module Deppy.Core where import ClassyPrelude import Bound import Data.Deriving (deriveEq1, deriveOrd1, deriveRead1, deriveShow1) import Data.Maybe (fromJust) import Data.Set (isSubsetOf) import qualified Data.Set as Set import Numeric.Natural type Typ = Exp data Exp a = Var a -- types | Typ | Fun (Abs a) | Cel (Abs a) | Wut (Set Tag) -- introduction forms | Lam (Abs a) | Cns (Exp a) (Exp a) | Tag Tag -- elimination forms | App (Exp a) (Exp a) | Hed (Exp a) | Tal (Exp a) | Cas (Typ a) (Exp a) (Map Tag (Exp a)) -- recursion | Rec (Abs a) deriving (Functor, Foldable, Traversable) type Tag = Natural data Abs a = Abs { spec :: Typ a , body :: Scope () Exp a } deriving (Functor, Foldable, Traversable) deriveEq1 ''Abs deriveOrd1 ''Abs deriveRead1 ''Abs deriveShow1 ''Abs --makeBound ''Abs deriveEq1 ''Exp deriveOrd1 ''Exp deriveRead1 ''Exp deriveShow1 ''Exp --makeBound ''Exp deriving instance Eq a => Eq (Abs a) deriving instance Ord a => Ord (Abs a) deriving instance Read a => Read (Abs a) deriving instance Show a => Show (Abs a) deriving instance Eq a => Eq (Exp a) deriving instance Ord a => Ord (Exp a) deriving instance Read a => Read (Exp a) deriving instance Show a => Show (Exp a) instance Applicative Exp where pure = Var (<*>) = ap instance Monad Exp where return = Var Var a >>= f = f a Typ >>= _ = Typ Fun a >>= f = Fun (bindAbs a f) Cel a >>= f = Cel (bindAbs a f) Wut ls >>= _ = Wut ls Lam a >>= f = Lam (bindAbs a f) Cns x y >>= f = Cns (x >>= f) (y >>= f) Tag l >>= _ = Tag l App x y >>= f = App (x >>= f) (y >>= f) Hed x >>= f = Hed (x >>= f) Tal x >>= f = Tal (x >>= f) Cas t x cs >>= f = Cas (t >>= f) (x >>= f) (cs <&> (>>= f)) Rec a >>= f = Rec (bindAbs a f) bindAbs :: Abs a -> (a -> Exp b) -> Abs b bindAbs (Abs s b) f = Abs (s >>= f) (b >>>= f) lam :: Eq a => a -> Typ a -> Exp a -> Exp a lam v t e = Lam (Abs t (abstract1 v e)) fun :: Eq a => a -> Typ a -> Typ a -> Typ a fun v t u = Fun (Abs t (abstract1 v u)) fun_ :: Typ a -> Typ a -> Typ a fun_ t u = Fun (Abs t (abstract (const Nothing) u)) cel :: Eq a => a -> Typ a -> Typ a -> Typ a cel v t u = Cel (Abs t (abstract1 v u)) cel_ :: Typ a -> Typ a -> Typ a cel_ t u = Cel (Abs t (abstract (const Nothing) u)) infixl 9 @: (@:) = App -- typing environment type Env a = a -> Typ a extend :: (b -> Typ a) -> Env a -> Env (Var b a) extend handleNewBindings oldEnv = \case -- TODO can we use Scope to decrease the cost of this? B v -> F <$> handleNewBindings v F v -> F <$> oldEnv v extend1 :: Typ a -> Env a -> Env (Var () a) extend1 t = extend \() -> t -- amber rule assumptions type Asm a = Set (Typ a, Typ a) extendAsm :: (Ord a, Ord b) => Asm a -> Asm (Var b a) extendAsm = Set.map \(t, u) -> (F <$> t, F <$> u) type Typing = Maybe -- TODO maybe this should be Typing () for error reporting? -- think about env vs instantiate for bindings; if instantiate -- as below, should the types be different? -- better organize nest :: Ord a => Env a -> Asm a -> Typ a -> Typ a -> Bool nest _ _ Typ Typ = True nest _ _ (Var v) (Var v') = v == v' -- TODO amber for Rec nest env asm (Var v) u = nest env asm (env v) u nest env asm t (Var v) = nest env asm t (env v) -- following Cardelli 80something, we check the RHSs assuming -- the putatively *lesser* of the LHSs for both nest env asm (Fun (Abs a b)) (Fun (Abs a' b')) = nest env asm a' a && nest (extend1 a' env) (extendAsm asm) (fromScope b) (fromScope b') nest env asm (Cel (Abs a b)) (Cel (Abs a' b')) = nest env asm a a' && nest (extend1 a env) (extendAsm asm) (fromScope b) (fromScope b') nest env asm (Wut ls) (Wut ls') = ls `isSubsetOf` ls' nest _ _ Lam{} _ = error "nest: lambda" nest _ _ _ Lam{} = error "nest: lambda" nest _ _ Cns{} _ = error "nest: cons" nest _ _ _ Cns{} = error "nest: cons" nest _ _ Tag{} _ = error "nest: tag" nest _ _ _ Tag{} = error "nest: tag" nest env asm t@App{} u = nest env asm (whnf t) u nest env asm t u@App{} = nest env asm t (whnf u) nest env asm t@Hed{} u = nest env asm (whnf t) u nest env asm t u@Hed{} = nest env asm t (whnf u) nest env asm t@Tal{} u = nest env asm (whnf t) u nest env asm t u@Tal{} = nest env asm t (whnf u) -- TODO meet and join bro nest env asm (Cas t _ _) u = nest env asm t u nest env asm t (Cas u _ _) = nest env asm t u nest _ _ Rec{} _ = undefined nest _ _ _ Rec{} = undefined nest _ _ _ _ = False check :: Ord a => Env a -> Exp a -> Typ a -> Typing () check env e t = do t' <- infer env e guard (nest env mempty t' t) infer :: forall a. Ord a => Env a -> Exp a -> Typing (Typ a) infer env = \case Var v -> pure $ env v Typ -> pure Typ Fun (Abs t b) -> do Typ <- infer env t Typ <- infer (extend1 t env) (fromScope b) pure Typ Cel (Abs t b) -> do Typ <- infer env t Typ <- infer (extend1 t env) (fromScope b) pure Typ Wut _ -> pure Typ Lam (Abs t b) -> do -- TODO do I need (whnf -> Typ)? (and elsewhere) Typ <- infer env t (toScope -> t') <- infer (extend1 t env) (fromScope b) pure $ Fun (Abs t t') Cns x y -> do -- Infer non-dependent pairs; if you want dependency, you must annotate t <- infer env x u <- infer env y pure $ Cel (Abs t (abstract (const Nothing) u)) Tag t -> pure $ Wut (singleton t) App x y -> do Fun (Abs t b) <- infer env x check env y t pure $ whnf (instantiate1 y b) Hed x -> do Cel (Abs t _) <- infer env x pure t Tal x -> do Cel (Abs _ u) <- infer env x pure $ instantiate1 (whnf $ Hed $ x) u Cas t x cs -> do Typ <- infer env t Wut ts <- infer env x -- pretty restrictive - do we want? guard (ts == keysSet cs) traverse_ (\e -> check env e t) cs pure t Rec (Abs t b) -> do Typ <- infer env t -- todo can F <$> be made faster? check (extend1 t env) (fromScope b) (F <$> t) pure t whnf :: Eq a => Exp a -> Exp a whnf = \case App (whnf -> Lam (Abs _ b)) x -> whnf $ instantiate1 x b Hed (whnf -> Cns x _) -> whnf x Tal (whnf -> Cns _ y) -> whnf y Cas _ (whnf -> Tag t) cs -> whnf $ fromJust $ lookup t cs e -> e