iv) :: xor the counter t into v =. v %- mod-word :^ v 12 16 (cury mix (end [0 64] t)) =. v %- mod-word :^ v 13 16 (cury mix (rsh [0 64] t)) :: for the last block, invert v14 =? v l %- mod-word :^ v 14 16 (cury mix 0xffff.ffff.ffff.ffff) :: twelve rounds of message mixing =+ i=0 =| s=(list @) |^ ?: =(i 12) :: xor upper and lower halves of v into state h =. h (mix h (rsh [6 8] v)) (mix h (end [6 8] v)) :: select message mixing schedule and mix v =. s (snag (mod i 10) sigma) =. v (do-mix 0 4 8 12 0 1) =. v (do-mix 1 5 9 13 2 3) =. v (do-mix 2 6 10 14 4 5) =. v (do-mix 3 7 11 15 6 7) =. v (do-mix 0 5 10 15 8 9) =. v (do-mix 1 6 11 12 10 11) =. v (do-mix 2 7 8 13 12 13) =. v (do-mix 3 4 9 14 14 15) $(i +(i)) :: ++ do-mix |= [na=@ nb=@ nc=@ nd=@ nx=@ ny=@] ^- @ =- =. v (put-word v na 16 a) =. v (put-word v nb 16 b) =. v (put-word v nc 16 c) (put-word v nd 16 d) %- b2mix :* (get-word v na 16) (get-word v nb 16) (get-word v nc 16) (get-word v nd 16) (get-word c (snag nx s) 16) (get-word c (snag ny s) 16) == -- :: ++ b2mix |= [a=@ b=@ c=@ d=@ x=@ y=@] ^- [a=@ b=@ c=@ d=@] =. x (rev 3 8 x) =. y (rev 3 8 y) =+ fed=~(. fe 6) =. a :(sum:fed a b x) =. d (ror:fed 0 32 (mix d a)) =. c (sum:fed c d) =. b (ror:fed 0 24 (mix b c)) =. a :(sum:fed a b y) =. d (ror:fed 0 16 (mix d a)) =. c (sum:fed c d) =. b (ror:fed 0 63 (mix b c)) [a b c d] -- :: ensure inputs adhere to contraints =. out (max 1 (min out 64)) =. wid.msg (min wid.msg (bex 128)) =. wid.key (min wid.key 64) =. dat.msg (end [3 wid.msg] dat.msg) =. dat.key (end [3 wid.key] dat.key) :: initialize state vector =+ h=iv :: mix key length and output length into h0 =. h %- mod-word :^ h 0 8 %+ cury mix %+ add 0x101.0000 (add (lsh 3 wid.key) out) :: keep track of how much we've compressed =* mes dat.msg =+ com=0 =+ rem=wid.msg :: if we have a key, pad it and prepend to msg =? mes (gth wid.key 0) (can 3 ~[rem^mes 128^(pad key 128)]) =? rem (gth wid.key 0) (add rem 128) |- :: compress 128-byte chunks of the message ?: (gth rem 128) =+ c=(cut 3 [(sub rem 128) 128] mes) =. com (add com 128) %_ $ rem (sub rem 128) h (compress h c com |) == :: compress the final bytes of the msg =+ c=(cut 3 [0 rem] mes) =. com (add com rem) =. c (pad [rem c] 128) =. h (compress h c com &) :: produce output of desired length %+ rsh [3 (sub 64 out)] :: do some word %+ rep 6 %+ turn (flop (gulf 0 7)) |= a=@ (rev 3 8 (get-word h a 8)) -- ::blake :: ++ argon2 ~% %argon ..part ~ |% :: :: structures :: +$ argon-type ?(%d %i %id %u) :: :: shorthands :: ++ argon2-urbit |= out=@ud (argon2 out %u 0x13 4 512.000 1 *byts *byts) :: :: argon2 proper :: :: main argon2 operation ++ argon2 :: out: desired output size in bytes :: typ: argon2 type :: version: argon2 version (0x10/v1.0 or 0x13/v1.3) :: threads: amount of threads/parallelism :: mem-cost: kb of memory to use :: time-cost: iterations to run :: key: optional secret :: extra: optional arbitrary data |= $: out=@ud typ=argon-type version=@ux :: threads=@ud mem-cost=@ud time-cost=@ud :: key=byts extra=byts == ^- $-([msg=byts sat=byts] @) :: :: check configuration sanity :: ?: =(0 threads) ~| %parallelism-must-be-above-zero !! ?: =(0 time-cost) ~| %time-cost-must-be-above-zero !! ?: (lth mem-cost (mul 8 threads)) ~| :- %memory-cost-must-be-at-least-threads [threads %times 8 (mul 8 threads)] !! ?. |(=(0x10 version) =(0x13 version)) ~| [%unsupported-version version %want [0x10 0x13]] !! :: :: calculate constants and initialize buffer :: :: for each thread, there is a row in the buffer. :: the amount of columns depends on the memory-cost. :: columns are split into groups of four. :: a single such quarter section of a row is a segment. :: :: blocks: (m_prime) :: columns: row length (q) :: seg-length: segment length =/ blocks=@ud :: round mem-cost down to the nearest multiple of 4*threads =+ (mul 4 threads) (mul (div mem-cost -) -) =+ columns=(div blocks threads) =+ seg-length=(div columns 4) :: =/ buffer=(list (list @)) (reap threads (reap columns 0)) :: :: main function :: :: msg: the main input :: sat: optional salt ~% %argon2 ..argon2 ~ |= [msg=byts sat=byts] ^- @ ?: (lth wid.sat 8) ~| [%min-salt-length-is-8 wid.sat] !! :: :: h0: initial 64-byte block =/ h0=@ =- (blake2b:blake - 0^0 64) :- :(add 40 wid.msg wid.sat wid.key wid.extra) %+ can 3 =+ (cury (cury rev 3) 4) :~ (prep-wid extra) (prep-wid key) (prep-wid sat) (prep-wid msg) 4^(- (type-to-num typ)) 4^(- version) 4^(- time-cost) 4^(- mem-cost) 4^(- out) 4^(- threads) == :: :: do time-cost passes over the buffer :: =+ t=0 |- ?: (lth t time-cost) :: :: process all four segments in the columns... :: =+ s=0 |- ?. (lth s 4) ^$(t +(t)) :: :: ...of every row/thread :: =+ r=0 |- ?. (lth r threads) ^$(s +(s)) =; new=_buffer $(buffer new, r +(r)) %- fill-segment :* buffer h0 t s r blocks columns seg-length threads time-cost typ version == :: :: mix all rows together and hash the result :: =+ r=0 =| final=@ |- ?: =(r threads) (hash 1.024^final out) =- $(final -, r +(r)) %+ mix final (snag (dec columns) (snag r buffer)) :: :: per-segment computation ++ fill-segment |= $: buffer=(list (list @)) h0=@ :: itn=@ud seg=@ud row=@ud :: blocks=@ud columns=@ud seg-length=@ud :: threads=@ud time-cost=@ud typ=argon-type version=@ux == :: :: fill-segment utilities :: => |% ++ put-word |= [rob=(list @) i=@ud d=@] %+ weld (scag i rob) [d (slag +(i) rob)] -- ^+ buffer :: :: rob: row buffer to operate on :: do-i: whether to use prns from input rather than state :: rands: prns generated from input, if we do-i =+ rob=(snag row buffer) =/ do-i=? ?| ?=(%i typ) &(?=(%id typ) =(0 itn) (lte seg 1)) &(?=(%u typ) =(0 itn) (lte seg 2)) == =/ rands=(list (pair @ @)) ?. do-i ~ :: :: keep going until we have a list of :seg-length prn pairs :: =+ l=0 =+ counter=1 |- ^- (list (pair @ @)) ?: (gte l seg-length) ~ =- (weld - $(counter +(counter), l (add l 128))) :: :: generate pseudorandom block by compressing metadata :: =/ random-block=@ %+ compress 0 %+ compress 0 %+ lsh [3 968] %+ rep 6 =+ (cury (cury rev 3) 8) :~ (- counter) (- (type-to-num typ)) (- time-cost) (- blocks) (- seg) (- row) (- itn) == :: :: split the random-block into 64-bit sections, :: then extract the first two 4-byte sections from each. :: %+ turn (flop (rip 6 random-block)) |= a=@ ^- (pair @ @) :- (rev 3 4 (rsh 5 a)) (rev 3 4 (end 5 a)) :: :: iterate over the entire segment length :: =+ sin=0 |- :: :: when done, produce the updated buffer :: ?: =(sin seg-length) %+ weld (scag row buffer) [rob (slag +(row) buffer)] :: :: col: current column to process =/ col=@ud (add (mul seg seg-length) sin) :: :: first two columns are generated from h0 :: ?: &(=(0 itn) (lth col 2)) =+ (app-num (app-num 64^h0 col) row) =+ (hash - 1.024) $(rob (put-word rob col -), sin +(sin)) :: :: c1, c2: prns for picking reference block =/ [c1=@ c2=@] ?: do-i (snag sin rands) =+ =- (snag - rob) ?: =(0 col) (dec columns) (mod (dec col) columns) :- (rev 3 4 (cut 3 [1.020 4] -)) (rev 3 4 (cut 3 [1.016 4] -)) :: :: ref-row: reference block row =/ ref-row=@ud ?: &(=(0 itn) =(0 seg)) row (mod c2 threads) :: :: ref-col: reference block column =/ ref-col=@ud =- (mod - columns) %+ add :: starting index ?: |(=(0 itn) =(3 seg)) 0 (mul +(seg) seg-length) :: pseudorandom offset =- %+ sub (dec -) %+ rsh [0 32] %+ mul - (rsh [0 32] (mul c1 c1)) :: reference area size ?: =(0 itn) ?: |(=(0 seg) =(row ref-row)) (dec col) ?: =(0 sin) (dec (mul seg seg-length)) (mul seg seg-length) =+ sul=(sub columns seg-length) ?: =(ref-row row) (dec (add sul sin)) ?: =(0 sin) (dec sul) sul :: :: compress the previous and reference block :: to create the new block :: =/ new=@ %+ compress =- (snag - rob) :: previous index, wrap-around ?: =(0 col) (dec columns) (mod (dec col) columns) :: get reference block %+ snag ref-col ?: =(ref-row row) rob (snag ref-row buffer) :: :: starting from v1.3, we xor the new block in, :: rather than directly overwriting the old block :: =? new &(!=(0 itn) =(0x13 version)) (mix new (snag col rob)) $(rob (put-word rob col new), sin +(sin)) :: :: compression function (g) ++ compress :: x, y: assumed to be 1024 bytes |= [x=@ y=@] ^- @ :: =+ r=(mix x y) =| q=(list @) :: :: iterate over rows of r to get q :: =+ i=0 |- ?: (lth i 8) =; p=(list @) $(q (weld q p), i +(i)) %- permute =- (weld (reap (sub 8 (lent -)) 0) -) %- flop %+ rip 7 (cut 10 [(sub 7 i) 1] r) :: :: iterate over columns of q to get z :: =/ z=(list @) (reap 64 0) =. i 0 |- :: :: when done, assemble z and xor it with r :: ?. (lth i 8) (mix (rep 7 (flop z)) r) :: :: permute the column :: =/ out=(list @) %- permute :~ (snag i q) (snag (add i 8) q) (snag (add i 16) q) (snag (add i 24) q) (snag (add i 32) q) (snag (add i 40) q) (snag (add i 48) q) (snag (add i 56) q) == :: :: put the result into z per column :: =+ j=0 |- ?: =(8 j) ^$(i +(i)) =- $(z -, j +(j)) =+ (add i (mul j 8)) %+ weld (scag - z) [(snag j out) (slag +(-) z)] :: :: permutation function (p) ++ permute ::NOTE this function really just takes and produces :: 8 values, but taking and producing them as :: lists helps clean up the code significantly. |= s=(list @) ?> =(8 (lent s)) ^- (list @) :: :: list inputs as 16 8-byte values :: =/ v=(list @) %- zing ^- (list (list @)) %+ turn s |= a=@ :: rev for endianness =+ (rip 6 (rev 3 16 a)) (weld - (reap (sub 2 (lent -)) 0)) :: :: do permutation rounds :: =. v (do-round v 0 4 8 12) =. v (do-round v 1 5 9 13) =. v (do-round v 2 6 10 14) =. v (do-round v 3 7 11 15) =. v (do-round v 0 5 10 15) =. v (do-round v 1 6 11 12) =. v (do-round v 2 7 8 13) =. v (do-round v 3 4 9 14) :: rev for endianness =. v (turn v (cury (cury rev 3) 8)) :: :: cat v back together into 8 16-byte values :: %+ turn (gulf 0 7) |= i=@ =+ (mul 2 i) (cat 6 (snag +(-) v) (snag - v)) :: :: perform a round and produce updated value list ++ do-round |= [v=(list @) na=@ nb=@ nc=@ nd=@] ^+ v => |% ++ get-word |= i=@ud (snag i v) :: ++ put-word |= [i=@ud d=@] ^+ v %+ weld (scag i v) [d (slag +(i) v)] -- =- =. v (put-word na a) =. v (put-word nb b) =. v (put-word nc c) (put-word nd d) %- round :* (get-word na) (get-word nb) (get-word nc) (get-word nd) == :: :: perform a round (bg) and produce updated values ++ round |= [a=@ b=@ c=@ d=@] ^- [a=@ b=@ c=@ d=@] :: operate on 64 bit words =+ fed=~(. fe 6) =* sum sum:fed =* ror ror:fed =+ end=(cury end 5) =. a :(sum a b :(mul 2 (end a) (end b))) =. d (ror 0 32 (mix d a)) =. c :(sum c d :(mul 2 (end c) (end d))) =. b (ror 0 24 (mix b c)) =. a :(sum a b :(mul 2 (end a) (end b))) =. d (ror 0 16 (mix d a)) =. c :(sum c d :(mul 2 (end c) (end d))) =. b (ror 0 63 (mix b c)) [a b c d] :: :: argon2 wrapper around blake2b (h') ++ hash =, blake |= [byts out=@ud] ^- @ :: :: msg: input with byte-length prepended =+ msg=(prep-num [wid dat] out) :: :: if requested size is low enough, hash directly :: ?: (lte out 64) (blake2b msg 0^0 out) :: :: build up the result by hashing and re-hashing :: the input message, adding the first 32 bytes :: of the hash to the result, until we have the :: desired output size. :: =+ tmp=(blake2b msg 0^0 64) =+ res=(rsh [3 32] tmp) =. out (sub out 32) |- ?: (gth out 64) =. tmp (blake2b 64^tmp 0^0 64) =. res (add (lsh [3 32] res) (rsh [3 32] tmp)) $(out (sub out 32)) %+ add (lsh [3 out] res) (blake2b 64^tmp 0^0 out) :: :: utilities :: ++ type-to-num |= t=argon-type ?- t %d 0 %i 1 %id 2 %u 10 == :: ++ app-num |= [byts num=@ud] ^- byts :- (add wid 4) %+ can 3 ~[4^(rev 3 4 num) wid^dat] :: ++ prep-num |= [byts num=@ud] ^- byts :- (add wid 4) %+ can 3 ~[wid^dat 4^(rev 3 4 num)] :: ++ prep-wid |= a=byts (prep-num a wid.a) -- :: ++ ripemd ~% %ripemd ..part ~ |% ++ ripemd-160 ~/ %ripemd160 |= byts ^- @ :: we operate on bits rather than bytes =. wid (mul wid 8) :: add padding =+ (md5-pad wid dat) :: endianness =. dat (run 5 dat |=(a=@ (rev 3 4 a))) =* x dat =+ blocks=(div wid 512) =+ fev=~(. fe 5) :: initial register values =+ h0=0x6745.2301 =+ h1=0xefcd.ab89 =+ h2=0x98ba.dcfe =+ h3=0x1032.5476 =+ h4=0xc3d2.e1f0 :: i: current block =+ [i=0 j=0] =+ *[a=@ b=@ c=@ d=@ e=@] :: a..e =+ *[aa=@ bb=@ cc=@ dd=@ ee=@] :: a'..e' |^ ?: =(i blocks) %+ rep 5 %+ turn `(list @)`~[h4 h3 h2 h1 h0] :: endianness |=(h=@ (rev 3 4 h)) =: a h0 aa h0 b h1 bb h1 c h2 cc h2 d h3 dd h3 e h4 ee h4 == :: j: current word =+ j=0 |- ?: =(j 80) %= ^$ i +(i) h1 :(sum:fev h2 d ee) h2 :(sum:fev h3 e aa) h3 :(sum:fev h4 a bb) h4 :(sum:fev h0 b cc) h0 :(sum:fev h1 c dd) == %= $ j +(j) :: a e b (fn j a b c d e (get (r j)) (k j) (s j)) c b d (rol 10 c) e d :: aa ee bb (fn (sub 79 j) aa bb cc dd ee (get (rr j)) (kk j) (ss j)) cc bb dd (rol 10 cc) ee dd == :: ++ get :: word from x in block i |= j=@ud =+ (add (mul i 16) +(j)) (cut 5 [(sub (mul blocks 16) -) 1] x) :: ++ fn |= [j=@ud a=@ b=@ c=@ d=@ e=@ m=@ k=@ s=@] =- (sum:fev (rol s :(sum:fev a m k -)) e) =. j (div j 16) ?: =(0 j) (mix (mix b c) d) ?: =(1 j) (con (dis b c) (dis (not 0 32 b) d)) ?: =(2 j) (mix (con b (not 0 32 c)) d) ?: =(3 j) (con (dis b d) (dis c (not 0 32 d))) ?: =(4 j) (mix b (con c (not 0 32 d))) !! :: ++ rol (cury rol:fev 0) :: ++ k |= j=@ud =. j (div j 16) ?: =(0 j) 0x0 ?: =(1 j) 0x5a82.7999 ?: =(2 j) 0x6ed9.eba1 ?: =(3 j) 0x8f1b.bcdc ?: =(4 j) 0xa953.fd4e !! :: ++ kk :: k' |= j=@ud =. j (div j 16) ?: =(0 j) 0x50a2.8be6 ?: =(1 j) 0x5c4d.d124 ?: =(2 j) 0x6d70.3ef3 ?: =(3 j) 0x7a6d.76e9 ?: =(4 j) 0x0 !! :: ++ r |= j=@ud %+ snag j ^- (list @) :~ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 7 4 13 1 10 6 15 3 12 0 9 5 2 14 11 8 3 10 14 4 9 15 8 1 2 7 0 6 13 11 5 12 1 9 11 10 0 8 12 4 13 3 7 15 14 5 6 2 4 0 5 9 7 12 2 10 14 1 3 8 11 6 15 13 == :: ++ rr :: r' |= j=@ud %+ snag j ^- (list @) :~ 5 14 7 0 9 2 11 4 13 6 15 8 1 10 3 12 6 11 3 7 0 13 5 10 14 15 8 12 4 9 1 2 15 5 1 3 7 14 6 9 11 8 12 2 10 0 4 13 8 6 4 1 3 11 15 0 5 12 2 13 9 7 10 14 12 15 10 4 1 5 8 7 6 2 13 14 0 3 9 11 == :: ++ s |= j=@ud %+ snag j ^- (list @) :~ 11 14 15 12 5 8 7 9 11 13 14 15 6 7 9 8 7 6 8 13 11 9 7 15 7 12 15 9 11 7 13 12 11 13 6 7 14 9 13 15 14 8 13 6 5 12 7 5 11 12 14 15 14 15 9 8 9 14 5 6 8 6 5 12 9 15 5 11 6 8 13 12 5 12 13 14 11 8 5 6 == :: ++ ss :: s' |= j=@ud %+ snag j ^- (list @) :~ 8 9 9 11 13 15 15 5 7 7 8 11 14 14 12 6 9 13 15 7 12 8 9 11 7 7 12 7 6 15 13 11 9 7 15 11 8 6 6 14 12 13 5 14 13 13 7 5 15 5 8 11 14 14 6 14 6 9 12 9 12 5 15 8 8 5 12 9 12 5 14 6 8 13 6 5 15 13 11 11 == -- :: ++ md5-pad |= byts ^- byts =+ (sub 511 (mod (add wid 64) 512)) :- :(add 64 +(-) wid) %+ can 0 ~[64^(rev 3 8 wid) +(-)^(lsh [0 -] 1) wid^dat] -- :: ++ pbkdf => |% ++ meet |=([p=@ s=@ c=@ d=@] [[(met 3 p) p] [(met 3 s) s] c d]) ++ flip |= [p=byts s=byts c=@ d=@] [wid.p^(rev 3 p) wid.s^(rev 3 s) c d] -- |% :: :: use with @ :: ++ hmac-sha1 (cork meet hmac-sha1l) ++ hmac-sha256 (cork meet hmac-sha256l) ++ hmac-sha512 (cork meet hmac-sha512l) :: :: use with @t :: ++ hmac-sha1t (cork meet hmac-sha1d) ++ hmac-sha256t (cork meet hmac-sha256d) ++ hmac-sha512t (cork meet hmac-sha512d) :: :: use with byts :: ++ hmac-sha1l (cork flip hmac-sha1d) ++ hmac-sha256l (cork flip hmac-sha256d) ++ hmac-sha512l (cork flip hmac-sha512d) :: :: main logic :: ++ hmac-sha1d (cury pbkdf hmac-sha1l:hmac 20) ++ hmac-sha256d (cury pbkdf hmac-sha256l:hmac 32) ++ hmac-sha512d (cury pbkdf hmac-sha512l:hmac 64) :: ++ pbkdf ::TODO jet me! ++hmac:hmac is an example |* [[prf=$-([byts byts] @) out=@u] p=byts s=byts c=@ d=@] => .(dat.p (end [3 wid.p] dat.p), dat.s (end [3 wid.s] dat.s)) :: :: max key length 1GB :: max iterations 2^28 :: ~| [%invalid-pbkdf-params c d] ?> ?& (lte d (bex 30)) (lte c (bex 28)) !=(c 0) == =/ l ?~ (mod d out) (div d out) +((div d out)) =+ r=(sub d (mul out (dec l))) =+ [t=0 j=1 k=1] =. t |- ^- @ ?: (gth j l) t =/ u %+ add dat.s %+ lsh [3 wid.s] %+ rep 3 (flop (rpp:scr 3 4 j)) =+ f=0 =. f |- ^- @ ?: (gth k c) f =/ q %^ rev 3 out =+ ?:(=(k 1) (add wid.s 4) out) (prf [wid.p (rev 3 p)] [- (rev 3 - u)]) $(u q, f (mix f q), k +(k)) $(t (add t (lsh [3 (mul (dec j) out)] f)), j +(j)) (rev 3 d (end [3 d] t)) -- -- ::crypto :: :::: :::: ++unity :: (2c) unit promotion :: :::: ++ unity ^? |% :: :: ++drop-list:unity ++ drop-list :: collapse unit list |* lut=(list (unit)) ?. |- ^- ? ?~(lut & ?~(i.lut | $(lut t.lut))) ~ %- some |- ?~ lut ~ [i=u:+.i.lut t=$(lut t.lut)] :: :: ++drop-map:unity ++ drop-map :: collapse unit map |* lum=(map term (unit)) ?: (~(rep by lum) |=([[@ a=(unit)] b=_|] |(b ?=(~ a)))) ~ (some (~(run by lum) need)) :: :: ++drop-pole:unity ++ drop-pole :: collapse to tuple |^ |* pul=(pole (unit)) ?: (test-pole pul) ~ (some (need-pole pul)) :: ++ test-pole |* pul=(pole (unit)) ^- ? ?~ pul & ?| ?=(~ -.pul) ?~(+.pul | (test-pole +.pul)) == :: ++ need-pole |* pul=(pole (unit)) ?~ pul !! ?~ +.pul u:->.pul [u:->.pul (need-pole +.pul)] -- -- :: :::: :::: ++format :: (2d) common formats :: :::: ++ format ^? |% :: 0 ending a line (invalid @t) is not preserved :: ++to-wain:format ++ to-wain :: cord to line list ~% %leer ..part ~ |= txt=cord ^- wain =/ len=@ (met 3 txt) =/ cut =+(cut -(a 3, c 1, d txt)) =/ sub sub =| [i=@ out=wain] |- ^+ out =+ |- ^- j=@ ?: ?| =(i len) =(10 (cut(b i))) == i $(i +(i)) =. out :_ out (cut(b i, c (sub j i))) ?: =(j len) (flop out) $(i +(j)) :: :: ++of-wain:format ++ of-wain :: line list to cord |= tez=wain ^- cord (rap 3 (join '\0a' tez)) :: :: ++of-wall:format ++ of-wall :: line list to tape |= a=wall ^- tape ?~(a ~ "{i.a}\0a{$(a t.a)}") :: ++ json-rn :: json to rn parser %+ knee *rn |. ;~ plug (easy %d) ;~(pose (cold | hep) (easy &)) ;~ plug dim:ag ;~ pose ;~ pfix dot %+ sear |= a=tape =/ b (rust a dum:ag) ?~ b ~ (some [(lent a) u.b]) (plus (shim '0' '9')) == (easy [0 0]) == ;~ pose ;~ pfix (mask "eE") ;~ plug ;~(pose (cold | hep) (cold & lus) (easy &)) ;~ pose ;~(pfix (plus (just '0')) dim:ag) dim:ag == == == (easy [& 0]) == == == :: :: ++enjs:format ++ enjs ^? :: json encoders |% :: :: ++frond:enjs:format ++ frond :: object from k-v pair |= [p=@t q=json] ^- json [%o [[p q] ~ ~]] :: :: ++pairs:enjs:format ++ pairs :: object from k-v list |= a=(list [p=@t q=json]) ^- json [%o (~(gas by *(map @t json)) a)] :: :: ++tape:enjs:format ++ tape :: string from tape |= a=^tape ^- json [%s (crip a)] :: :: ++wall:enjs:format ++ wall :: string from wall |= a=^wall ^- json (tape (of-wall a)) :: :: ++ship:enjs:format ++ ship :: string from ship |= a=^ship ^- json (tape (slag 1 (scow %p a))) :: :: ++numb:enjs:format ++ numb :: number from unsigned |= a=@u ^- json :- %n ?: =(0 a) '0' %- crip %- flop |- ^- ^tape ?:(=(0 a) ~ [(add '0' (mod a 10)) $(a (div a 10))]) :: :: ++sect:enjs:format ++ sect :: s timestamp |= a=^time (numb (unt:chrono:userlib a)) :: :: ++time:enjs:format ++ time :: ms timestamp |= a=^time (numb (unm:chrono:userlib a)) :: :: ++path:enjs:format ++ path :: string from path |= a=^path ^- json [%s (spat a)] :: :: ++tank:enjs:format ++ tank :: tank as string arr |= a=^tank ^- json [%a (turn (wash [0 80] a) tape)] -- ::enjs :: :: ++dejs:format ++ dejs :: json reparser => |% ++ grub * :: result ++ fist $-(json grub) :: reparser instance -- :: |% :: :: ++ar:dejs:format ++ ar :: array as list |* wit=fist |= jon=json ^- (list _(wit *json)) ?> ?=([%a *] jon) (turn p.jon wit) :: :: ++as:dejs:format ++ as :: array as set |* a=fist (cu ~(gas in *(set _$:a)) (ar a)) :: :: ++at:dejs:format ++ at :: array as tuple |* wil=(pole fist) |= jon=json ?> ?=([%a *] jon) ((at-raw wil) p.jon) :: :: ++at-raw:dejs:format ++ at-raw :: array as tuple |* wil=(pole fist) |= jol=(list json) ?~ jol !! ?- wil :: mint-vain on empty :: [wit=* t=*] [* t=*] => .(wil [wit *]=wil) ?~ t.wil ?^(t.jol !! (wit.wil i.jol)) [(wit.wil i.jol) ((at-raw t.wil) t.jol)] == :: :: ++bo:dejs:format ++ bo :: boolean |=(jon=json ?>(?=([%b *] jon) p.jon)) :: :: ++bu:dejs:format ++ bu :: boolean not |=(jon=json ?>(?=([%b *] jon) !p.jon)) :: :: ++ci:dejs:format ++ ci :: maybe transform |* [poq=gate wit=fist] |= jon=json (need (poq (wit jon))) :: :: ++cu:dejs:format ++ cu :: transform |* [poq=gate wit=fist] |= jon=json (poq (wit jon)) :: :: ++di:dejs:format ++ di :: millisecond date (cu from-unix-ms:chrono:userlib ni) :: :: ++du:dejs:format ++ du :: second date (cu from-unix:chrono:userlib ni) :: :: ++mu:dejs:format ++ mu :: true unit |* wit=fist |= jon=json ?~(jon ~ (some (wit jon))) :: :: ++ne:dejs:format ++ ne :: number as real |= jon=json ^- @rd ?> ?=([%n *] jon) (rash p.jon (cook ryld (cook royl-cell:^so json-rn))) :: :: ++ni:dejs:format ++ ni :: number as integer |= jon=json ?> ?=([%n *] jon) (rash p.jon dem) :: :: ++no:dejs:format ++ no :: number as cord |=(jon=json ?>(?=([%n *] jon) p.jon)) :: :: ++of:dejs:format ++ of :: object as frond |* wer=(pole [cord fist]) |= jon=json ?> ?=([%o [@ *] ~ ~] jon) |- ?- wer :: mint-vain on empty :: [[key=@t wit=*] t=*] [[key=@t *] t=*] => .(wer [[* wit] *]=wer) ?: =(key.wer p.n.p.jon) [key.wer ~|(key+key.wer (wit.wer q.n.p.jon))] ?~ t.wer ~|(bad-key+p.n.p.jon !!) ((of t.wer) jon) == :: :: ++ot:dejs:format ++ ot :: object as tuple |* wer=(pole [cord fist]) |= jon=json ?> ?=([%o *] jon) ((ot-raw wer) p.jon) :: :: ++ot-raw:dejs:format ++ ot-raw :: object as tuple |* wer=(pole [cord fist]) |= jom=(map @t json) ?- wer :: mint-vain on empty :: [[key=@t wit=*] t=*] [[key=@t *] t=*] => .(wer [[* wit] *]=wer) =/ ten ~|(key+key.wer (wit.wer (~(got by jom) key.wer))) ?~(t.wer ten [ten ((ot-raw t.wer) jom)]) == :: ++ ou :: object of units |* wer=(pole [cord fist]) |= jon=json ?> ?=([%o *] jon) ((ou-raw wer) p.jon) :: :: ++ou-raw:dejs:format ++ ou-raw :: object of units |* wer=(pole [cord fist]) |= jom=(map @t json) ?- wer :: mint-vain on empty :: [[key=@t wit=*] t=*] [[key=@t *] t=*] => .(wer [[* wit] *]=wer) =/ ten ~|(key+key.wer (wit.wer (~(get by jom) key.wer))) ?~(t.wer ten [ten ((ou-raw t.wer) jom)]) == :: :: ++om:dejs:format ++ om :: object as map |* wit=fist |= jon=json ?> ?=([%o *] jon) (~(run by p.jon) wit) :: :: ++op:dejs:format ++ op :: parse keys of map |* [fel=rule wit=fist] |= jon=json ^- (map _(wonk *fel) _*wit) =/ jom ((om wit) jon) %- malt %+ turn ~(tap by jom) |* [a=cord b=*] => .(+< [a b]=+<) [(rash a fel) b] :: :: ++pa:dejs:format ++ pa :: string as path (su ;~(pfix fas (more fas urs:ab))) :: :: ++pe:dejs:format ++ pe :: prefix |* [pre=* wit=fist] (cu |*(* [pre +<]) wit) :: :: ++sa:dejs:format ++ sa :: string as tape |=(jon=json ?>(?=([%s *] jon) (trip p.jon))) :: :: ++se:dejs:format ++ se :: string as aura |= aur=@tas |= jon=json ?>(?=([%s *] jon) (slav aur p.jon)) :: :: ++so:dejs:format ++ so :: string as cord |=(jon=json ?>(?=([%s *] jon) p.jon)) :: :: ++su:dejs:format ++ su :: parse string |* sab=rule |= jon=json ^+ (wonk *sab) ?> ?=([%s *] jon) (rash p.jon sab) :: :: ++uf:dejs:format ++ uf :: unit fall |* [def=* wit=fist] |= jon=(unit json) ?~(jon def (wit u.jon)) :: :: ++un:dejs:format ++ un :: unit need |* wit=fist |= jon=(unit json) (wit (need jon)) :: :: ++ul:dejs:format ++ ul :: null |=(jon=json ?~(jon ~ !!)) :: ++ za :: full unit pole |* pod=(pole (unit)) ?~ pod & ?~ -.pod | (za +.pod) :: ++ zl :: collapse unit list |* lut=(list (unit)) ?. |- ^- ? ?~(lut & ?~(i.lut | $(lut t.lut))) ~ %- some |- ?~ lut ~ [i=u:+.i.lut t=$(lut t.lut)] :: ++ zp :: unit tuple |* but=(pole (unit)) ?~ but !! ?~ +.but u:->.but [u:->.but (zp +.but)] :: ++ zm :: collapse unit map |* lum=(map term (unit)) ?: (~(rep by lum) |=([[@ a=(unit)] b=_|] |(b ?=(~ a)))) ~ (some (~(run by lum) need)) -- ::dejs :: :: ++dejs-soft:format ++ dejs-soft :: json reparse to unit =, unity => |% ++ grub (unit *) :: result ++ fist $-(json grub) :: reparser instance -- :: :: :: XX: this is old code that replaced a rewritten dejs. :: the rewritten dejs rest-looped with ++redo. the old :: code is still in revision control -- revise and replace. :: |% ++ ar :: array as list |* wit=fist |= jon=json ?. ?=([%a *] jon) ~ %- zl |- ?~ p.jon ~ [i=(wit i.p.jon) t=$(p.jon t.p.jon)] :: ++ at :: array as tuple |* wil=(pole fist) |= jon=json ?. ?=([%a *] jon) ~ ?. =((lent wil) (lent p.jon)) ~ =+ raw=((at-raw wil) p.jon) ?.((za raw) ~ (some (zp raw))) :: ++ at-raw :: array as tuple |* wil=(pole fist) |= jol=(list json) ?~ wil ~ :- ?~(jol ~ (-.wil i.jol)) ((at-raw +.wil) ?~(jol ~ t.jol)) :: ++ bo :: boolean |=(jon=json ?.(?=([%b *] jon) ~ [~ u=p.jon])) :: ++ bu :: boolean not |=(jon=json ?.(?=([%b *] jon) ~ [~ u=!p.jon])) :: ++ ci :: maybe transform |* [poq=gate wit=fist] |= jon=json (biff (wit jon) poq) :: ++ cu :: transform |* [poq=gate wit=fist] |= jon=json (bind (wit jon) poq) :: ++ da :: UTC date |= jon=json ?. ?=([%s *] jon) ~ (bind (stud:chrono:userlib p.jon) |=(a=date (year a))) :: ++ di :: millisecond date (cu from-unix-ms:chrono:userlib ni) :: ++ mu :: true unit |* wit=fist |= jon=json ?~(jon (some ~) (bind (wit jon) some)) :: ++ ne :: number as real |= jon=json ^- (unit @rd) ?. ?=([%n *] jon) ~ (rush p.jon (cook ryld (cook royl-cell:^so json-rn))) :: ++ ni :: number as integer |= jon=json ?. ?=([%n *] jon) ~ (rush p.jon dem) :: ++ no :: number as cord |= jon=json ?. ?=([%n *] jon) ~ (some p.jon) :: ++ of :: object as frond |* wer=(pole [cord fist]) |= jon=json ?. ?=([%o [@ *] ~ ~] jon) ~ |- ?~ wer ~ ?: =(-.-.wer p.n.p.jon) ((pe -.-.wer +.-.wer) q.n.p.jon) ((of +.wer) jon) :: ++ ot :: object as tuple |* wer=(pole [cord fist]) |= jon=json ?. ?=([%o *] jon) ~ =+ raw=((ot-raw wer) p.jon) ?.((za raw) ~ (some (zp raw))) :: ++ ot-raw :: object as tuple |* wer=(pole [cord fist]) |= jom=(map @t json) ?~ wer ~ =+ ten=(~(get by jom) -.-.wer) [?~(ten ~ (+.-.wer u.ten)) ((ot-raw +.wer) jom)] :: ++ om :: object as map |* wit=fist |= jon=json ?. ?=([%o *] jon) ~ (zm (~(run by p.jon) wit)) :: ++ op :: parse keys of map |* [fel=rule wit=fist] %+ cu |= a=(list (pair _(wonk *fel) _(need *wit))) (my:nl a) %- ci :_ (om wit) |= a=(map cord _(need *wit)) ^- (unit (list _[(wonk *fel) (need *wit)])) %- zl %+ turn ~(tap by a) |= [a=cord b=_(need *wit)] =+ nit=(rush a fel) ?~ nit ~ (some [u.nit b]) :: ++ pe :: prefix |* [pre=* wit=fist] (cu |*(* [pre +<]) wit) :: ++ sa :: string as tape |= jon=json ?.(?=([%s *] jon) ~ (some (trip p.jon))) :: ++ so :: string as cord |= jon=json ?.(?=([%s *] jon) ~ (some p.jon)) :: ++ su :: parse string |* sab=rule |= jon=json ?. ?=([%s *] jon) ~ (rush p.jon sab) :: ++ ul |=(jon=json ?~(jon (some ~) ~)) :: null ++ za :: full unit pole |* pod=(pole (unit)) ?~ pod & ?~ -.pod | (za +.pod) :: ++ zl :: collapse unit list |* lut=(list (unit)) ?. |- ^- ? ?~(lut & ?~(i.lut | $(lut t.lut))) ~ %- some |- ?~ lut ~ [i=u:+.i.lut t=$(lut t.lut)] :: ++ zp :: unit tuple |* but=(pole (unit)) ?~ but !! ?~ +.but u:->.but [u:->.but (zp +.but)] :: ++ zm :: collapse unit map |* lum=(map term (unit)) ?: (~(rep by lum) |=([[@ a=(unit)] b=_|] |(b ?=(~ a)))) ~ (some (~(run by lum) need)) -- ::dejs-soft -- :: :: :::: ++differ :: (2d) hunt-mcilroy :: :::: ++ differ ^? =, clay =, format |% :: :: ++berk:differ ++ berk :: invert diff patch |* bur=(urge) |- ^+ bur ?~ bur ~ :_ $(bur t.bur) ?- -.i.bur %& i.bur %| [%| q.i.bur p.i.bur] == :: :: ++loss:differ ++ loss :: longest subsequence ~% %loss ..part ~ |* [hel=(list) hev=(list)] |- ^+ hev =+ ^= sev =+ [inx=0 sev=*(map _i.-.hev (list @ud))] |- ^+ sev ?~ hev sev =+ guy=(~(get by sev) i.hev) %= $ hev t.hev inx +(inx) sev (~(put by sev) i.hev [inx ?~(guy ~ u.guy)]) == =| gox=[p=@ud q=(map @ud [p=@ud q=_hev])] =< abet =< main |% :: :: ++abet:loss:differ ++ abet :: subsequence ^+ hev ?: =(0 p.gox) ~ (flop q:(need (~(get by q.gox) (dec p.gox)))) :: :: ++hink:loss:differ ++ hink :: extend fits top |= [inx=@ud goy=@ud] ^- ? ?| =(p.gox inx) (lth goy p:(need (~(get by q.gox) inx))) == :: :: ++lonk:loss:differ ++ lonk :: extend fits bottom |= [inx=@ud goy=@ud] ^- ? ?| =(0 inx) (gth goy p:(need (~(get by q.gox) (dec inx)))) == :: :: ++luna:loss:differ ++ luna :: extend |= [inx=@ud goy=@ud] ^+ +> %_ +>.$ gox :- ?:(=(inx p.gox) +(p.gox) p.gox) %+ ~(put by q.gox) inx :+ goy (snag goy hev) ?:(=(0 inx) ~ q:(need (~(get by q.gox) (dec inx)))) == :: :: ++merg:loss:differ ++ merg :: merge all matches |= gay=(list @ud) ^+ +> =+ ^= zes =+ [inx=0 zes=*(list [p=@ud q=@ud])] |- ^+ zes ?: |(?=(~ gay) (gth inx p.gox)) zes ?. (lonk inx i.gay) $(gay t.gay) ?. (hink inx i.gay) $(inx +(inx)) $(inx +(inx), gay t.gay, zes [[inx i.gay] zes]) |- ^+ +>.^$ ?~(zes +>.^$ $(zes t.zes, +>.^$ (luna i.zes))) :: :: ++main:loss:differ ++ main :: =+ hol=hel |- ^+ +> ?~ hol +> =+ guy=(~(get by sev) i.hol) $(hol t.hol, +> (merg (flop `(list @ud)`?~(guy ~ u.guy)))) -- :: :: :: ++lurk:differ ++ lurk :: apply list patch |* [hel=(list) rug=(urge)] ^+ hel =+ war=`_hel`~ |- ^+ hel ?~ rug (flop war) ?- -.i.rug %& %= $ rug t.rug hel (slag p.i.rug hel) war (weld (flop (scag p.i.rug hel)) war) == :: %| %= $ rug t.rug hel =+ gur=(flop p.i.rug) |- ^+ hel ?~ gur hel ?>(&(?=(^ hel) =(i.gur i.hel)) $(hel t.hel, gur t.gur)) war (weld q.i.rug war) == == :: :: ++lusk:differ ++ lusk :: lcs to list patch |* [hel=(list) hev=(list) lcs=(list)] =+ ^= rag ^- [$%([%& p=@ud] [%| p=_lcs q=_lcs])] [%& 0] => .(rag [p=rag q=*(list _rag)]) =< abet =< main |% :: :: ++abet:lusk:differ ++ abet :: =? q.rag !=([& 0] p.rag) [p.rag q.rag] (flop q.rag) :: :: ++done:lusk:differ ++ done :: |= new=_p.rag ^+ rag ?- -.p.rag %| ?- -.new %| [[%| (weld p.new p.p.rag) (weld q.new q.p.rag)] q.rag] %& [new [p.rag q.rag]] == %& ?- -.new %| [new ?:(=(0 p.p.rag) q.rag [p.rag q.rag])] %& [[%& (add p.p.rag p.new)] q.rag] == == :: :: ++main:lusk:differ ++ main :: |- ^+ + ?~ hel ?~ hev ?>(?=(~ lcs) +) $(hev t.hev, rag (done %| ~ [i.hev ~])) ?~ hev $(hel t.hel, rag (done %| [i.hel ~] ~)) ?~ lcs +(rag (done %| (flop hel) (flop hev))) ?: =(i.hel i.lcs) ?: =(i.hev i.lcs) $(lcs t.lcs, hel t.hel, hev t.hev, rag (done %& 1)) $(hev t.hev, rag (done %| ~ [i.hev ~])) ?: =(i.hev i.lcs) $(hel t.hel, rag (done %| [i.hel ~] ~)) $(hel t.hel, hev t.hev, rag (done %| [i.hel ~] [i.hev ~])) -- :: -- ::differ :: :: :::: ++html :: (2e) text encodings :: :::: ++ html ^? :: XX rename to web-txt =, eyre |% :: :: :::: ++mimes:html :: (2e1) MIME :: :::: ++ mimes ^? ~% %mimes ..part ~ |% :: :: ++as-octs:mimes:html ++ as-octs :: atom to octstream |= tam=@ ^- octs [(met 3 tam) tam] :: :: ++as-octt:mimes:html ++ as-octt :: tape to octstream |= tep=tape ^- octs (as-octs (rap 3 tep)) :: :: ++en-mite:mimes:html ++ en-mite :: mime type to text |= myn=mite %- crip |- ^- tape ?~ myn ~ ?: =(~ t.myn) (trip i.myn) (weld (trip i.myn) `tape`['/' $(myn t.myn)]) :: :: |base16: en/decode arbitrary MSB-first hex strings :: ++ base16 ~% %base16 + ~ |% ++ en ~/ %en |= a=octs ^- cord (crip ((x-co:co (mul p.a 2)) (end [3 p.a] q.a))) :: ++ de ~/ %de |= a=cord ^- (unit octs) (rush a rule) :: ++ rule %+ cook |= a=(list @) ^- octs [(add (dvr (lent a) 2)) (rep [0 4] (flop a))] (star hit) -- :: |base64: flexible base64 encoding for little-endian atoms :: ++ base64 => |% +$ byte @D +$ word24 @ :: ++ div-ceil :: divide, rounding up. |= [x=@ y=@] ^- @ ?: =(0 (mod x y)) (div x y) +((div x y)) :: ++ explode-bytes :: Explode a bytestring into list of bytes. Result is in LSB order. |= =octs ^- (list byte) =/ atom-byte-width (met 3 q.octs) =/ leading-zeros (sub p.octs atom-byte-width) (weld (reap leading-zeros 0) (rip 3 q.octs)) :: ++ explode-words :: Explode a bytestring to words of bit-width `wid`. Result is in LSW order. |= [wid=@ =octs] ^- (list @) =/ atom-bit-width (met 0 q.octs) =/ octs-bit-width (mul 8 p.octs) =/ atom-word-width (div-ceil atom-bit-width wid) =/ rslt-word-width (div-ceil octs-bit-width wid) =/ pad (sub rslt-word-width atom-word-width) =/ x (rip [0 wid] q.octs) %+ weld x (reap pad 0) -- :: :: pad: include padding when encoding, require when decoding :: url: use url-safe characters '-' for '+' and '_' for '/' :: =+ [pad=& url=|] |% :: +en:base64: encode +octs to base64 cord :: :: Encode an `octs` into a base64 string. :: :: First, we break up the input into a list of 24-bit words. The input :: might not be a multiple of 24-bits, so we add 0-2 padding bytes at :: the end (to the least-significant side, with a left-shift). :: :: Then, we encode each block into four base64 characters. :: :: Finally we remove the padding that we added at the beginning: for :: each byte that was added, we replace one character with an = (unless :: `pad` is false, in which case we just remove the extra characters). :: ++ en ^- $-(octs cord) :: =/ cha ?: url 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_' 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' :: |^ |= bs=octs ^- cord =/ [padding=@ blocks=(list word24)] (octs-to-blocks bs) (crip (flop (unpad padding (encode-blocks blocks)))) :: ++ octs-to-blocks |= bs=octs ^- [padding=@ud (list word24)] =/ padding=@ud (~(dif fo 3) 0 p.bs) =/ padded=octs [(add padding p.bs) (lsh [3 padding] (rev 3 bs))] [padding (explode-words 24 padded)] :: ++ unpad |= [extra=@ t=tape] ^- tape =/ without (slag extra t) ?. pad without (weld (reap extra '=') without) :: ++ encode-blocks |= ws=(list word24) ^- tape (zing (turn ws encode-block)) :: ++ encode-block |= w=word24 ^- tape =/ a (cut 3 [(cut 0 [0 6] w) 1] cha) =/ b (cut 3 [(cut 0 [6 6] w) 1] cha) =/ c (cut 3 [(cut 0 [12 6] w) 1] cha) =/ d (cut 3 [(cut 0 [18 6] w) 1] cha) ~[a b c d] -- :: :: +de:base64: decode base64 cord to (unit @) :: ++ de |= a=cord ^- (unit octs) (rush a parse) :: +parse:base64: parse base64 cord to +octs :: ++ parse =< ^- $-(nail (like octs)) %+ sear reduce ;~ plug %- plus ;~ pose (cook |=(a=@ (sub a 'A')) (shim 'A' 'Z')) (cook |=(a=@ (sub a 'G')) (shim 'a' 'z')) (cook |=(a=@ (add a 4)) (shim '0' '9')) (cold 62 (just ?:(url '-' '+'))) (cold 63 (just ?:(url '_' '/'))) == (stun 0^2 (cold %0 tis)) == |% :: +reduce:parse:base64: reduce, measure, and swap base64 digits :: ++ reduce |= [dat=(list @) dap=(list @)] ^- (unit octs) =/ lat (lent dat) =/ lap (lent dap) =/ dif (~(dif fo 4) 0 lat) ?: &(pad !=(dif lap)) :: padding required and incorrect ~&(%base-64-padding-err-one ~) ?: &(!pad !=(0 lap)) :: padding not required but present ~&(%base-64-padding-err-two ~) =/ len (sub (mul 3 (div (add lat dif) 4)) dif) :+ ~ len %+ swp 3 (rep [0 6] (flop (weld dat (reap dif 0)))) -- -- :: ++ en-base58 |= dat=@ =/ cha '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz' %- flop |- ^- tape ?: =(0 dat) ~ :- (cut 3 [(mod dat 58) 1] cha) $(dat (div dat 58)) :: ++ de-base58 |= t=tape =- (scan t (bass 58 (plus -))) ;~ pose (cook |=(a=@ (sub a 56)) (shim 'A' 'H')) (cook |=(a=@ (sub a 57)) (shim 'J' 'N')) (cook |=(a=@ (sub a 58)) (shim 'P' 'Z')) (cook |=(a=@ (sub a 64)) (shim 'a' 'k')) (cook |=(a=@ (sub a 65)) (shim 'm' 'z')) (cook |=(a=@ (sub a 49)) (shim '1' '9')) == -- ::mimes :: :: ++en-json:html ++ en-json :: print json |^ |=(val=json (apex val "")) :: :: ++apex:en-json:html ++ apex |= [val=json rez=tape] ^- tape ?~ val (weld "null" rez) ?- -.val %a :- '[' =. rez [']' rez] !. ?~ p.val rez |- ?~ t.p.val ^$(val i.p.val) ^$(val i.p.val, rez [',' $(p.val t.p.val)]) :: %b (weld ?:(p.val "true" "false") rez) %n (weld (trip p.val) rez) %s :- '"' =. rez ['"' rez] =+ viz=(trip p.val) !. |- ^- tape ?~ viz rez =+ hed=(jesc i.viz) ?: ?=([@ ~] hed) [i.hed $(viz t.viz)] (weld hed $(viz t.viz)) :: %o :- '{' =. rez ['}' rez] =+ viz=~(tap by p.val) ?~ viz rez !. |- ^+ rez ?~ t.viz ^$(val [%s p.i.viz], rez [':' ^$(val q.i.viz)]) =. rez [',' $(viz t.viz)] ^$(val [%s p.i.viz], rez [':' ^$(val q.i.viz)]) == :: :: ++jesc:en-json:html ++ jesc :: escaped =+ utf=|=(a=@ ['\\' 'u' ((x-co 4):co a)]) |= a=@ ^- tape ?+ a ?:((gth a 0x1f) [a ~] (utf a)) %10 "\\n" %34 "\\\"" %92 "\\\\" == -- ::en-json :: :: ++de-json:html ++ de-json :: parse JSON =< |=(a=cord `(unit json)`(rush a apex)) |% :: :: ++abox:de-json:html ++ abox :: array %+ stag %a (ifix [sel (wish ser)] (more (wish com) apex)) :: :: ++apex:de-json:html ++ apex :: any value %+ knee *json |. ~+ %+ ifix [spac spac] ;~ pose (cold ~ (jest 'null')) (stag %b bool) (stag %s stri) (cook |=(s=tape [%n p=(rap 3 s)]) numb) abox obox == :: :: ++bool:de-json:html ++ bool :: boolean ;~ pose (cold & (jest 'true')) (cold | (jest 'false')) == :: :: ++digs:de-json:html ++ digs :: digits (star (shim '0' '9')) :: :: ++esca:de-json:html ++ esca :: escaped character ;~ pfix bas =* loo =* lip ^- (list (pair @t @)) [b+8 t+9 n+10 f+12 r+13 ~] =* wow `(map @t @)`(malt lip) (sear ~(get by wow) low) =* tuf ;~(pfix (just 'u') (cook tuft qix:ab)) ;~(pose doq fas soq bas loo tuf) == :: :: ++expo:de-json:html ++ expo :: exponent ;~ (comp twel) (piec (mask "eE")) (mayb (piec (mask "+-"))) digs == :: :: ++frac:de-json:html ++ frac :: fraction ;~(plug dot digs) :: :: ++jcha:de-json:html ++ jcha :: string character ;~(pose ;~(less doq bas prn) esca) :: :: ++mayb:de-json:html ++ mayb :: optional |*(bus=rule ;~(pose bus (easy ~))) :: :: ++numb:de-json:html ++ numb :: number ;~ (comp twel) (mayb (piec hep)) ;~ pose (piec (just '0')) ;~(plug (shim '1' '9') digs) == (mayb frac) (mayb expo) == :: :: ++obje:de-json:html ++ obje :: object list %+ ifix [(wish kel) (wish ker)] (more (wish com) pear) :: :: ++obox:de-json:html ++ obox :: object (stag %o (cook malt obje)) :: :: ++pear:de-json:html ++ pear :: key-value ;~(plug ;~(sfix (wish stri) (wish col)) apex) :: :: ++piec:de-json:html ++ piec :: listify |* bus=rule (cook |=(a=@ [a ~]) bus) :: :: ++stri:de-json:html ++ stri :: string (cook crip (ifix [doq doq] (star jcha))) :: :: ++tops:de-json:html ++ tops :: strict value ;~(pose abox obox) :: :: ++spac:de-json:html ++ spac :: whitespace (star (mask [`@`9 `@`10 `@`13 ' ' ~])) :: :: ++twel:de-json:html ++ twel :: tape weld |=([a=tape b=tape] (weld a b)) :: :: ++wish:de-json:html ++ wish :: with whitespace |*(sef=rule ;~(pfix spac sef)) -- ::de-json :: :: ++en-xml:html ++ en-xml :: xml printer =< |=(a=manx `tape`(apex a ~)) |_ _[unq=`?`| cot=`?`|] :: :: ++apex:en-xml:html ++ apex :: top level |= [mex=manx rez=tape] ^- tape ?: ?=([%$ [[%$ *] ~]] g.mex) (escp v.i.a.g.mex rez) =+ man=`mane`n.g.mex =. unq |(unq =(%script man) =(%style man)) =+ tam=(name man) =+ att=`mart`a.g.mex :- '<' %+ welp tam =- ?~(att rez [' ' (attr att rez)]) ^- rez=tape ?: &(?=(~ c.mex) |(cot ?^(man | (clot man)))) [' ' '/' '>' rez] :- '>' (many c.mex :(weld "" rez)) :: :: ++attr:en-xml:html ++ attr :: attributes to tape |= [tat=mart rez=tape] ^- tape ?~ tat rez =. rez $(tat t.tat) ;: weld (name n.i.tat) "=\"" (escp(unq |) v.i.tat '"' ?~(t.tat rez [' ' rez])) == :: :: ++escp:en-xml:html ++ escp :: escape for xml |= [tex=tape rez=tape] ?: unq (weld tex rez) =+ xet=`tape`(flop tex) !. |- ^- tape ?~ xet rez %= $ xet t.xet rez ?- i.xet %34 ['&' 'q' 'u' 'o' 't' ';' rez] %38 ['&' 'a' 'm' 'p' ';' rez] %39 ['&' '#' '3' '9' ';' rez] %60 ['&' 'l' 't' ';' rez] %62 ['&' 'g' 't' ';' rez] * [i.xet rez] == == :: :: ++many:en-xml:html ++ many :: nodelist to tape |= [lix=(list manx) rez=tape] |- ^- tape ?~ lix rez (apex i.lix $(lix t.lix)) :: :: ++name:en-xml:html ++ name :: name to tape |= man=mane ^- tape ?@ man (trip man) (weld (trip -.man) `tape`[':' (trip +.man)]) :: :: ++clot:en-xml:html ++ clot ~+ :: self-closing tags %~ has in %- silt ^- (list term) :~ %area %base %br %col %command %embed %hr %img %inputt %keygen %link %meta %param %source %track %wbr == -- ::en-xml :: :: ++de-xml:html ++ de-xml :: xml parser =< |=(a=cord (rush a apex)) |_ ent=_`(map term @t)`[[%apos '\''] ~ ~] :: :: ++apex:de-xml:html ++ apex :: top level =+ spa=;~(pose comt whit) %+ knee *manx |. ~+ %+ ifix [;~(plug (punt decl) (star spa)) (star spa)] ;~ pose %+ sear |=([a=marx b=marl c=mane] ?.(=(c n.a) ~ (some [a b]))) ;~(plug head many tail) empt == :: :: ++attr:de-xml:html ++ attr :: attributes %+ knee *mart |. ~+ %- star ;~ plug ;~(pfix (plus whit) name) ;~ pose %+ ifix :_ doq ;~(plug (ifix [. .]:(star whit) tis) doq) (star ;~(less doq escp)) :: %+ ifix :_ soq ;~(plug (ifix [. .]:(star whit) tis) soq) (star ;~(less soq escp)) :: (easy ~) == == :: :: ++cdat:de-xml:html ++ cdat :: CDATA section %+ cook |=(a=tape ^-(mars ;/(a))) %+ ifix [(jest '')] %- star ;~(less (jest ']]>') next) :: :: ++chrd:de-xml:html ++ chrd :: character data %+ cook |=(a=tape ^-(mars ;/(a))) (plus ;~(less doq ;~(pose (just `@`10) escp))) :: :: ++comt:de-xml:html ++ comt :: comments =- (ifix [(jest '')] (star -)) ;~ pose ;~(less hep prn) whit ;~(less (jest '-->') hep) == :: ++ decl :: ++decl:de-xml:html %+ ifix :: XML declaration [(jest '')] %- star ;~(less (jest '?>') prn) :: :: ++escp:de-xml:html ++ escp :: ;~(pose ;~(less gal gar pam prn) enty) :: :: ++enty:de-xml:html ++ enty :: entity %+ ifix pam^mic ;~ pose =+ def=^+(ent (my:nl [%gt '>'] [%lt '<'] [%amp '&'] [%quot '"'] ~)) %+ sear ~(get by (~(uni by def) ent)) (cook crip ;~(plug alf (stun 1^31 aln))) %+ cook |=(a=@c ?:((gth a 0x10.ffff) '�' (tuft a))) =< ;~(pfix hax ;~(pose - +)) :- (bass 10 (stun 1^8 dit)) (bass 16 ;~(pfix (mask "xX") (stun 1^8 hit))) == :: :: ++empt:de-xml:html ++ empt :: self-closing tag %+ ifix [gal (jest '/>')] ;~(plug ;~(plug name attr) (cold ~ (star whit))) :: :: ++head:de-xml:html ++ head :: opening tag (ifix [gal gar] ;~(plug name attr)) :: :: ++many:de-xml:html ++ many :: contents ;~(pfix (star comt) (star ;~(sfix ;~(pose apex chrd cdat) (star comt)))) :: :: ++name:de-xml:html ++ name :: tag name =+ ^= chx %+ cook crip ;~ plug ;~(pose cab alf) (star ;~(pose cab dot alp)) == ;~(pose ;~(plug ;~(sfix chx col) chx) chx) :: :: ++tail:de-xml:html ++ tail :: closing tag (ifix [(jest ' ?=(^ b) =+ c=(end 3 i.b) ?.(&((gte c 'a') (lte c 'z')) ~ [~ u=b]) (most dot dlab) :: %+ stag %| =+ tod=(ape:ag ted:ab) %+ bass 256 ;~(plug tod (stun [3 3] ;~(pfix dot tod))) == == :: :: ++yque:de-purl:html ++ yque :: query ending ;~ pose ;~(pfix wut yquy) (easy ~) == :: :: ++yquy:de-purl:html ++ yquy :: query ;~ pose :: proper query :: %+ more ;~(pose pam mic) ;~(plug fque ;~(pose ;~(pfix tis fquu) (easy ''))) :: :: funky query :: %+ cook |=(a=tape [[%$ (crip a)] ~]) (star pque) == :: :: ++zest:de-purl:html ++ zest :: 2616 request-uri ;~ pose (stag %& (cook |=(a=purl a) auri)) (stag %| ;~(plug apat yque)) == -- ::de-purl :: +en-turf: encode +turf as a TLD-last domain string :: ++ en-turf |= =turf ^- @t (rap 3 (flop (join '.' turf))) :: +de-turf: parse a TLD-last domain string into a TLD first +turf :: ++ de-turf |= host=@t ^- (unit turf) %+ rush host %+ sear |= =host:eyre ?.(?=(%& -.host) ~ (some p.host)) thos:de-purl:html :: :: MOVEME :: :: ++fuel:html ++ fuel :: parse urbit fcgi |= [bem=beam ced=noun:cred quy=quer] ^- epic =+ qix=|-(`quay`?~(quy quy [[p q]:quy $(quy t.quy)])) [(malt qix) ;;(cred ced) bem] :: ++ hiss-to-request |= =hiss ^- request:http :: :* ?- p.q.hiss %conn %'CONNECT' %delt %'DELETE' %get %'GET' %head %'HEAD' %opts %'OPTIONS' %post %'POST' %put %'PUT' %trac %'TRACE' == :: (crip (en-purl:html p.hiss)) :: ^- header-list:http ~! q.q.hiss %+ turn ~(tap by q.q.hiss) |= [a=@t b=(list @t)] ^- [@t @t] ?> ?=(^ b) [a i.b] :: r.q.hiss == -- :: html :: :: :::: ++wired :: wire formatting :: :::: ++ wired ^? |% :: :: ++dray:wired ++ dray :: load tuple in path :: :: .= ~[p=~.ack q=~.~sarnel r=~..y] :: (dray ~[p=%tas q=%p r=%f] %ack ~sarnel &) :: =- |* [a=[@tas (pole @tas)] b=*] ^- (paf a) => .(b `,(tup -.a +.a)`b) ?~ +.a [(scot -.a b) ~] [(scot -.a -.b) `,(paf +.a)`(..$ +.a +.b)] :- paf=|*(a=(pole) ?~(a ,~ ,[(odo:raid ,-.a(. %ta)) ,(..$ +.a)])) ^= tup |* [a=@tas b=(pole @tas)] =+ c=(odo:raid a) ?~(b c ,[c (..$ ,-.b ,+.b)]) :: :: ++raid:wired ++ raid :: demand path odors :: :: .= [p=%ack q=~sarnel r=&] :: (raid /ack/~sarnel+.y p=%tas q=%p r=%f ~) :: =- |* [a=path b=[@tas (pole @tas)]] =* fog (odo -.b) ?~ +.b `fog`(slav -.b -.a) [`fog`(slav -.b -.a) (..$ +.a +.b)] ^= odo |* a=@tas |= b=* =- a(, (- b)) :: preserve face ?+ a @ %c @c %da @da %dr @dr %f @f %if @if %is @is %p @p %u @u %uc @uc %ub @ub %ui @ui %ux @ux %uv @uv %uw @uw %s @s %t @t %ta @ta %tas @tas == :: :: :: ++read:wired :: ++ read :: parse odored path :: =< |*([a=path b=[@tas (pole @tas)]] ((+> b) a)) :: |* b=[@tas (pole @tas)] :: |= a=path :: ?~ a ~ :: =+ hed=(slaw -.b i.a) :: =* fog (odo:raid -.b) :: ?~ +.b :: ^- (unit fog) :: ?^(+.a ~ hed) :: ^- (unit [fog _(need *(..^$ +.b))]) :: (both hed ((..^$ +.b) +.a)) -- ::wired :: :: :::: ++title :: (2j) namespace :: :::: ++ title => |% :: :: ++clan:title ++ clan :: ship to rank |= who=ship ^- rank =/ wid (met 3 who) ?: (lte wid 1) %czar ?: =(2 wid) %king ?: (lte wid 4) %duke ?: (lte wid 8) %earl ?> (lte wid 16) %pawn :: :: ++rank:title +$ rank ?(%czar %king %duke %earl %pawn) :: ship width class :: :: ++name:title ++ name :: identity |= who=ship ^- ship ?. ?=(%earl (clan who)) who (sein who) :: :: ++saxo:title ++ saxo :: autocanon |= who=ship ^- (list ship) =/ dad (sein who) [who ?:(=(who dad) ~ $(who dad))] :: :: ++sein:title ++ sein :: autoboss |= who=ship ^- ship =/ mir (clan who) ?- mir %czar who %king (end 3 who) %duke (end 4 who) %earl (end 5 who) %pawn (end 4 who) == -- |% :: :: ++cite:title ++ cite :: render ship |= who=@p ^- tape =+ kind=(clan who) =+ name=(scow %p who) ?: =(%earl kind) :(weld "~" (swag [15 6] name) "^" (swag [22 6] name)) ?: =(%pawn kind) :(weld (swag [0 7] name) "_" (swag [51 6] name)) name :: :: ++saxo:title ++ saxo :: autocanon |= [our=ship now=@da who=ship] .^ (list ship) %j /(scot %p our)/saxo/(scot %da now)/(scot %p who) == :: :: ++sein:title ++ sein :: autoboss |= [our=ship now=@da who=ship] .^ ship %j /(scot %p our)/sein/(scot %da now)/(scot %p who) == :: :: ++team:title ++ team :: our / our moon |= [our=ship who=ship] ^- ? ?| =(our who) &(?=(%earl (clan who)) =(our (^sein who))) == -- ::title :: :: :::: ++milly :: (2k) milliseconds :: :::: ++ milly ^| |_ now=@da :: :: ++around:milly ++ around :: relative msec |= wen=@da ^- @tas ?: =(wen now) %now ?: (gth wen now) (cat 3 (scot %ud (msec (sub wen now))) %ms) (cat 3 '-' $(now wen, wen now)) :: ++ about :: ++about:milly |= wun=(unit @da) :: unit relative msec ^- @tas ?~(wun %no (around u.wun)) :: :: ++mill:milly ++ mill :: msec diff |= one=@dr ^- @tas ?: =(`@`0 one) '0ms' (cat 3 (scot %ud (msec one)) %ms) :: :: ++msec:milly ++ msec :: @dr to @ud ms |=(a=@dr `@ud`(div a (div ~s1 1.000))) :: :: ++mull:milly ++ mull :: unit msec diff |= une=(unit @dr) ^- @tas ?~(une %no (mill u.une)) -- :: :::: :: ++ contain ^? |% :: +by-clock: interface core for a cache using the clock replacement algorithm :: :: Presents an interface for a mapping, but somewhat specialized, and with :: stateful accessors. The clock's :depth parameter is used as the maximum :: freshness that an entry can have. The standard clock algorithm has a depth :: of 1, meaning that a single sweep of the arm will delete the entry. For :: more scan resistance, :depth can be set to a higher number. :: :: Internally, :clock maintains a :lookup of type :: `(map key-type [val=val-type fresh=@ud])`, where :depth.clock is the :: maximum value of :fresh. Looking up a key increments its freshness, and a :: sweep of the clock arm decrements its freshness. :: :: The clock arm is stored as :queue, which is a `(qeu key-type)`. The head :: of the queue represents the position of the clock arm. New entries are :: inserted at the tail of the queue. When the clock arm sweeps, it :: pops the head off the queue. If the :fresh of the head's entry in :lookup :: is 0, remove the entry from the mapping and replace it with the new entry. :: Otherwise, decrement the entry's freshness, put it back at the tail of :: the queue, and pop the next head off the queue and try again. :: :: Cache entries must be immutable: a key cannot be overwritten with a new :: value. This property is enforced for entries currently stored in the :: cache, but it is not enforced for previously deleted entries, since we :: no longer remember what that key's value was supposed to be. :: ++ by-clock |* [key-type=mold val-type=mold] |_ clock=(clock key-type val-type) :: +get: looks up a key, marking it as fresh :: ++ get |= key=key-type ^- [(unit val-type) _clock] :: =+ maybe-got=(~(get by lookup.clock) key) ?~ maybe-got [~ clock] :: =. clock (freshen key) :: [`val.u.maybe-got clock] :: +put: add a new cache entry, possibly removing an old one :: ++ put |= [key=key-type val=val-type] ^+ clock :: do nothing if our size is 0 so we don't decrement-underflow :: ?: =(0 max-size.clock) clock :: no overwrite allowed, but allow duplicate puts :: ?^ existing=(~(get by lookup.clock) key) :: val must not change :: ?> =(val val.u.existing) :: (freshen key) :: =? clock =(max-size.clock size.clock) evict :: %_ clock size +(size.clock) lookup (~(put by lookup.clock) key [val 1]) queue (~(put to queue.clock) key) == :: +freshen: increment the protection level on an entry :: ++ freshen |= key=key-type ^+ clock %_ clock lookup %+ ~(jab by lookup.clock) key |= entry=[val=val-type fresh=@ud] entry(fresh (min +(fresh.entry) depth.clock)) == :: +resize: changes the maximum size, removing entries if needed :: ++ resize |= new-max=@ud ^+ clock :: =. max-size.clock new-max :: ?: (gte new-max size.clock) clock :: (trim (sub size.clock new-max)) :: +evict: remove an entry from the cache :: ++ evict ^+ clock :: =. size.clock (dec size.clock) :: |- ^+ clock :: =^ old-key queue.clock ~(get to queue.clock) =/ old-entry (~(got by lookup.clock) old-key) :: ?: =(0 fresh.old-entry) clock(lookup (~(del by lookup.clock) old-key)) :: %_ $ lookup.clock (~(put by lookup.clock) old-key old-entry(fresh (dec fresh.old-entry))) :: queue.clock (~(put to queue.clock) old-key) == :: +trim: remove :count entries from the cache :: ++ trim |= count=@ud ^+ clock ?: =(0 count) clock $(count (dec count), clock evict) :: +purge: removes all cache entries :: ++ purge ^+ clock %_ clock lookup ~ queue ~ size 0 == -- :: +to-capped-queue: interface door for +capped-queue :: :: Provides a queue of a limited size where pushing additional items will :: force pop the items at the front of the queue. :: ++ to-capped-queue |* item-type=mold |_ queue=(capped-queue item-type) :: +put: enqueue :item, possibly popping and producing an old item :: ++ put |= item=item-type ^- [(unit item-type) _queue] :: are we already at max capacity? :: ?. =(size.queue max-size.queue) :: we're below max capacity, so push and increment size :: =. queue.queue (~(put to queue.queue) item) =. size.queue +(size.queue) :: [~ queue] :: max is zero, the oldest item to return is the one which just went in. :: ?: =(~ queue.queue) [`item queue] :: we're at max capacity, so pop before pushing; size is unchanged :: =^ oldest queue.queue ~(get to queue.queue) =. queue.queue (~(put to queue.queue) item) :: [`oldest queue] :: +get: pop an item off the queue, adjusting size :: ++ get ^- [item-type _queue] :: =. size.queue (dec size.queue) =^ oldest queue.queue ~(get to queue.queue) :: [oldest queue] :: change the :max-size of the queue, popping items if necessary :: ++ resize =| pops=(list item-type) |= new-max=@ud ^+ [pops queue] :: we're not overfull, so no need to pop off more items :: ?: (gte new-max size.queue) [(flop pops) queue(max-size new-max)] :: we're above capacity; pop an item off and recurse :: =^ oldest queue get :: $(pops [oldest pops]) -- -- :: :: +mop: constructs and validates ordered ordered map based on key, :: val, and comparator gate :: ++ mop |* [key=mold value=mold] |= ord=$-([key key] ?) |= a=* =/ b ;;((tree [key=key val=value]) a) ?> (check-balance:((ordered-map key value) ord) b) b :: :: $mk-item: constructor for +ordered-map item type :: ++ mk-item |$ [key val] [key=key val=val] :: +ordered-map: treap with user-specified horizontal order :: :: Conceptually smaller items go on the left, so the item with the :: smallest key can be popped off the head. If $key is `@` and :: .compare is +lte, then the numerically smallest item is the head. :: :: WARNING: ordered-map will not work properly if two keys can be :: unequal under noun equality but equal via the compare gate :: ++ ordered-map |* [key=mold val=mold] => |% +$ item (mk-item key val) -- :: +compare: item comparator for horizontal order :: |= compare=$-([key key] ?) |% :: +check-balance: verify horizontal and vertical orderings :: ++ check-balance =| [l=(unit key) r=(unit key)] |= a=(tree item) ^- ? :: empty tree is valid :: ?~ a %.y :: nonempty trees must maintain several criteria :: ?& :: if .n.a is left of .u.l, assert horizontal comparator :: ?~(l %.y (compare key.n.a u.l)) :: if .n.a is right of .u.r, assert horizontal comparator :: ?~(r %.y (compare u.r key.n.a)) :: if .a is not leftmost element, assert vertical order between :: .l.a and .n.a and recurse to the left with .n.a as right :: neighbor :: ?~(l.a %.y &((mor key.n.a key.n.l.a) $(a l.a, l `key.n.a))) :: if .a is not rightmost element, assert vertical order :: between .r.a and .n.a and recurse to the right with .n.a as :: left neighbor :: ?~(r.a %.y &((mor key.n.a key.n.r.a) $(a r.a, r `key.n.a))) == :: +put: ordered item insert :: ++ put |= [a=(tree item) =key =val] ^- (tree item) :: base case: replace null with single-item tree :: ?~ a [n=[key val] l=~ r=~] :: base case: overwrite existing .key with new .val :: ?: =(key.n.a key) a(val.n val) :: if item goes on left, recurse left then rebalance vertical order :: ?: (compare key key.n.a) =/ l $(a l.a) ?> ?=(^ l) ?: (mor key.n.a key.n.l) a(l l) l(r a(l r.l)) :: item goes on right; recurse right then rebalance vertical order :: =/ r $(a r.a) ?> ?=(^ r) ?: (mor key.n.a key.n.r) a(r r) r(l a(r l.r)) :: +peek: produce head (smallest item) or null :: ++ peek |= a=(tree item) ^- (unit item) :: ?~ a ~ ?~ l.a `n.a $(a l.a) :: :: +pop: produce .head (smallest item) and .rest or crash if empty :: ++ pop |= a=(tree item) ^- [head=item rest=(tree item)] :: ?~ a !! ?~ l.a [n.a r.a] :: =/ l $(a l.a) :- head.l :: load .rest.l back into .a and rebalance :: ?: |(?=(~ rest.l) (mor key.n.a key.n.rest.l)) a(l rest.l) rest.l(r a(r r.rest.l)) :: +del: delete .key from .a if it exists, producing value iff deleted :: ++ del |= [a=(tree item) =key] ^- [(unit val) (tree item)] :: ?~ a [~ ~] :: we found .key at the root; delete and rebalance :: ?: =(key key.n.a) [`val.n.a (nip a)] :: recurse left or right to find .key :: ?: (compare key key.n.a) =+ [found lef]=$(a l.a) [found a(l lef)] =+ [found rig]=$(a r.a) [found a(r rig)] :: +nip: remove root; for internal use :: ++ nip |= a=(tree item) ^- (tree item) :: ?> ?=(^ a) :: delete .n.a; merge and balance .l.a and .r.a :: |- ^- (tree item) ?~ l.a r.a ?~ r.a l.a ?: (mor key.n.l.a key.n.r.a) l.a(r $(l.a r.l.a)) r.a(l $(r.a l.r.a)) :: +traverse: stateful partial inorder traversal :: :: Mutates .state on each run of .f. Starts at .start key, or if :: .start is ~, starts at the head (item with smallest key). Stops :: when .f produces .stop=%.y. Traverses from smaller to larger :: keys. Each run of .f can replace an item's value or delete the :: item. :: ++ traverse |* state=mold |= $: a=(tree item) =state f=$-([state item] [(unit val) ? state]) == ^+ [state a] :: acc: accumulator :: :: .stop: set to %.y by .f when done traversing :: .state: threaded through each run of .f and produced by +abet :: =/ acc [stop=`?`%.n state=state] =< abet =< main |% ++ abet [state.acc a] :: +main: main recursive loop; performs a partial inorder traversal :: ++ main ^+ . :: stop if empty or we've been told to stop :: ?~ a . ?: stop.acc . :: inorder traversal: left -> node -> right, until .f sets .stop :: => left ?: stop.acc . => node ?: stop.acc . right :: +node: run .f on .n.a, updating .a, .state, and .stop :: ++ node ^+ . :: run .f on node, updating .stop.acc and .state.acc :: =^ res acc ?> ?=(^ a) (f state.acc n.a) :: apply update to .a from .f's product :: =. a :: if .f requested node deletion, merge and balance .l.a and .r.a :: ?~ res (nip a) :: we kept the node; replace its .val; order is unchanged :: ?> ?=(^ a) a(val.n u.res) :: ..node :: +left: recurse on left subtree, copying mutant back into .l.a :: ++ left ^+ . ?~ a . =/ lef main(a l.a) lef(a a(l a.lef)) :: +right: recurse on right subtree, copying mutant back into .r.a :: ++ right ^+ . ?~ a . =/ rig main(a r.a) rig(a a(r a.rig)) -- :: +tap: convert to list, smallest to largest :: ++ tap |= a=(tree item) ^- (list item) :: =| b=(list item) |- ^+ b ?~ a b :: $(a l.a, b [n.a $(a r.a)]) :: +bap: convert to list, largest to smallest :: ++ bap |= a=(tree item) ^- (list item) :: =| b=(list item) |- ^+ b ?~ a b :: $(a r.a, b [n.a $(a l.a)]) :: +gas: put a list of items :: ++ gas |= [a=(tree item) b=(list item)] ^- (tree item) :: ?~ b a $(b t.b, a (put a i.b)) :: +uni: unify two ordered maps :: :: .b takes precedence over .a if keys overlap. :: ++ uni |= [a=(tree item) b=(tree item)] ^- (tree item) :: ?~ b a ?~ a b ?: =(key.n.a key.n.b) :: [n=n.b l=$(a l.a, b l.b) r=$(a r.a, b r.b)] :: ?: (mor key.n.a key.n.b) :: ?: (compare key.n.b key.n.a) $(l.a $(a l.a, r.b ~), b r.b) $(r.a $(a r.a, l.b ~), b l.b) :: ?: (compare key.n.a key.n.b) $(l.b $(b l.b, r.a ~), a r.a) $(r.b $(b r.b, l.a ~), a l.a) :: :: +get: get val at key or return ~ :: ++ get |= [a=(tree item) b=key] ^- (unit val) ?~ a ~ ?: =(b key.n.a) `val.n.a ?: (compare b key.n.a) $(a l.a) $(a r.a) :: :: +subset: take a range excluding start and/or end and all elements :: outside the range :: ++ subset |= $: tre=(tree item) start=(unit key) end=(unit key) == ^- (tree item) |^ ?: ?&(?=(~ start) ?=(~ end)) tre ?~ start (del-span tre %end end) ?~ end (del-span tre %start start) ?> (compare u.start u.end) =. tre (del-span tre %start start) (del-span tre %end end) :: ++ del-span |= [a=(tree item) b=?(%start %end) c=(unit key)] ^- (tree item) ?~ a a ?~ c a ?- b %start :: found key ?: =(key.n.a u.c) (nip a(l ~)) :: traverse to find key ?: (compare key.n.a u.c) :: found key to the left of start $(a (nip a(l ~))) :: found key to the right of start a(l $(a l.a)) :: %end :: found key ?: =(u.c key.n.a) (nip a(r ~)) :: traverse to find key ?: (compare key.n.a u.c) :: found key to the left of end a(r $(a r.a)) :: found key to the right of end $(a (nip a(r ~))) == -- -- :: :: :::: ++userlib :: (2u) non-vane utils :: :::: ++ userlib ^? |% :: :: :::: ++chrono:userlib :: (2uB) time :: :::: ++ chrono ^? |% :: +from-unix: unix seconds to @da :: ++ from-unix |= timestamp=@ud ^- @da %+ add ~1970.1.1 (mul timestamp ~s1) :: +from-unix-ms: unix milliseconds to @da :: ++ from-unix-ms |= timestamp=@ud ^- @da %+ add ~1970.1.1 (div (mul ~s1 timestamp) 1.000) :: :: ++dawn:chrono: ++ dawn :: Jan 1 weekday |= yer=@ud =+ yet=(sub yer 1) %- mod :_ 7 ;: add 1 (mul 5 (mod yet 4)) (mul 4 (mod yet 100)) (mul 6 (mod yet 400)) == :: :: ++daws:chrono: ++ daws :: date weekday |= yed=date %- mod :_ 7 %+ add (dawn y.yed) (sub (yawn [y.yed m.yed d.t.yed]) (yawn y.yed 1 1)) :: :: ++deal:chrono: ++ deal :: to leap sec time |= yer=@da =+ n=0 =+ yud=(yore yer) |- ^- date ?: (gte yer (add (snag n lef:yu) ~s1)) (yore (year yud(s.t (add n s.t.yud)))) ?: &((gte yer (snag n lef:yu)) (lth yer (add (snag n lef:yu) ~s1))) yud(s.t (add +(n) s.t.yud)) ?: =(+(n) (lent lef:yu)) (yore (year yud(s.t (add +(n) s.t.yud)))) $(n +(n)) :: :: ++lead:chrono: ++ lead :: from leap sec time |= ley=date =+ ler=(year ley) =+ n=0 |- ^- @da =+ led=(sub ler (mul n ~s1)) ?: (gte ler (add (snag n les:yu) ~s1)) led ?: &((gte ler (snag n les:yu)) (lth ler (add (snag n les:yu) ~s1))) ?: =(s.t.ley 60) (sub led ~s1) led ?: =(+(n) (lent les:yu)) (sub led ~s1) $(n +(n)) :: :: ++dust:chrono: ++ dust :: print UTC format |= yed=date ^- tape =+ wey=(daws yed) =/ num (d-co:co 1) :: print as decimal without dots =/ pik |=([n=@u t=wall] `tape`(scag 3 (snag n t))) :: "{(pik wey wik:yu)}, ". "{(num d.t.yed)} {(pik (dec m.yed) mon:yu)} {(num y.yed)} ". "{(num h.t.yed)}:{(num m.t.yed)}:{(num s.t.yed)} +0000" :: :: ++stud:chrono: ++ stud :: parse UTC format =< |= a=cord :: expose parsers %+ biff (rush a (more sepa elem)) |= b=(list _(wonk *elem)) ^- (unit date) =- ?.((za:dejs:format -) ~ (some (zp:dejs:format -))) ^+ =+ [*date u=unit] *[(u _[a y]) (u _m) (u _d.t) (u _+.t) ~] :~ |-(?~(b ~ ?.(?=(%y -.i.b) $(b t.b) `+.i.b))) |-(?~(b ~ ?.(?=(%m -.i.b) $(b t.b) `+.i.b))) |-(?~(b ~ ?.(?=(%d -.i.b) $(b t.b) `+.i.b))) |-(?~(b ~ ?.(?=(%t -.i.b) $(b t.b) `+.i.b))) == |% :: :: ++snug:stud:chrono: ++ snug :: position in list |= a=(list tape) |= b=tape =+ [pos=1 len=(lent b)] |- ^- (unit @u) ?~ a ~ ?: =(b (scag len i.a)) `pos $(pos +(pos), a t.a) :: :: ++sepa:stud:chrono: ++ sepa :: separator ;~(pose ;~(plug com (star ace)) (plus ace)) :: :: ++elem:stud:chrono: ++ elem :: date element ;~ pose (stag %t t) (stag %y y) (stag %m m) (stag %d d) (stag %w w) (stag %z z) == :: :: ++y:stud:chrono: ++ y :: year (stag %& (bass 10 (stun 3^4 dit))) :: :: ++m:stud:chrono: ++ m :: month (sear (snug mon:yu) (plus alf)) :: :: ++d:stud:chrono: ++ d :: day (bass 10 (stun 1^2 dit)) :: :: ++t:stud:chrono: ++ t :: hours:minutes:secs %+ cook |=([h=@u @ m=@u @ s=@u] ~[h m s]) ;~(plug d col d col d) :: :: XX day of week is currently unchecked, and :: timezone outright ignored. :: :: ++w:stud:chrono: ++ w :: day of week (sear (snug wik:yu) (plus alf)) :: :: ++z:stud:chrono: ++ z :: time zone ;~(plug (mask "-+") dd dd) :: :: ++dd:stud:chrono: ++ dd :: two digits (bass 10 (stun 2^2 dit)) -- :: :: :: ++unm:chrono:userlib ++ unm :: Urbit to Unix ms |= a=@da (div (mul (sub a ~1970.1.1) 1.000) ~s1) :: :: ++unt:chrono:userlib ++ unt :: Urbit to Unix time |= a=@da (div (sub a ~1970.1.1) ~s1) :: :: ++yu:chrono:userlib ++ yu :: UTC format constants |% :: :: ++mon:yu:chrono: ++ mon :: months ^- (list tape) :~ "January" "February" "March" "April" "May" "June" "July" "August" "September" "October" "November" "December" == :: :: ++wik:yu:chrono: ++ wik :: weeks ^- (list tape) :~ "Sunday" "Monday" "Tuesday" "Wednesday" "Thursday" "Friday" "Saturday" == :: :: ++lef:yu:chrono: ++ lef :: leapsecond dates ^- (list @da) :~ ~2016.12.31..23.59.59 ~2015.6.30..23.59.59 ~2012.6.30..23.59.59 ~2008.12.31..23.59.58 ~2005.12.31..23.59.57 ~1998.12.31..23.59.56 ~1997.6.30..23.59.55 ~1995.12.31..23.59.54 ~1994.6.30..23.59.53 ~1993.6.30..23.59.52 ~1992.6.30..23.59.51 ~1990.12.31..23.59.50 ~1989.12.31..23.59.49 ~1987.12.31..23.59.48 ~1985.6.30..23.59.47 ~1983.6.30..23.59.46 ~1982.6.30..23.59.45 ~1981.6.30..23.59.44 ~1979.12.31..23.59.43 ~1978.12.31..23.59.42 ~1977.12.31..23.59.41 ~1976.12.31..23.59.40 ~1975.12.31..23.59.39 ~1974.12.31..23.59.38 ~1973.12.31..23.59.37 ~1972.12.31..23.59.36 ~1972.6.30..23.59.35 == :: :: +les:yu:chrono: leapsecond days :: :: https://www.ietf.org/timezones/data/leap-seconds.list :: ++ les ^- (list @da) :~ ~2017.1.1 ~2015.7.1 ~2012.7.1 ~2009.1.1 ~2006.1.1 ~1999.1.1 ~1997.7.1 ~1996.1.1 ~1994.7.1 ~1993.7.1 ~1992.7.1 ~1991.1.1 ~1990.1.1 ~1988.1.1 ~1985.7.1 ~1983.7.1 ~1982.7.1 ~1981.7.1 ~1980.1.1 ~1979.1.1 ~1978.1.1 ~1977.1.1 ~1976.1.1 ~1975.1.1 ~1974.1.1 ~1973.1.1 ~1972.7.1 == -- ::yu -- ::chrono :: :: :::: ++space:userlib :: (2uC) file utils :: :::: ++ space ^? =, clay |% :: :: ++feel:space:userlib ++ feel :: simple file write |= [pax=path val=cage] ^- miso =+ dir=.^(arch %cy pax) ?~ fil.dir [%ins val] [%mut val] :: :: ++file:space:userlib ++ file :: simple file load |= pax=path ^- (unit) =+ dir=.^(arch %cy pax) ?~(fil.dir ~ [~ .^(* %cx pax)]) :: :: ++foal:space:userlib ++ foal :: high-level write |= [pax=path val=cage] ^- toro ?> ?=([* * * *] pax) [i.t.pax [%& [[[t.t.t.pax (feel pax val)] ~]]]] :: :: ++fray:space:userlib ++ fray :: high-level delete |= pax=path ^- toro ?> ?=([* * * *] pax) [i.t.pax [%& [[[t.t.t.pax [%del ~]] ~]]]] :: :: ++furl:space:userlib ++ furl :: unify changes |= [one=toro two=toro] ^- toro ~| %furl ?> ?& =(p.one p.two) :: same path &(?=(%& -.q.one) ?=(%& -.q.two)) :: both deltas == [p.one [%& (weld p.q.one p.q.two)]] -- ::space :: :: :::: ++unix:userlib :: (2uD) unix line-list :: :::: ++ unix ^? |% :: :: ++lune:unix:userlib ++ lune :: cord by unix line ~% %lune ..part ~ |= txt=@t ?~ txt ^- (list @t) ~ =+ [byt=(rip 3 txt) len=(met 3 txt)] =| [lin=(list @t) off=@] ^- (list @t) %- flop |- ^+ lin ?: =(off len) ~| %noeol !! ?: =((snag off byt) 10) ?: =(+(off) len) [(rep 3 (scag off byt)) lin] %= $ lin [(rep 3 (scag off byt)) lin] byt (slag +(off) byt) len (sub len +(off)) off 0 == $(off +(off)) :: :: ++nule:unix:userlib ++ nule :: lines to unix cord ~% %nule ..part ~ |= lin=(list @t) ^- @t %+ can 3 %+ turn lin |= t=@t [+((met 3 t)) (cat 3 t 10)] -- :: :: :::: ++scanf:userlib :: (2uF) exterpolation :: :::: ++ scanf =< |* [tape (pole _;/(*[$^(rule tape)]))] :: formatted scan => .(+< [a b]=+<) (scan a (parsf b)) |% :: :: ++parsf:scanf: ++ parsf :: make parser from: |* a=(pole _;/(*[$^(rule tape)])) :: ;"chars{rule}chars" =- (cook - (boil (norm a))) |* (list) ?~ +< ~ ?~ t i [i $(+< t)] :: :: .= (boil ~[[& dim] [| ", "] [& dim]]:ag) :: ;~(plug dim ;~(pfix com ace ;~(plug dim (easy)))):ag :: :: :: ++boil:scanf:userlib ++ boil :: |* (list (each rule tape)) ?~ +< (easy ~) ?: ?=(%| -.i) ;~(pfix (jest (crip p.i)) $(+< t)) %+ cook |*([* *] [i t]=+<) ;~(plug p.i $(+< t)) :: :: .= (norm [;"{n}, {n}"]:n=dim:ag) ~[[& dim] [| ", "] [& dim]]:ag :: :: :: ++norm:scanf:userlib ++ norm :: |* (pole _;/(*[$^(rule tape)])) ?~ +< ~ => .(+< [i=+<- t=+<+]) :_ t=$(+< t) =+ rul=->->.i ^= i ?~ rul [%| p=rul] ?~ +.rul [%| p=rul] ?@ &2.rul [%| p=;;(tape rul)] [%& p=rul] -- ::scanf -- :: +harden: coerce %soft $hobo or pass-through :: ++ harden |* task=mold |= wrapped=(hobo task) ^- task ?. ?=(%soft -.wrapped) wrapped ;;(task +.wrapped) --