/* i/n/r.h ** ** This file is in the public domain. */ /** u3r_*: read without ever crashing. **/ #if 1 # define u3r_du(a) u3a_is_cell(a) # define u3r_ud(a) u3a_is_atom(a) #else /* u3r_du(): c3y iff `a` is cell. */ c3_o u3r_du(u3_noun a); /* u3r_ud(): c3n iff `a` is cell. */ c3_o u3r_ud(u3_noun a); #endif /* u3r_at(): fragment `a` of `b`, or u3_none. */ u3_weak u3r_at(u3_atom a, u3_weak b); /* u3r_mean(): ** ** Attempt to deconstruct `a` by axis, noun pairs; 0 terminates. ** Axes must be sorted in tree order. */ c3_o u3r_mean(u3_noun a, ...); /* u3r_mug(): ** ** Compute and/or recall the mug (31-bit hash) of (a). */ c3_w u3r_mug(u3_noun a); /* u3r_mug_string(): ** ** Compute the mug of `a`, LSB first. */ c3_w u3r_mug_string(const c3_c *a_c); /* u3r_mug_words(): ** ** Compute the mug of `buf`, `len`, LSW first. */ c3_w u3r_mug_words(const c3_w *buf_w, c3_w len_w); /* u3r_mug_bytes(): ** ** Compute the mug of `buf`, `len`, LSW first. */ c3_w u3r_mug_bytes(const c3_y *buf_w, c3_w len_w); /* u3r_mug_cell(): ** ** Compute the mug of `[a b]`. */ c3_w u3r_mug_cell(u3_noun a, u3_noun b); /* u3r_mug_trel(): ** ** Compute the mug of `[a b c]`. */ c3_w u3r_mug_trel(u3_noun a, u3_noun b, u3_noun c); /* u3r_mug_qual(): ** ** Compute the mug of `[a b c d]`. */ c3_w u3r_mug_qual(u3_noun a, u3_noun b, u3_noun c, u3_noun d); /* u3r_mug_both(): ** ** Join two mugs. */ c3_w u3r_mug_both(c3_w a_w, c3_w b_w); /* u3r_fing(): ** ** Yes iff (a) and (b) are the same copy of the same noun. ** (Ie, by pointer equality - u3r_sing with false negatives.) */ c3_o u3r_fing(u3_noun a, u3_noun b); /* u3r_fing_cell(): ** ** Yes iff `[p q]` and `b` are the same copy of the same noun. */ c3_o u3r_fing_cell(u3_noun p, u3_noun q, u3_noun b); /* u3r_fing_mixt(): ** ** Yes iff `[p q]` and `b` are the same copy of the same noun. */ c3_o u3r_fing_mixt(const c3_c* p_c, u3_noun q, u3_noun b); /* u3r_fing_trel(): ** ** Yes iff `[p q r]` and `b` are the same copy of the same noun. */ c3_o u3r_fing_trel(u3_noun p, u3_noun q, u3_noun r, u3_noun b); /* u3r_fing_qual(): ** ** Yes iff `[p q r s]` and `b` are the same copy of the same noun. */ c3_o u3r_fing_qual(u3_noun p, u3_noun q, u3_noun r, u3_noun s, u3_noun b); /* u3r_sing(): ** ** Yes iff (a) and (b) are the same noun. */ c3_o u3r_sing(u3_noun a, u3_noun b); /* u3r_sung(): yes iff (a) and (b) are the same noun, unifying equals. ** ** Make sure you have no live, uncounted pointers to any noun ** within (a) or (b)! */ c3_o u3r_sung(u3_noun a, u3_noun b); /* u3r_sing_c): ** ** Yes iff (b) is the same noun as the C string [a]. */ c3_o u3r_sing_c(const c3_c* a_c, u3_noun b); /* u3r_sing_cell(): ** ** Yes iff `[p q]` and `b` are the same noun. */ c3_o u3r_sing_cell(u3_noun p, u3_noun q, u3_noun b); /* u3r_sing_mixt(): ** ** Yes iff `[p q]` and `b` are the same noun. */ c3_o u3r_sing_mixt(const c3_c* p_c, u3_noun q, u3_noun b); /* u3r_sing_trel(): ** ** Yes iff `[p q r]` and `b` are the same noun. */ c3_o u3r_sing_trel(u3_noun p, u3_noun q, u3_noun r, u3_noun b); /* u3r_sing_qual(): ** ** Yes iff `[p q r s]` and `b` are the same noun. */ c3_o u3r_sing_qual(u3_noun p, u3_noun q, u3_noun r, u3_noun s, u3_noun b); /* u3r_nord(): ** ** Return 0, 1 or 2 if `a` is below, equal to, or above `b`. */ u3_atom u3r_nord(u3_noun a, u3_noun b); /* u3r_mold(): ** ** Divide `a` as a mold `[b.[p q] c]`. */ c3_o u3r_mold(u3_noun a, u3_noun* b, u3_noun* c); /* u3r_cell(): ** ** Divide `a` as a cell `[b c]`. */ c3_o u3r_cell(u3_noun a, u3_noun* b, u3_noun* c); /* u3r_trel(): ** ** Divide `a` as a trel `[b c]`. */ c3_o u3r_trel(u3_noun a, u3_noun* b, u3_noun* c, u3_noun* d); /* u3r_qual(): ** ** Divide (a) as a qual [b c d e f]. */ c3_o u3r_qual(u3_noun a, u3_noun* b, u3_noun* c, u3_noun* d, u3_noun* e); /* u3r_quil(): ** ** Divide (a) as a quil [b c d e f]. */ c3_o u3r_quil(u3_noun a, u3_noun* b, u3_noun* c, u3_noun* d, u3_noun* e, u3_noun* f); /* u3r_p(): ** ** & [0] if [a] is of the form [b *c]. */ c3_o u3r_p(u3_noun a, u3_noun b, u3_noun* c); /* u3r_bush(): ** ** Factor [a] as a bush [b.[p q] c]. */ c3_o u3r_bush(u3_noun a, u3_noun* b, u3_noun* c); /* u3r_pq(): ** ** & [0] if [a] is of the form [b *c d]. */ c3_o u3r_pq(u3_noun a, u3_noun b, u3_noun* c, u3_noun* d); /* u3r_pqr(): ** ** & [0] if [a] is of the form [b *c *d *e]. */ c3_o u3r_pqr(u3_noun a, u3_noun b, u3_noun* c, u3_noun* d, u3_noun* e); /* u3r_pqrs(): ** ** & [0] if [a] is of the form [b *c *d *e *f]. */ c3_o u3r_pqrs(u3_noun a, u3_noun b, u3_noun* c, u3_noun* d, u3_noun* e, u3_noun* f); /* u3r_met(): ** ** Return the size of (b) in bits, rounded up to ** (1 << a_y). ** ** For example, (a_y == 3) returns the size in bytes. */ c3_w u3r_met(c3_y a_y, u3_atom b); /* u3r_bit(): ** ** Return bit (a_w) of (b). */ c3_b u3r_bit(c3_w a_w, u3_atom b); /* u3r_byte(): ** ** Return byte (a_w) of (b). */ c3_y u3r_byte(c3_w a_w, u3_atom b); /* u3r_bytes(): ** ** Copy bytes (a_w) through (a_w + b_w - 1) from (d) to (c). */ void u3r_bytes(c3_w a_w, c3_w b_w, c3_y* c_y, u3_atom d); /* u3r_chop(): ** ** Into the bloq space of `met`, from position `fum` for a ** span of `wid`, to position `tou`, XOR from atom `src` ** into ray `dst`. */ void u3r_chop(c3_g met_g, c3_w fum_w, c3_w wid_w, c3_w tou_w, c3_w* dst_w, u3_atom src); /* u3r_mp(): ** ** Copy (b) into (a_mp). */ void u3r_mp(mpz_t a_mp, u3_atom b); /* u3r_word(): ** ** Return word (a_w) of (b). */ c3_w u3r_word(c3_w a_w, u3_atom b); /* u3r_chub(): ** ** Return double-word (a_w) of (b). */ c3_d u3r_chub(c3_w a_w, u3_atom b); /* u3r_words(): ** ** Copy words (a_w) through (a_w + b_w - 1) from (d) to (c). */ void u3r_words(c3_w a_w, c3_w b_w, c3_w* c_w, u3_atom d); /* u3r_string(): `a`, a text atom, as malloced C string. */ c3_c* u3r_string(u3_atom a); /* u3r_tape(): `a`, a list of bytes, as malloced C string. */ c3_y* u3r_tape(u3_noun a);