:: :: %ford, new execution control !? 164 :::: |= pit=vase => =~ :: structures |% ++ gift :: out result <-$ $% [%made p=(each bead (list tank))] :: computed result == :: ++ kiss :: in request ->$ $% [%exec p=@p q=(unit silk)] :: make / kill == :: ++ move ,[p=duct q=(mold note gift)] :: local move ++ note :: out request $-> $% [%warp p=sock q=riff] :: to %clay == :: ++ sign :: in result $-< $% [%writ p=riot] :: by %clay == :: -- :: |% :: structures ++ axle :: all %ford state $: %0 :: version for update pol=(map ship baby) :: == :: ++ baby :: state by ship $: tad=[p=@ud q=(map ,@ud task)] :: tasks by number dym=(map duct ,@ud) :: duct to task number jav=(map ,* calx) :: cache == :: ++ bolt :: gonadic edge |* a=$+(* *) :: product clam $: p=cafe :: cache $= q :: $% [%0 p=(set beam) q=a] :: depends/product [%1 p=(set ,[p=beam q=(list tank)])] :: blocks [%2 p=(list tank)] :: error == :: == :: :: :: ++ burg :: gonadic rule |* [a=$+(* *) b=$+(* *)] :: from and to $+([c=cafe d=a] (bolt b)) :: :: :: ++ cafe :: live cache $: p=(set calx) :: used q=(map ,* calx) :: cache == :: :: :: ++ calm :: cache metadata $: laz=@da :: last accessed dep=(set beam) :: dependencies == :: ++ calx :: concrete cache line $% [%comp p=calm q=cage r=twig] :: compile by text [%slap p=calm q=[p=vase q=twig] r=vase] :: slap == :: ++ task :: problem in progress $: nah=duct :: cause kas=silk :: problem kig=[p=@ud q=(map ,@ud beam)] :: blocks == :: -- :: |% :: ++ calf :: reduce calx |* sem=* :: a typesystem hack |= cax=calx ?+ sem !! %comp ?>(?=(%comp -.cax) r.cax) %slap ?>(?=(%slap -.cax) r.cax) == :: ++ calk :: cache lookup |= a=cafe :: |= [b=@tas c=*] :: ^- [(unit calx) cafe] :: =+ d=(~(get by q.a) [b c]) :: ?~ d [~ a] :: [d a(p (~(put in p.a) u.d))] :: :: :: ++ came :: |= [a=cafe b=calx] :: cache install ^- cafe :: a(q (~(put by q.a) [-.b q.b] b)) :: :: :: ++ chub :: cache merge |= [a=cafe b=cafe] :: ^- cafe :: [(grom p.a p.b) (grum q.a q.b)] :: :: :: ++ colt :: reduce to save |= lex=axle :: ^- axle %= lex pol %- ~(run by pol.lex) |= bay=baby bay(jav ~) == :: ++ fine |* [a=cafe b=*] :: bolt from data [p=`cafe`a q=[%0 p=*(set beam) q=b]] :: ++ flaw |=([a=cafe b=(list tank)] [p=a q=[%2 p=b]]) :: bolt from error :: ++ grom :: merge sets |* [one=(set) two=(set)] ^+ one (~(gas in one) (~(tap in two) ~)) :: XX ugh :: ++ grum :: merge maps |* [one=(map) two=(map)] ^+ one (~(gas by one) (~(tap by two) ~)) :: XX ugh :: ++ za :: per event =| $: $: $: our=ship :: computation owner tea=wire :: event place hen=duct :: event floor == :: $: now=@da :: event date eny=@ :: unique entropy ska=$+(* (unit (unit))) :: system namespace == :: mow=(list move) :: pending actions == :: bay=baby :: all owned state == :: |% ++ abet :: resolve ^- [(list move) baby] [(flop mow) bay] :: ++ apex :: call |= kus=(unit silk) ^+ +> ?~ kus =+ num=(need (~(get by dym.bay) hen)) =+ tas=(need (~(get by q.tad.bay) num)) amok:~(camo zo [num tas]) =+ num=p.tad.bay ?> !(~(has by dym.bay) hen) =: p.tad.bay +(p.tad.bay) dym.bay (~(put by dym.bay) hen num) == ~(exec zo [num `task`[hen u.kus 0 ~]]) :: ++ axon :: take |= [num=@ud tik=@ud sin=sign] ^+ +> ?- -.sin %writ =+ tus=(~(get by q.tad.bay) num) ?~ tus ~& [%ford-lost num] +>.$ (~(resp zo [num u.tus]) tik p.sin) == :: ++ zo |_ [num=@ud task] ++ abet %_(..zo q.tad.bay (~(put by q.tad.bay) num +<+)) ++ amok %_ ..zo q.tad.bay (~(del by q.tad.bay) num) dym.bay (~(del by dym.bay) nah) == ++ camo :: stop requests ^+ . =+ kiz=(~(tap by q.kig) *(list ,[p=@ud q=beam])) |- ^+ +> ?~ kiz +> %= $ kiz t.kiz mow :_ mow :- hen :^ %toss %c [(scot %p our) (scot %ud num) (scot %ud p.i.kiz) ~] [%warp [our p.q.i.kiz] q.q.i.kiz ~] == :: ++ camp :: request a file |= [ren=care bem=beam] ^+ +> =+ tik=(scot %ud p.kig) =: p.kig +(p.kig) q.kig (~(put by q.kig) p.kig bem) == %= $ mow :_ mow :- hen :^ %toss %c [(scot %p our) (scot %ud num) (scot %ud tik) ~] [%warp [our p.bem] q.bem [~ %& %x r.bem s.bem]] == :: ++ clef :: cache a result |* sem=* |* [hoc=(bolt) fun=(burg)] ?- -.q.hoc %2 hoc %1 hoc %0 =^ cux p.hoc ((calk p.hoc) sem q.q.hoc) ?~ cux =+ nuf=(cope hoc fun) ?- -.q.nuf %2 nuf %1 nuf %0 :- p=(came p.nuf `calx`[sem `calm`[now p.q.nuf] q.q.hoc q.q.nuf]) q=q.nuf == :- p=p.hoc ^= q :+ %0 p.q.hoc ((calf sem) u.cux) == :: ++ coax :: bolt across |* [hoc=(bolt) fun=(burg)] ?- -.q.hoc %0 =+ nuf=$:fun(..+<- p.hoc) :- p=p.nuf ^= q ?- -.q.nuf %0 [%0 p=(grom p.q.hoc p.q.nuf) q=[q.q.hoc q.q.nuf]] %1 q.nuf %2 q.nuf == %1 =+ nuf=$:fun(..+<- p.hoc) :- p=p.nuf ^= q ?- -.q.nuf %0 q.hoc %1 [%1 p=(grom p.q.nuf p.q.hoc)] %2 q.nuf == %2 hoc == :: ++ cope :: bolt along |* [hoc=(bolt) fun=(burg)] ?- -.q.hoc %2 hoc %1 hoc %0 =+ nuf=(fun p.hoc q.q.hoc) :- p=p.nuf ^= q ?- -.q.nuf %2 q.nuf %1 q.nuf %0 [%0 p=(grom `_p.q.nuf`p.q.hoc p.q.nuf) q=q.q.nuf] == == :: ++ coup :: toon to bolt |= cof=cafe |* [ton=toon fun=$+(* *)] :- p=cof ^= q ?- -.ton %2 [%2 p=p.ton] %0 [%0 p=*(set beam) q=(fun p.ton)] %1 =- ?- faw & [%1 p=(turn p.faw |=(a=beam [a *(list tank)]))] | [%2 p=p.faw] == ^= faw |- ^- (each (list beam) (list tank)) ?~ p.ton [%& ~] =+ nex=$(p.ton t.p.ton) =+ pax=(path i.p.ton) =+ zis=(tome (path i.p.ton)) ?~ zis [%| (smyt pax) ?:(?=(& -.nex) ~ p.nex)] ?- -.nex & [%& u.zis p.nex] | nex == == :: ++ dash :: process cache |= cof=cafe ^+ +> %_(+> jav.bay q.cof) :: ++ exec :: execute app ^+ ..zo ?: !=(~ q.kig) ..zo |- ^+ ..zo =+ bot=(make [~ jav.bay] kas) =. ..exec (dash p.bot) ?- -.q.bot %0 amok:(expo [%made %& p.q.bot q.q.bot]) %2 amok:(expo [%made %| p.q.bot]) %1 =+ zuk=(~(tap by p.q.bot) ~) =< abet |- ^+ ..exec ?~ zuk ..exec =+ foo=`_..exec`(camp %x `beam`p.i.zuk) $(zuk t.zuk, ..exec foo) == :: ++ expo :: return gift |= gef=gift %_(+> mow :_(mow [hen %give gef])) :: ++ fade :: compile |= [cof=cafe kas=silk] ^- (bolt twig) %+ (clef %comp) (make cof kas) ^- (burg cage twig) |= [cof=cafe cay=cage] ?. ?=(@ q.q.cay) (flaw cof ~) =+ vex=((full vest) [[1 1] (trip q.q.cay)]) ?~ q.vex (flaw cof [%leaf "syntax error: {} {}"] ~) (fine cof p.u.q.vex) :: ++ gush :: sill to twig |= [cof=cafe sil=sill] ^- (bolt twig) ?- -.sil %0 (fade cof [%done ~ [%atom [%atom %$] p.sil]]) %1 (fine cof p.sil) %2 (fade cof [%boil %hoon p.sil]) %3 %+ cope (make cof p.sil) |= [cof=cafe cay=cage] (fine cof (twig q.q.cay)) == :: ++ kale :: mutate |= [cof=cafe kas=silk muy=(list (pair wing silk))] ^- (bolt cage) %+ cope |- ^- (bolt (list (pair wing vase))) ?~ muy (fine cof ~) %+ cope (make cof q.i.muy) |= [cof=cafe cay=cage] %+ cope ^$(muy t.muy) |= [cof=cafe rex=(list (pair wing vase))] (fine cof [[p.i.muy q.cay] rex]) |= [cof=cafe yom=(list (pair wing vase))] %+ cope (make cof kas) |= [cof=cafe cay=cage] =+ ^= vow %+ slop q.cay |- ^- vase ?~ yom [[%atom %n] ~] (slop q.i.yom $(yom t.yom)) %+ cope %^ maim cof vow ^- twig :+ %cncb [%& 2]~ =+ axe=3 |- ^- (list (pair wing twig)) ?~ yom ~ :- [p.i.yom [%$ (peg axe 2)]] $(yom t.yom, axe (peg axe 3)) |= [cof=cafe vax=vase] (fine cof p.cay vax) :: ++ krab :: load to twig |= [cof=cafe for=logo how=logo rem=spur bem=beam] ^- (bolt vase) %+ cope (fade cof %bake how bem) |= [cof=cafe gen=twig] %+ cope (maim cof pit gen) |= [cof=cafe gat=vase] (maul cof gat !>([`beak`[p.bem q.bem r.bem] for +:s.bem rem])) :: ++ lace :: load and check |= [cof=cafe for=logo rem=spur bem=beam] ^- (bolt (unit vase)) =+ bek=`beak`[p.bem q.bem r.bem] %+ cope (lend cof bem) |= [cof=cafe arc=arch] ?^ q.arc (cope (liar cof bem) (lake for bek)) ?: (~(has by r.arc) %hoon) %+ cope (krab cof for %hoon rem bem) (lake for bek) ?: (~(has by r.arc) %hook) %+ cope (krab cof for %hook rem bem) |= [cof=cafe vax=vase] %+ cope ((lair for bem) cof vax) |= [cof=cafe vax=vase] (fine cof ~ vax) (fine cof ~) :: ++ lake :: check/coerce |= [for=logo bek=beak] |= [cof=cafe sam=vase] ^- (bolt (unit vase)) ?: ?=(?(%gate %core %hoon %hook) for) (fine cof ~ sam) %+ cope (make cof %boil %gate bek /ref/[for]/sys) |= [cof=cafe cay=cage] %+ cope (lane cof p.q.cay [%cnzy %$]) |= [cof=cafe ref=type] ?: (~(nest ut ref) | p.sam) (fine cof ~ sam) %+ cope (maul cof q.cay sam) |= [cof=cafe pro=vase] (fine cof ~ pro) :: ++ lair :: metaload |= [for=logo bem=beam] |= [cof=cafe vax=vase] ^- (bolt vase) ?. (~(nest ut -:!>(*silk)) | p.vax) (flaw cof (smyt (tope bem)) ~) %+ cope (make cof ((hard silk) q.vax)) |= [cof=cafe cay=cage] =+ too=`logo`?@(p.cay p.cay %noun) (link cof for too [p.bem q.bem r.bem] q.cay) :: ++ lane :: type infer |= [cof=cafe typ=type gen=twig] %+ (coup cof) (mule |.((~(play ut typ) gen))) |=(ref=type ref) :: ++ lend :: load arch |= [cof=cafe bem=beam] ^- (bolt arch) =+ von=(ska %cy (tope bem)) ?~ von [p=cof q=[%1 [bem ~] ~ ~]] (fine cof ((hard arch) (need u.von))) :: ++ liar :: load vase |= [cof=cafe bem=beam] ^- (bolt vase) =+ von=(ska %cx (tope bem)) ?~ von [p=*cafe q=[%1 [[bem ~] ~ ~]]] ?~ u.von (flaw cof (smyt (tope bem)) ~) (fine cof ?^(u.u.von [%cell %noun %noun] [%atom %$]) u.u.von) :: ++ lily :: translation targets |= [cof=cafe for=logo bek=beak] ^- (bolt (list ,@tas)) %+ cope %+ cope (lend cof bek `path`~[%tan for %sys]) |= [cof=cafe arc=arch] (fine cof (turn (~(tap by r.arc) ~) |=([a=@tas b=~] a))) |= [cof=cafe all=(list ,@tas)] (fine cof ?.(=(%hoon for) all [%hoot all])) :: ++ lima :: load at depth |= [cof=cafe for=logo rem=spur bem=beam] ^- (bolt (unit vase)) %+ cope (lend cof bem) |= [cof=cafe arc=arch] ^- (bolt (unit vase)) ?: (~(has by r.arc) for) (lace cof for rem bem(s [for s.bem])) %+ cope %- lion :^ cof for [p.bem q.bem r.bem] (turn (~(tap by r.arc) ~) |=([a=@tas b=~] a)) |= [cof=cafe wuy=(unit (list ,@tas))] ?~ wuy (fine cof ~) ?> ?=(^ u.wuy) %+ cope (make cof %bake i.u.wuy bem) |= [cof=cafe hoc=cage] %+ cope (lope cof i.u.wuy t.u.wuy [p.bem q.bem r.bem] q.hoc) |= [cof=cafe vax=vase] (fine cof ~ vax) :: ++ lime :: load beam |= [cof=cafe for=logo bem=beam] =+ [mob=bem rem=*path] |- ^- (bolt vase) %+ cope (lima cof for rem bem) |= [cof=cafe vux=(unit vase)] ?^ vux (fine cof u.vux) ?~ s.bem (flaw cof (smyt (tope mob)) ~) ^$(s.bem t.s.bem, rem [i.s.bem rem]) :: ++ link :: translate |= [cof=cafe too=logo for=logo bek=beak vax=vase] ^- (bolt vase) ?: =(too for) (fine cof vax) ?: &(=(%hoot too) =(%hoon for)) (fine cof !>(ream)) %+ cope (make cof %boil %gate bek /[too]/tan/[for]/sys) |= [cof=cafe cay=cage] (maul cof q.cay vax) :: ++ lion :: translation search |= [cof=cafe too=@tas bek=beak fro=(list ,@tas)] ^- (bolt (unit (list ,@tas))) =| war=(set ,@tas) =< -:(apex (fine cof fro)) |% :: XX improve monads ++ apex |= rof=(bolt (list ,@tas)) ^- [(bolt (unit (list ,@tas))) _+>] ?. ?=(%0 -.q.rof) [rof +>.$] ?~ q.q.rof [[p.rof [%0 p.q.rof ~]] +>.$] =^ orf +>.$ (apse cof i.q.q.rof) ?. ?=(%0 -.q.orf) [orf +>.$] ?~ q.q.orf $(cof p.orf, q.q.rof t.q.q.rof) [[p.orf [%0 (grom p.q.rof p.q.orf) q.q.orf]] +>.$] :: ++ apse |= [cof=cafe for=@tas] ^- [(bolt (unit (list ,@tas))) _+>] ?: =(for too) [(fine cof [~ too ~]) +>.$] ?: (~(has in war) for) [(fine cof ~) +>] =. war (~(put in war) for) =^ hoc +>.$ (apex (lily cof for bek)) :_ +>.$ %+ cope hoc |= [cof=cafe ked=(unit (list ,@tas))] (fine cof ?~(ked ~ [~ for u.ked])) -- :: ++ lope :: translation pipe |= [cof=cafe for=logo yaw=(list logo) bek=beak vax=vase] ^- (bolt vase) ?~ yaw (fine cof vax) %+ cope (link cof i.yaw for bek vax) |= [cof=cafe yed=vase] ^$(cof cof, yaw t.yaw, vax yed) :: ++ make :: reduce silk |= [cof=cafe kas=silk] ^- (bolt cage) :: ~& [%ford-make -.kas] ?- -.kas ^ %. [cof p.kas q.kas] ;~ cope ;~ coax |=([cof=cafe p=silk q=silk] ^$(cof cof, kas p.kas)) |=([cof=cafe p=silk q=silk] ^$(cof cof, kas q.kas)) == :: |= [cof=cafe bor=cage heg=cage] ^- (bolt cage) [p=cof q=[%0 ~ [[p.bor p.heg] (slop q.bor q.heg)]]] == :: %bake %+ cope (lima cof p.kas ~ q.kas) |= [cof=cafe vux=(unit vase)] ?~ vux (flaw cof (smyt (tope q.kas)) ~) (fine cof [p.kas u.vux]) :: %boil %+ cope (lime cof p.kas q.kas) |= [cof=cafe vax=vase] (fine cof `cage`[p.kas vax]) :: %call %. [cof p.kas q.kas] ;~ cope ;~ coax |=([cof=cafe p=silk q=silk] ^$(cof cof, kas p)) |=([cof=cafe p=silk q=silk] ^$(cof cof, kas q)) == :: |= [cof=cafe gat=cage sam=cage] (maul cof q.gat q.sam) :: |= [cof=cafe vax=vase] (fine cof %noun vax) == :: %cast %+ cope $(kas r.kas) |= [cof=cafe cay=cage] =+ for=`logo`?@(p.cay p.cay %noun) %+ cope (link cof p.kas for q.kas q.cay) |= [cof=cafe vax=vase] (fine cof [p.kas vax]) :: %done [cof %0 p.kas q.kas] %mute (kale cof p.kas q.kas) %pass %+ cope $(kas p.kas) |= [cof=cafe cay=cage] %+ cope (gush cof q.kas) |= [cof=cafe gen=twig] %+ cope (maim cof q.cay gen) |= [cof=cafe vax=vase] (fine cof %noun vax) :: %reef (fine cof %noun pit) == :: ++ maim :: slap |= [cof=cafe vax=vase gen=twig] ^- (bolt vase) %+ (clef %slap) (fine cof vax gen) |= [cof=cafe vax=vase gen=twig] =+ puz=(mule |.((~(mint ut p.vax) [%noun gen]))) ?- -.puz | (flaw cof p.puz) & %+ (coup cof) (mock [q.vax q.p.puz] (mole ska)) |= val=* `vase`[p.p.puz val] == :: ++ maul :: slam |= [cof=cafe gat=vase sam=vase] ^- (bolt vase) =+ top=(mule |.((slit p.gat p.sam))) ?- -.top | (flaw cof p.top) & %+ (coup cof) (mong [q.gat q.sam] (mole ska)) |= val=* `vase`[p.top val] == :: ++ resp |= [tik=@ud rot=riot] ^+ ..zo ?> (~(has by q.kig) tik) ?~ rot amok:(expo [%made %| (smyt (tope (need (~(get by q.kig) tik)))) ~]) exec(q.kig (~(del by q.kig) tik)) -- -- -- . == =| axle =* lex - |= [now=@da eny=@ ski=sled] :: activate ^? :: opaque core |% :: ++ call :: request |= [hen=duct hic=(hypo (hobo kiss))] => %= . :: XX temporary q.hic ^- kiss ?: ?=(%soft -.q.hic) ((hard kiss) p.q.hic) ?: (~(nest ut -:!>(*kiss)) | p.hic) q.hic ~& [%ford-call-flub (,@tas `*`-.q.hic)] ((hard kiss) q.hic) == ^- [p=(list move) q=_..^$] =+ ska=(slod ski) =+ ^= our ^- @p ?- -.q.hic %exec p.q.hic == =+ ^= bay ^- baby =+ buy=(~(get by pol.lex) our) ?~(buy *baby u.buy) =^ mos bay abet:(~(apex za [[our ~ hen] [now eny ska] ~] bay) q.q.hic) [mos ..^$(pol (~(put by pol) our bay))] :: ++ doze |= [now=@da hen=duct] ^- (unit ,@da) ~ :: ++ load |= old=axle ^+ ..^$ ..^$(+>- old) :: ++ scry |= [fur=(unit (set monk)) ren=@tas who=ship syd=desk lot=coin tyl=path] ^- (unit (unit (pair lode ,*))) ~ :: ++ stay `axle`+>-.$ ++ take :: response |= [tea=wire hen=duct hin=(hypo sign)] => %= . :: XX temporary q.hin ^- sign ?: (~(nest ut -:!>(*sign)) | p.hin) q.hin ~& [%ford-take-flub (,@tas `*`-.q.hin)] ((hard sign) q.hin) == ^- [p=(list move) q=_..^$] =+ ska=(slod ski) ?> ?=([@ @ @ ~] tea) =+ :* our=(need (slaw %p i.tea)) num=(need (slaw %ud i.t.tea)) tik=(need (slaw %ud i.t.t.tea)) == =+ bay=(need (~(get by pol.lex) our)) =^ mos bay abet:(~(axon za [[our tea hen] [now eny ska] ~] bay) num tik q.hin) [mos ..^$(pol (~(put by pol) our bay))] --