:: clay (4c), revision control :: :: This is split in three top-level sections: structure definitions, main :: logic, and arvo interface. :: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: :: Here are the structures. `++raft` is the formal arvo state. It's also :: worth noting that many of the clay-related structures are defined in zuse. :: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |= pit/vase =, clay => |% ++ aeon @ud :: version number :: :: Recursive structure of a desk's data. :: :: We keep an ankh only for the current version of local desks. Everywhere :: else we store it as (map path lobe). :: ++ ankh :: expanded node $: fil/(unit {p/lobe q/cage}) :: file dir/(map @ta ankh) :: folders == :: :: :: Part of ++mery, representing the set of changes between the mergebase and :: one of the desks being merged. :: :: -- `new` is the set of files in the new desk and not in the mergebase. :: -- `cal` is the set of changes in the new desk from the mergebase except :: for any that are also in the other new desk. :: -- `can` is the set of changes in the new desk from the mergebase and that :: are also in the other new desk (potential conflicts). :: -- `old` is the set of files in the mergebase and not in the new desk. :: ++ cane $: new/(map path lobe) cal/(map path lobe) can/(map path cage) old/(map path $~) == :: :: Type of request. :: :: %d produces a set of desks, %p gets file permissions, %u checks for :: existence, %v produces a ++dome of all desk data, %w with a time or label :: case gets the aeon at that case, %w with a number case is not recommended, :: %x gets file contents, %y gets a directory listing, and %z gets a recursive :: hash of the file contents and children. :: :: ++ care ?($d $p $u $v $w $x $y $z) :: :: Keeps track of subscribers. :: :: A map of requests to a set of all the subscribers who should be notified :: when the request is filled/updated. :: ++ cult (jug wove duct) :: :: Domestic desk state. :: :: Includes subscriber list, dome (desk content), possible commit state (for :: local changes), possible merge state (for incoming merges), and permissions. :: ++ dojo $: qyx/cult :: subscribers dom/dome :: desk state dok/(unit dork) :: commit state mer/(unit mery) :: merge state per/(map path rule) :: read perms per path pew/(map path rule) :: write perms per path == :: :: Desk state. :: :: Includes a checked-out ankh with current content, most recent version, map :: of all version numbers to commit hashes (commits are in hut.rang), and map :: of labels to version numbers. :: ++ dome $: ank/ankh :: state let/aeon :: top id hit/(map aeon tako) :: versions by id lab/(map @tas aeon) :: labels == :: :: :: Commit state. :: :: -- `del` is the paths we're deleting. :: -- `ink` is the insertions of hoon files (short-circuited for :: bootstrapping). :: -- `ins` is all the other insertions. :: -- `dig` is all the %dif changes (i.e. we were given a diff to apply). :: -- `dif` is the diffs in `dig` applied to their files. :: -- `muc` is all the %mut changes (i.e. we were give a new version of a :: file). :: -- `muh` is the hashes of all the new content in `muc`. :: -- `mut` is the diffs between `muc` and the original files. :: -- `mim` is a cache of all new content that came with a mime mark. Often, :: we need to convert to mime anyway to send to unix, so we just keep it :: around. :: ++ dork :: diff work $: del/(list path) :: deletes ink/(list (pair path cage)) :: hoon inserts ins/(unit (list (pair path cage))) :: inserts dig/(map path cage) :: store diffs dif/(unit (list (trel path lobe cage))) :: changes muc/(map path cage) :: store mutations muh/(map path lobe) :: store hashes mut/(unit (list (trel path lobe cage))) :: mutations mim/(map path mime) :: mime cache == :: :: :: Hash of a blob, for lookup in the object store (lat.ran) :: ++ lobe @uvI :: blob ref :: :: Merge state. :: :: Merges are said to be from 'ali' to 'bob'. See ++me for more details. :: :: -- `sor` is the urbit and desk of ali. :: -- `hen` is the duct that instigated the merge. :: -- `gem` is the merge strategy. These are described in `++fetched-ali`. :: -- `wat` is the current step of the merge process. :: -- `cas` is the case in ali's desk that we're merging from. :: -- `ali` is the commit from ali's desk. :: -- `bob` is the commit from bob's desk. :: -- `bas` is the commit from the mergebase. :: -- `dal` is the set of changes from the mergebase to ali's desk. :: -- `dob` is the set of changes from the mergebase to bob's desk. :: Check ++cane for more details on these two :: -- `bof` is the set of changes to the same files in ali and bob. Null for :: a file means a conflict while a cage means the diffs have been merged. :: -- `bop` is the result of patching the original files with the above merged :: diffs. :: -- `new` is the newly-created commit. :: -- `ank` is the ankh for the new state. :: -- `erg` is the sets of files that should be told to unix. True means to :: write the file while false means to delete the file. :: -- `gon` is the return value of the merge. On success we produce a set of :: the paths that had conflicting changes. On failure we produce an error :: code and message. :: ++ mery :: merge state $: sor/(pair ship desk) :: merge source hen/duct :: formal source gem/germ :: strategy wat/wait :: waiting on cas/case :: ali's case ali/yaki :: ali's commit bob/yaki :: bob's commit bas/yaki :: mergebase dal/cane :: diff(bas,ali) dob/cane :: diff(bas,bob) bof/(map path (unit cage)) :: conflict diffs bop/(map path cage) :: conflict patches new/yaki :: merge(dal,dob) ank/ankh :: new state erg/(map path ?) :: ergoable changes gon/(each (set path) (pair term (list tank))) :: return value == :: :: :: New desk data. :: :: Sent to other ships to update them about a particular desk. Includes a map :: of all new aeons to hashes of their commits, the most recent aeon, and sets :: of all new commits and data. :: ++ nako :: subscription state $: gar/(map aeon tako) :: new ids let/aeon :: next id lar/(set yaki) :: new commits bar/(set plop) :: new content == :: :: :: Formal vane state. :: :: -- `fat` is a collection of our domestic ships. :: -- `hoy` is a collection of foreign ships where we know something about :: their clay. :: -- `ran` is the object store. :: -- `mon` is a collection of mount points (mount point name to urbit :: location). :: -- `hez` is the unix duct that %ergo's should be sent to. :: -- `cez` is a collection of named permission groups. :: ++ raft :: filesystem $: fat/(map ship room) :: domestic hoy/(map ship rung) :: foreign ran/rang :: hashes mon/(map term beam) :: mount points hez/(unit duct) :: sync duct cez/(map @ta crew) :: permission groups == :: :: :: Object store. :: :: Maps of commit hashes to commits and content hashes to content. :: ++ rang :: $: hut/(map tako yaki) :: lat/(map lobe blob) :: == :: :: :: Unvalidated response to a request. :: :: Like a ++rant, but with a page of data rather than a cage of it. :: ++ rand :: unvalidated rant $: p/{p/care q/case r/@tas} :: clade release book q/path :: spur r/page :: data == :: :: :: Generic desk state. :: :: -- `lim` is the most recent date we're confident we have all the :: information for. For local desks, this is always `now`. For foreign :: desks, this is the last time we got a full update from the foreign :: urbit. :: -- `ref` is a possible request manager. For local desks, this is null. :: For foreign desks, this keeps track of all pending foreign requests :: plus a cache of the responses to previous requests. :: -- `qyx` is the set of subscriptions, with listening ducts. These :: subscriptions exist only until they've been filled. :: -- `dom` is the actual state of the filetree. Since this is used almost :: exclusively in `++ze`, we describe it there. :: -- `dok` is a possible set of outstanding requests to ford to perform :: various tasks on commit. This is null iff we're not in the middle of :: a commit. :: -- `mer` is the state of a possible pending merge. This is null iff :: we're not in the middle of a merge. Since this is used almost :: exclusively in `++me`, we describe it there. :: ++ rede :: universal project $: lim/@da :: complete to ref/(unit rind) :: outgoing requests qyx/cult :: subscribers dom/dome :: revision state dok/(unit dork) :: outstanding diffs mer/(unit mery) :: outstanding merges per/(map path rule) :: read perms per path pew/(map path rule) :: write perms per path == :: :: :: Foreign request manager. :: :: When we send a request to a foreign ship, we keep track of it in here. This :: includes a request counter, a map of request numbers to requests, a reverse :: map of requesters to request numbers, a simple cache of common %sing :: requests, and a possible nako if we've received data from the other ship and :: are in the process of validating it. :: ++ rind :: request manager $: nix/@ud :: request index bom/(map @ud {p/duct q/rave}) :: outstanding fod/(map duct @ud) :: current requests haw/(map mood (unit cage)) :: simple cache nak/(unit nako) :: pending validation == :: :: :: Domestic ship. :: :: `hun` is the duct to dill, and `dos` is a collection of our desks. :: ++ room :: fs per ship $: hun/duct :: terminal duct dos/(map desk dojo) :: native desk == :: :: :: Stored request. :: :: Like a ++rave but with caches of current versions for %next and %many. :: Generally used when we store a request in our state somewhere. :: ++ cach (unit (unit (each cage lobe))) :: cached result ++ wove {p/(unit ship) q/rove} :: stored source + req ++ rove :: stored request $% {$sing p/mood} :: single request {$next p/mood q/cach} :: next version $: $mult :: next version of any p/mool :: original request q/(unit aeon) :: checking for change r/(map (pair care path) cach) :: old version s/(map (pair care path) cach) :: new version == :: {$many p/? q/moat r/(map path lobe)} :: change range == :: :: :: Foreign desk data. :: += rung rus/(map desk rede) :: neighbor desks :: :: Hash of a commit, for lookup in the object store (hut.ran) :: ++ tako @ :: yaki ref :: :: Merge state. :: ++ wait $? $null $ali $diff-ali $diff-bob :: what are we $merge $build $checkout $ergo :: waiting for? == :: :: :: Commit. :: :: List of parents, content, hash of self, and time commited. :: ++ yaki :: snapshot $: p/(list tako) :: parents q/(map path lobe) :: fileset r/tako :: :: :: XX s? t/@da :: date == :: :: :: Unvalidated blob :: ++ plop blob :: unvalidated blob -- => |% ++ move {p/duct q/(wind note gift:able)} :: local move ++ note :: out request $-> $% $: $a :: to %ames $% {$want p/sock q/path r/*} :: == == :: $: $c :: to %clay $% {$info p/@p q/@tas r/nori} :: internal edit {$merg p/@p q/@tas r/@p s/@tas t/case u/germ} :: merge desks {$warp p/sock q/riff} :: {$werp p/ship q/sock r/riff} :: == == :: $: $d :: $% {$flog p/{$crud p/@tas q/(list tank)}} :: to %dill == == :: $: $f :: $% {$exec p/@p q/(unit {beak silk:ford})} :: == == :: $: $t :: $% {$wait p/@da} :: {$rest p/@da} :: == == == :: ++ riot (unit rant) :: response+complete ++ sign :: in result $<- $? $: $a :: by %ames $% {$woot p/ship q/coop} :: {$send p/lane:ames q/@} :: transmit packet == == :: $: $c :: by %clay $% {$note p/@tD q/tank} :: {$mere p/(each (set path) (pair term tang))} {$writ p/riot} :: == == :: $: $f :: $% {$made p/@uvH q/gage:ford} :: == == :: $: $t :: $% {$wake $~} :: timer activate == == :: $: @tas :: by any $% {$crud p/@tas q/(list tank)} :: == == == :: -- => :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: section 4cA, filesystem logic :: :: This core contains the main logic of clay. Besides `++ze`, this directly :: contains the logic for commiting new revisions (local urbits), managing :: and notifying subscribers (reactivity), and pulling and validating content :: (remote urbits). :: :: The state includes: :: :: -- current time `now` :: -- current duct `hen` :: -- foreign requester `for`, if any :: -- local urbit `our` :: -- target urbit `her` :: -- target desk `syd` :: -- all vane state `++raft` (rarely used, except for the object store) :: :: For local desks, `our` == `her` is one of the urbits on our pier. For :: foreign desks, `her` is the urbit the desk is on and `our` is the local :: urbit that's managing the relationship with the foreign urbit. Don't mix :: up those two, or there will be wailing and gnashing of teeth. :: :: While setting up `++de`, we check if the given `her` is a local urbit. If :: so, we pull the room from `fat` in the raft and get the desk information :: from `dos` in there. Otherwise, we get the rung from `hoy` and get the :: desk information from `rus` in there. In either case, we normalize the :: desk information to a `++rede`, which is all the desk-specific data that :: we utilize in `++de`. Because it's effectively a part of the `++de` :: state, let's look at what we've got: :: :: -- `lim` is the most recent date we're confident we have all the :: information for. For local desks, this is always `now`. For foreign :: desks, this is the last time we got a full update from the foreign :: urbit. :: -- `ref` is a possible request manager. For local desks, this is null. :: For foreign desks, this keeps track of all pending foreign requests :: plus a cache of the responses to previous requests. :: -- `qyx` is the set of subscriptions, with listening ducts. These :: subscriptions exist only until they've been filled. :: -- `dom` is the actual state of the filetree. Since this is used almost :: exclusively in `++ze`, we describe it there. :: -- `dok` is a possible set of outstanding requests to ford to perform :: various tasks on commit. This is null iff we're not in the middle of :: a commit. :: -- `mer` is the state of a possible pending merge. This is null iff :: we're not in the middle of a merge. Since this is used almost :: exclusively in `++me`, we describe it there. :: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: |% ++ de :: per desk |= {now/@da hen/duct raft} |= {{our/@p her/@p} syd/desk} =* ruf +>+<+> =+ ^- {hun/(unit duct) rede} =+ rom=(~(get by fat.ruf) her) ?~ rom :- ~ %+ fall (~(get by rus:(fall (~(get by hoy.ruf) her) *rung)) syd) :* lim=~2000.1.1 ref=[~ *rind] qyx=~ dom=*dome dok=~ mer=~ per=[[/ %black ~] ~ ~] pew=[[/ %black ~] ~ ~] == :- `hun.u.rom =+ jod=(fall (~(get by dos.u.rom) syd) *dojo) :* lim=now ref=~ qyx=qyx.jod dom=dom.jod dok=dok.jod mer=mer.jod per=per.jod pew=pew.jod == =* red -> =| mow/(list move) |% ++ abet :: resolve ^- {(list move) raft} :_ =+ rom=(~(get by fat.ruf) her) ?~ rom =+ rug=(~(put by rus:(fall (~(get by hoy.ruf) her) *rung)) syd red) ruf(hoy (~(put by hoy.ruf) her rug)) =+ dos=(~(put by dos.u.rom) syd [qyx dom dok mer per pew]) ruf(fat (~(put by fat.ruf) her [(need hun) dos])) (flop mow) :: :: Handle `%sing` requests :: ++ aver |= {for/(unit ship) mun/mood} ^- (unit (unit (each cage lobe))) =+ ezy=?~(ref ~ (~(get by haw.u.ref) mun)) ?^ ezy `(bind u.ezy |=(a/cage [%& a])) =+ nao=(case-to-aeon:ze q.mun) :: ~& [%aver-mun nao [%from syd lim q.mun]] ?~(nao ~ (read-at-aeon:ze for u.nao mun)) :: ++ ford-fail |=(tan/tang ~|(%ford-fail (mean tan))) :: :: Takes either a result or a stack trace. If it's a stack trace, we crash; :: else, we produce the result. :: ++ unwrap-tang |* res/(each * tang) ?:(?=($& -.res) p.res (mean p.res)) :: :: Parse a gage to a list of pairs of cages, crashing on error. :: :: Composition of ++gage-to-cages-or-error and ++unwrap-tang. Maybe same as :: ++gage-to-success-cages? :: ++ gage-to-cages |= gag/gage:ford ^- (list (pair cage cage)) (unwrap-tang (gage-to-cages-or-error gag)) :: :: Same as ++gage-to-cages-or-error except crashes on error. Maybe same as :: ++gage-to-cages? :: ++ gage-to-success-cages |= gag/gage:ford ^- (list (pair cage cage)) ?. ?=($tabl -.gag) (ford-fail ?-(-.gag $| p.gag, $& [>%strange-gage p.p.gag<]~)) %+ murn p.gag |= {key/gage:ford val/gage:ford} ^- (unit {cage cage}) ?. ?=($& -.key) (ford-fail ?-(-.key $| p.key, $tabl [>%strange-gage<]~)) ?- -.val $tabl (ford-fail >%strange-gage< ~) $& (some [p.key p.val]) $| =. p.val [(sell q.p.key) p.val] ~> %slog.[0 %*(. >%ford-fail syd %her %why< |2.+> p.val)] ~ == :: :: Expects a single-level gage (i.e. a list of pairs of cages). If the :: result is of a different form, or if some of the computations in the gage :: failed, we produce a stack trace. Otherwise, we produce the list of pairs :: of cages. :: ++ gage-to-cages-or-error |= gag/gage:ford ^- (each (list (pair cage cage)) tang) ?: ?=($| -.gag) (mule |.(`$~`(ford-fail p.gag))) ?. ?=($tabl -.gag) (mule |.(`$~`(ford-fail >%strange-gage p.p.gag< ~))) =< ?+(. [%& .] {@ *} .) |- ^- ?((list {cage cage}) (each $~ tang)) ?~ p.gag ~ =* hed i.p.gag ?- -.p.i.p.gag $tabl (mule |.(`$~`(ford-fail >%strange-gage< ~))) $| (mule |.(`$~`(ford-fail p.p.i.p.gag))) $& ?- -.q.i.p.gag $tabl (mule |.(`$~`(ford-fail >%strange-gage< ~))) $| (mule |.(`$~`(ford-fail p.q.i.p.gag))) $& =+ $(p.gag t.p.gag) ?+(- [[p.p p.q]:i.p.gag -] {@ *} -) == == :: :: Assumes the list of pairs of cages is actually a listified map of paths :: to cages, and converts it to (map path cage) or a stack trace on error. :: ++ cages-to-map |= tay/(list (pair cage cage)) =| can/(map path cage) |- ^- (each (map path cage) tang) ?~ tay [%& can] =* pax p.i.tay ?. ?=($path p.pax) (mule |.(`$~`~|([%expected-path got=p.pax] !!))) $(tay t.tay, can (~(put by can) ((hard path) q.q.pax) q.i.tay)) :: :: Queue a move. :: ++ emit |= mof/move %_(+> mow [mof mow]) :: :: Queue a list of moves :: ++ emil |= mof/(list move) %_(+> mow (weld mof mow)) :: :: Produce either null or a result along a subscription. :: :: Producing null means subscription has been completed or cancelled. :: ++ balk |= {hen/duct cay/(unit (each cage lobe)) mun/mood} ^+ +> ?~ cay (blub hen) (blab hen mun u.cay) :: :: Set timer. :: ++ bait |= {hen/duct tym/@da} (emit hen %pass /tyme %t %wait tym) :: :: Cancel timer. :: ++ best |= {hen/duct tym/@da} (emit hen %pass /tyme %t %rest tym) :: :: Give subscription result. :: :: Result can be either a direct result (cage) or a lobe of a result. In :: the latter case we fetch the data at the lobe and produce that. :: ++ blab |= {hen/duct mun/mood dat/(each cage lobe)} ^+ +> ?: ?=($& -.dat) (emit hen %give %writ ~ [p.mun q.mun syd] r.mun p.dat) %- emit :* hen %pass [%blab p.mun (scot q.mun) syd r.mun] %f %exec our ~ [her syd q.mun] (lobe-to-silk:ze r.mun p.dat) == :: ++ blas |= {hen/duct das/(set mood)} ^+ +> ?> ?=(^ das) =- (emit hen %give %wris q.n.das -) (~(run in `(set mood)`das) |=(m/mood [p.m r.m])) :: :: Give next step in a subscription. :: ++ bleb |= {hen/duct ins/@ud hip/(unit (pair aeon aeon))} ^+ +> %^ blab hen [%w [%ud ins] ~] :- %& ?~ hip [%null [%atom %n ~] ~] [%nako !>((make-nako:ze u.hip))] :: :: Tell subscriber that subscription is done. :: ++ blub |= hen/duct (emit hen %give %writ ~) :: :: Lifts a function so that a single result can be fanned out over a set of :: subscriber ducts. :: :: Thus, `((duct-lift func) subs arg)` runs `(func sub arg)` for each `sub` :: in `subs`. :: ++ duct-lift |* send/_|=({duct *} ..duct-lift) |= {a/(set duct) arg/_+<+.send} ^+ ..duct-lift =+ all=~(tap by a) |- ^+ ..duct-lift ?~ all ..duct-lift =. +>.send ..duct-lift $(all t.all, duct-lift (send i.all arg)) :: ++ blub-all (duct-lift |=({a/duct $~} (blub a))) :: lifted ++blub ++ blab-all (duct-lift blab) :: lifted ++blab ++ blas-all (duct-lift blas) :: lifted ++blas ++ balk-all (duct-lift balk) :: lifted ++balk ++ bleb-all (duct-lift bleb) :: lifted ++bleb :: :: Sends a tank straight to dill for printing. :: ++ print-to-dill |= {car/@tD tan/tank} =+ bar=emit =+ foo=+26.bar =+ moo=,.+26.bar (emit (need hun) %give %note car tan) :: :: Transfer a request to another ship's clay. :: ++ send-over-ames |= {a/duct b/path c/ship d/{p/@ud q/riff}} (emit a %pass b %a %want [our c] [%c %question p.q.d (scot %ud p.d) ~] q.d) :: :: Create a request that cannot be filled immediately. :: :: If it's a local request, we just put in in `qyx`, setting a timer if it's :: waiting for a particular time. If it's a foreign request, we add it to :: our request manager (ref, which is a ++rind) and make the request to the :: foreign ship. :: ++ duce :: produce request |= wov/wove ^+ +> =. wov (dedupe wov) =. qyx (~(put ju qyx) wov hen) ?~ ref (mabe q.wov |=(@da (bait hen +<))) |- ^+ +>+.$ =+ rav=(reve q.wov) =+ ^= vaw ^- rave ?. ?=({$sing $v *} rav) rav [%many %| [%ud let.dom] `case`q.p.rav r.p.rav] =+ inx=nix.u.ref =. +>+.$ =< ?>(?=(^ ref) .) (send-over-ames hen [(scot %ud inx) ~] her inx syd ~ vaw) %= +>+.$ nix.u.ref +(nix.u.ref) bom.u.ref (~(put by bom.u.ref) inx [hen vaw]) fod.u.ref (~(put by fod.u.ref) hen inx) == :: :: If a similar request exists, switch to the existing request. :: :: "Similar" requests are those %next and %many requests which are the same :: up to starting case, but we're already after the starting case. This :: stacks later requests for something onto the same request so that they :: all get filled at once. :: ++ dedupe :: find existing alias |= wov/wove ^- wove =; won/(unit wove) (fall won wov) =* rov q.wov ?- -.rov $sing ~ $next =+ aey=(case-to-aeon:ze q.p.rov) ?~ aey ~ %- ~(rep in ~(key by qyx)) |= {haw/wove res/(unit wove)} ?^ res res ?. =(p.wov p.haw) ~ =* hav q.haw =- ?:(- `haw ~) ?& ?=($next -.hav) =(p.hav p.rov(q q.p.hav)) :: :: only a match if this request is before :: or at our starting case. =+ hay=(case-to-aeon:ze q.p.hav) ?~(hay | (lte u.hay u.aey)) == :: $mult =+ aey=(case-to-aeon:ze p.p.rov) ?~ aey ~ %- ~(rep in ~(key by qyx)) |= {haw/wove res/(unit wove)} ?^ res res ?. =(p.wov p.haw) ~ =* hav q.haw =- ?:(- `haw ~) ?& ?=($mult -.hav) =(p.hav p.rov(p p.p.hav)) :: :: only a match if this request is before :: or at our starting case, and it has been :: tested at least that far. =+ hay=(case-to-aeon:ze p.p.hav) ?& ?=(^ hay) (lte u.hay u.aey) ?=(^ q.hav) (gte u.q.hav u.aey) == == :: $many =+ aey=(case-to-aeon:ze p.q.rov) ?~ aey ~ %- ~(rep in ~(key by qyx)) |= {haw/wove res/(unit wove)} ?^ res res ?. =(p.wov p.haw) ~ =* hav q.haw =- ?:(- `haw ~) ?& ?=($many -.hav) =(hav rov(p.q p.q.hav)) :: :: only a match if this request is before :: or at our starting case. =+ hay=(case-to-aeon:ze p.q.hav) ?~(hay | (lte u.hay u.aey)) == == :: :: Takes a list of changed paths and finds those paths that are inside a :: mount point (listed in `mon`). :: :: Output is a map of mount points to {length-of-mounted-path set-of-paths}. :: ++ must-ergo |= can/(list path) ^- (map term (pair @ud (set path))) %- malt ^- (list (trel term @ud (set path))) %+ murn ~(tap by mon) |= {nam/term bem/beam} ^- (unit (trel term @ud (set path))) =- ?~(- ~ `[nam (lent s.bem) (silt `(list path)`-)]) %+ skim can |= pax/path &(=(p.bem her) =(q.bem syd) =((flop s.bem) (scag (lent s.bem) pax))) :: :: Initializes a new mount point. :: ++ mont |= {pot/term bem/beam} ^+ +> =+ pax=s.bem =+ cas=(need (case-to-aeon:ze r.bem)) =+ can=(turn ~(tap by q:(aeon-to-yaki:ze cas)) head) =+ mus=(skim can |=(paf/path =(pax (scag (lent pax) paf)))) ?~ mus +>.$ %- emit :* hen %pass [%ergoing (scot %p her) syd ~] %f %exec our ~ [her syd %da now] %tabl ^- (list (pair silk:ford silk:ford)) %+ turn `(list path)`mus |= a/path ^- (pair silk:ford silk:ford) :- [%$ %path !>(a)] :+ %cast %mime =+ (need (need (read-x:ze cas a))) ?: ?=($& -<) [%$ p.-] (lobe-to-silk:ze a p.-) == :: :: Set permissions for a node. :: ++ perm |= {pax/path rit/rite} ^+ +> =< (emit hen %give %mack ~) ?- -.rit $r wake(per (put-perm per pax red.rit)) $w wake(pew (put-perm pew pax wit.rit)) $rw wake(per (put-perm per pax red.rit), pew (put-perm pew pax wit.rit)) == :: ++ put-perm |= {pes/(map path rule) pax/path new/(unit rule)} ?~ new (~(del by pes) pax) (~(put by pes) pax u.new) :: :: Cancel a request. :: :: For local requests, we just remove it from `qyx`. For foreign requests, :: we remove it from `ref` and tell the foreign ship to cancel as well. :: ++ cancel-request :: release request ^+ . =^ wos/(list wove) qyx :_ (~(run by qyx) |=(a/(set duct) (~(del in a) hen))) %- ~(rep by qyx) |= {{a/wove b/(set duct)} c/(list wove)} ?.((~(has in b) hen) c [a c]) ?~ ref => .(ref `(unit rind)`ref) :: XX TMI ?: =(~ wos) + :: XX handle? |- ^+ +> ?~ wos +> $(wos t.wos, +> (mabe q.i.wos |=(@da (best hen +<)))) ^+ ..cancel-request =+ nux=(~(get by fod.u.ref) hen) ?~ nux ..cancel-request =: fod.u.ref (~(del by fod.u.ref) hen) bom.u.ref (~(del by bom.u.ref) u.nux) == (send-over-ames hen [(scot %ud u.nux) ~] her u.nux syd ~) :: :: Handles a request. :: :: `%sing` requests are handled by ++aver. `%next` requests are handled by :: running ++aver at the given case, and then subsequent cases until we find :: a case where the two results aren't equivalent. If it hasn't happened :: yet, we wait. `%many` requests are handled by producing as much as we can :: and then waiting if the subscription range extends into the future. :: ++ start-request |= {for/(unit ship) rav/rave} ^+ +> ?- -.rav $sing =+ ver=(aver for p.rav) ?~ ver (duce for rav) ?~ u.ver (blub hen) (blab hen p.rav u.u.ver) :: :: for %mult and %next, get the data at the specified case, then go forward :: in time until we find a change (as long as we have no unknowns). :: if we find no change, store request for later. :: %next is just %mult with one path, so we pretend %next = %mult here. ?($next $mult) |^ =+ cas=?:(?=($next -.rav) q.p.rav p.p.rav) =+ aey=(case-to-aeon:ze cas) :: if the requested case is in the future, we can't know anything yet. ?~ aey (store ~ ~ ~) =+ old=(read-all-at cas) =+ yon=+((need (case-to-aeon:ze cas))) |- ^+ ..start-request :: if we need future revisions to look for change, wait. ?: (gth yon let.dom) (store `yon old ~) =+ new=(read-all-at [%ud yon]) :: if we don't know everything now, store the request for later. ?. &((levy ~(tap by old) know) (levy ~(tap by new) know)) (store `yon old new) :: if we do know everything now, compare old and new. :: if there are differences, send response. if not, try next aeon. =; res ?~ res $(yon +(yon)) (respond res) %+ roll ~(tap by old) |= $: {{car/care pax/path} ole/cach} res/(map mood (each cage lobe)) == =+ neu=(~(got by new) car pax) ?< |(?=($~ ole) ?=($~ neu)) =- ?~(- res (~(put by res) u.-)) ^- (unit (pair mood (each cage lobe))) =+ mod=[car [%ud yon] pax] ?~ u.ole ?~ u.neu ~ :: not added `[mod u.u.neu] :: added ?~ u.neu `[mod [%& %null [%atom %n ~] ~]] :: deleted ?: (equivalent-data:ze u.u.neu u.u.ole) ~ :: unchanged `[mod u.u.neu] :: changed :: ++ store :: check again later |= $: nex/(unit aeon) old/(map (pair care path) cach) new/(map (pair care path) cach) == ^+ ..start-request %+ duce for ^- rove ?: ?=($mult -.rav) [-.rav p.rav nex old new] :+ -.rav p.rav =+ ole=~(tap by old) ?> (lte (lent ole) 1) ?~ ole ~ q:(snag 0 `(list (pair (pair care path) cach))`ole) :: ++ respond :: send changes |= res/(map mood (each cage lobe)) ^+ ..start-request ?: ?=($mult -.rav) (blas hen ~(key by res)) ?> ?=({* $~ $~} res) (blab hen n.res) :: ++ know |=({(pair care path) c/cach} ?=(^ c)) :: know about file :: ++ read-all-at :: files at case, maybe |= cas/case %- ~(gas by *(map (pair care path) cach)) =/ req/(set (pair care path)) ?: ?=($mult -.rav) q.p.rav [[p.p.rav r.p.rav] ~ ~] %+ turn ~(tap by req) |= {c/care p/path} ^- (pair (pair care path) cach) [[c p] (aver for c cas p)] -- :: $many =+ nab=(case-to-aeon:ze p.q.rav) ?~ nab ?> =(~ (case-to-aeon:ze q.q.rav)) (duce for [- p q ~]:rav) =+ huy=(case-to-aeon:ze q.q.rav) ?: &(?=(^ huy) |((lth u.huy u.nab) &(=(0 u.huy) =(0 u.nab)))) (blub hen) =+ top=?~(huy let.dom u.huy) =+ ear=(lobes-at-path:ze for top r.q.rav) =. +>.$ (bleb hen u.nab ?:(p.rav ~ `[u.nab top])) ?^ huy (blub hen) =+ ^= ptr ^- case [%ud +(let.dom)] (duce for `rove`[%many p.rav [ptr q.q.rav r.q.rav] ear]) == :: :: Print a summary of changes to dill. :: ++ print-changes |= {wen/@da lem/nuri} ^+ +> =+ pre=`path`~[(scot %p her) syd (scot %ud let.dom)] ?- -.lem $| (print-to-dill '=' %leaf :(weld (trip p.lem) " " (spud pre))) $& |- ^+ +>.^$ ?~ p.lem +>.^$ =. +>.^$ %+ print-to-dill ?-(-.q.i.p.lem $del '-', $ins '+', $dif ':') :+ %rose ["/" "/" ~] %+ turn (weld pre p.i.p.lem) |= a/cord ?: ((sane %ta) a) [%leaf (trip a)] [%leaf (dash:us (trip a) '\'')] $(p.lem t.p.lem) == :: :: This is the entry point to the commit flow. It deserves some :: explaining, since it's rather long and convoluted. :: :: In short, ++edit takes a ++nori and turns it into a ++nuri, which is the :: same thing except that every change is a misu instead of a miso. Thus, :: insertions are converted to the correct mark, diffs are applied, and :: mutations (change content by replacement) are diffed. It also fills out :: the other fields in `++dork`. We run `++apply-edit` to create the final :: nuri and execute the changes. :: :: We take a `++nori`, which is either a label-add request or a `++soba`, :: which is a list of changes. If it's a label, it's easy and we just pass :: it to `++execute-changes:ze`. :: :: If the given `++nori` is a list of file changes, then we our goal is to :: convert the list of `++miso` changes to `++misu` changes. In other :: words, turn the `++nori` into a `++nuri`. Then, we pass it to :: `++execute-changes:ze`, which applies the changes to our state, and then :: we check out the new revision. XX reword :: :: Anyhow, enough of high-level talk. It's time to get down to the :: nitty-gritty. :: :: When we get a list of `++miso` changes, we split them into four types: :: deletions, insertions, diffs (i.e. change from diff), and mutations :: (i.e. change from new data). We do four different things with them. :: :: For deletions, we just fill in `del` in `++dork` with a list of the :: deleted files. :: :: For insertions, we distinguish bewtween `%hoon` files and all other :: files. For `%hoon` files, we just store them to `ink` in `++dork` so :: that we add diff them directly. `%hoon` files have to be treated :: specially to make the bootstrapping sequence work, since the mark :: definitions are themselves `%hoon` files. :: :: For the other files, we make a `%tabl` compound ford request to convert :: the data for the new file to the the mark indicated by the last knot in :: the path. :: :: For diffs, we make a `%tabl` compound ford request to apply the diff to :: the existing content. We also store the diffs in `dig` in `++dork`. :: :: For mutations, we make a `%tabl` compound ford request to convert the :: given new data to the mark of the already-existing file. Later on in :: `++take-castify` we'll create the ford request to actually perform the :: diff. We also store the mutations in `muc` in `++dork`. I'm pretty :: sure that's useless because who cares about the original data. :: XX delete `muc`. :: :: Finally, for performance reasons we cache any of the data that came in :: as a `%mime` cage. We do this because many commits come from unix, :: where they're passed in as `%mime` and need to be turned back into it :: for the ergo. We cache both `%hoon` and non-`%hoon` inserts and :: mutations. :: :: At this point, the flow of control goes through the three ford requests :: back to `++take-inserting`, `++take-diffing`, and `++take-castifying`, :: which itself leads to `++take-mutating`. Once each of those has :: completed, we end up at `++apply-edit`, where our unified story picks up :: again. :: ++ edit :: apply changes |= {wen/@da lem/nori} ^+ +> ?: ?=($| -.lem) =^ hat +>.$ (execute-changes:ze wen lem) ?~ hat +>.$ wake:(print-changes:(checkout-ankh u.hat) wen lem) ?. =(~ dok) ~& %already-applying-changes +> =+ del=(skim p.lem :(corl (cury test %del) head tail)) =+ ins=(skim p.lem :(corl (cury test %ins) head tail)) =+ dif=(skim p.lem :(corl (cury test %dif) head tail)) =+ mut=(skim p.lem :(corl (cury test %mut) head tail)) =^ ink ins ^- {(list (pair path miso)) (list (pair path miso))} %+ skid `(list (pair path miso))`ins |= {pax/path mis/miso} ?> ?=($ins -.mis) ?& ?=({$hoon *} (flop pax)) ?=($mime p.p.mis) == =. +>.$ %- emil ^- (list move) :~ :* hen %pass [%inserting (scot %p her) syd (scot %da wen) ~] %f %exec our ~ [her syd %da wen] %tabl ^- (list (pair silk:ford silk:ford)) %+ turn ins |= {pax/path mis/miso} ?> ?=($ins -.mis) :- [%$ %path -:!>(*path) pax] =+ =>((flop pax) ?~(. %$ i)) [%cast - [%$ p.mis]] == :* hen %pass [%diffing (scot %p her) syd (scot %da wen) ~] %f %exec our ~ [her syd %da wen] %tabl ^- (list (pair silk:ford silk:ford)) %+ turn dif |= {pax/path mis/miso} ?> ?=($dif -.mis) =+ (need (need (read-x:ze let.dom pax))) ?> ?=($& -<) :- [%$ %path -:!>(*path) pax] [%pact [%$ p.-] [%$ p.mis]] == :* hen %pass [%castifying (scot %p her) syd (scot %da wen) ~] %f %exec our ~ [her syd %da wen] %tabl ^- (list (pair silk:ford silk:ford)) %+ turn mut |= {pax/path mis/miso} ?> ?=($mut -.mis) :- [%$ %path -:!>(*path) pax] =+ (lobe-to-mark:ze (~(got by q:(aeon-to-yaki:ze let.dom)) pax)) [%cast - [%$ p.mis]] == == %_ +>.$ dok :- ~ :* (turn del |=({pax/path mis/miso} ?>(?=($del -.mis) pax))) :: %+ turn ink |= {pax/path mis/miso} ^- (pair path cage) ?> ?=($ins -.mis) =+ =>((flop pax) ?~(. %$ i)) [pax - [%atom %t ~] ((hard @t) +>.q.q.p.mis)] :: ~ :: %- malt (turn dif |=({pax/path mis/miso} ?>(?=($dif -.mis) [pax p.mis]))) :: ~ :: %- malt (turn mut |=({pax/path mis/miso} ?>(?=($mut -.mis) [pax p.mis]))) :: ~ :: ~ :: %- molt ^- (list (pair path mime)) ;: weld ^- (list (pair path mime)) %+ murn ins |= {pax/path mis/miso} ^- (unit (pair path mime)) ?> ?=($ins -.mis) ?. ?=($mime p.p.mis) ~ `[pax ((hard mime) q.q.p.mis)] :: ^- (list (pair path mime)) %+ murn ink |= {pax/path mis/miso} ^- (unit (pair path mime)) ?> ?=($ins -.mis) ?> ?=($mime p.p.mis) `[pax ((hard mime) q.q.p.mis)] :: ^- (list (pair path mime)) %+ murn mut |= {pax/path mis/miso} ^- (unit (pair path mime)) ?> ?=($mut -.mis) ?. ?=($mime p.p.mis) ~ `[pax ((hard mime) q.q.p.mis)] == == == :: :: Handle result of insertion. :: :: For commit flow overview, see ++edit. :: :: Insertions are cast to the correct mark, and here we put the result in :: ins.dok. If dif and mut are full in dok (i.e. we've already processed :: diffs and mutations), then we go ahead and run ++apply-edit. :: ++ take-inserting |= {wen/@da res/gage:ford} ^+ +> ?~ dok ~& %clay-take-inserting-unexpected-made +>.$ ?. =(~ ins.u.dok) ~& %clay-take-inserting-redundant-made +>.$ =- =. ins.u.dok `- ?: ?& ?=(^ dif.u.dok) ?=(^ mut.u.dok) == (apply-edit wen) +>.$ ^- (list (pair path cage)) %+ turn (gage-to-success-cages res) |= {pax/cage cay/cage} ?. ?=($path p.pax) ~|(%clay-take-inserting-strange-path-mark !!) [((hard path) q.q.pax) cay] :: :: Handle result of diffing. :: :: For commit flow overview, see ++edit. :: :: Diffs are applied to the original data, and here we put the result in :: dif.dok. If ins and mut are full in dok (i.e. we've already processed :: insertions and mutations), then we go ahead and run ++apply-edit. :: ++ take-diffing |= {wen/@da res/gage:ford} ^+ +> ?~ dok ~& %clay-take-diffing-unexpected-made +>.$ ?. =(~ dif.u.dok) ~& %clay-take-diffing-redundant-made +>.$ =- =. dif.u.dok `- ?: ?& ?=(^ ins.u.dok) ?=(^ mut.u.dok) == (apply-edit wen) +>.$ ^- (list (trel path lobe cage)) %+ turn (gage-to-cages res) |= {pax/cage cay/cage} ^- (pair path (pair lobe cage)) ?. ?=($path p.pax) ~|(%clay-take-diffing-strange-path-mark !!) =+ paf=((hard path) q.q.pax) [paf (page-to-lobe:ze [p q.q]:cay) (~(got by dig.u.dok) paf)] :: :: Handle result of casting mutations. :: :: For commit flow overview, see ++edit. :: :: The new content from a mutation is first casted to the correct mark, and :: here we hash the correctly-marked content and put the result in muh.dok. :: Then we diff the new content against the original content. The result of :: this is handled in ++take-mutating. :: ++ take-castify |= {wen/@da res/gage:ford} ^+ +> ?~ dok ~& %clay-take-castifying-unexpected-made +>.$ ?. =(~ muh.u.dok) ~& %clay-take-castifying-redundant-made +>.$ =+ ^- cat/(list (pair path cage)) %+ turn (gage-to-cages res) |= {pax/cage cay/cage} ?. ?=($path p.pax) ~|(%castify-bad-path-mark !!) [((hard path) q.q.pax) cay] =. muh.u.dok %- malt %+ turn cat |= {pax/path cay/cage} [pax (page-to-lobe:ze [p q.q]:cay)] %- emit :* hen %pass [%mutating (scot %p her) syd (scot %da wen) ~] %f %exec our ~ [her syd %da wen] %tabl ^- (list (pair silk:ford silk:ford)) %+ turn cat |= {pax/path cay/cage} :- [%$ %path -:!>(*path) pax] =+ (lobe-to-silk:ze pax (~(got by q:(aeon-to-yaki:ze let.dom)) pax)) [%diff - [%$ cay]] == :: :: Handle result of diffing mutations. :: :: For commit flow overview, see ++edit. :: :: We put the calculated diffs of the new content vs the old content (from :: ++take-castify) in mut.dok. If ins and mut are full in dok (i.e. we've :: already processed insertions and diffs), then we go ahead and run :: ++apply-edit. :: ++ take-mutating |= {wen/@da res/gage:ford} ^+ +> ?~ dok ~& %clay-take-mutating-unexpected-made +>.$ ?. =(~ mut.u.dok) ~& %clay-take-mutating-redundant-made +>.$ =- =. mut.u.dok `- ?: ?& ?=(^ ins.u.dok) ?=(^ dif.u.dok) == (apply-edit wen) +>.$ ^- (list (trel path lobe cage)) %+ murn (gage-to-cages res) |= {pax/cage cay/cage} ^- (unit (pair path (pair lobe cage))) ?. ?=($path p.pax) ~|(%clay-take-mutating-strange-path-mark !!) ?: ?=($null p.cay) ~ =+ paf=((hard path) q.q.pax) `[paf (~(got by muh.u.dok) paf) cay] :: :: Now that dok is completely filled, we can apply the changes in the commit. :: :: We collect the relevant data from dok and run ++execute-changes to apply :: them to our state. Then we run ++checkout-ankh to update our ankh (cache :: of the content at the current aeon). :: ++ apply-edit |= wen/@da ^+ +> :: XX we do the same in ++take-patch, which is confusing and smells foul. :: Here we run ++execute-changes, but we throw away the state changes. The :: call in ++take-patch is the one that matters, but we print out changes :: here, and we also use that info to call ++checkout-ankh (which is what :: leads to the ++take-patch call). :: :: I'm guessing this shouldn't call ++execute-changes at all but rather :: generate the information it needs directly. =+ ^- sim/(list (pair path misu)) ?~ dok ~|(%no-changes !!) ?> ?=(^ ins.u.dok) ?> ?=(^ dif.u.dok) ?> ?=(^ mut.u.dok) ;: weld ^- (list (pair path misu)) (turn del.u.dok |=(pax/path [pax %del ~])) :: ^- (list (pair path misu)) (turn ink.u.dok |=({pax/path cay/cage} [pax %ins cay])) :: ^- (list (pair path misu)) (turn u.ins.u.dok |=({pax/path cay/cage} [pax %ins cay])) :: ^- (list (pair path misu)) (turn u.dif.u.dok |=({pax/path cal/{lobe cage}} [pax %dif cal])) :: ^- (list (pair path misu)) (turn u.mut.u.dok |=({pax/path cal/{lobe cage}} [pax %dif cal])) == =+ hat=(execute-changes:ze wen %& sim) ?~ dok ~& %no-changes !! ?~ -.hat ([print-changes(dok ~)]:.(+>.$ +.hat) wen %& sim) (checkout-ankh(lat.ran lat.ran.+.hat) u.-.hat) :: :: Takes a map of paths to lobes and tells ford to convert to an ankh. :: :: Specifically, we tell ford to convert each lobe into a blob, then we call :: ++take-patch to apply the result to our current ankh and update unix. :: ++ checkout-ankh |= hat/(map path lobe) ^+ +> %- emit :* hen %pass [%patching (scot %p her) syd ~] %f %exec our :^ ~ [her syd %da now] %tabl ^- (list (pair silk:ford silk:ford)) %+ turn ~(tap by hat) |= {a/path b/lobe} ^- (pair silk:ford silk:ford) :- [%$ %path-hash !>([a b])] (lobe-to-silk:ze a b) == :: :: Handle the result of the ford call in ++checkout-ankh. :: :: We apply the changes by calling ++execute-changes, then we convert the :: result of the ford call from ++checkout-ankh into a map of paths to data :: for the current aeon of this desk. We turn this into an ankh and store :: it to our state. Finally, we choose which paths need to be synced to :: unix, and convert the data at those paths to mime (except those paths :: which were added originally as mime, because we still have that stored in :: mim in dok). The result is handled in ++take-ergo. :: ++ take-patch |= res/gage:ford ^+ +> :: ~& %taking-patch ?: ?=($| -.res) =. dok ~ (print-to-dill '!' %rose [" " "" ""] leaf+"clay patch failed" p.res) :: ~& %editing =+ ^- sim/(list (pair path misu)) ?~ dok ~|(%no-changes !!) ?> ?=(^ ins.u.dok) ?> ?=(^ dif.u.dok) ?> ?=(^ mut.u.dok) ;: weld ^- (list (pair path misu)) (turn del.u.dok |=(pax/path [pax %del ~])) :: ^- (list (pair path misu)) (turn ink.u.dok |=({pax/path cay/cage} [pax %ins cay])) :: ^- (list (pair path misu)) (turn u.ins.u.dok |=({pax/path cay/cage} [pax %ins cay])) :: ^- (list (pair path misu)) (turn u.dif.u.dok |=({pax/path cal/{lobe cage}} [pax %dif cal])) :: ^- (list (pair path misu)) (turn u.mut.u.dok |=({pax/path cal/{lobe cage}} [pax %dif cal])) == =^ hat +>.$ (execute-changes:ze now %& sim) :: XX do same in ++apply-edit ?~ dok ~& %no-dok +>.$ => %= . +>.$ ?< ?=($~ hat) :: XX whut? (print-changes now %& sim) == ?~ dok ~& %no-dok +>.$ =+ ^- cat/(list (trel path lobe cage)) %+ turn (gage-to-cages res) |= {pax/cage cay/cage} ?. ?=($path-hash p.pax) ~|(%patch-bad-path-mark !!) [-< -> +]:[((hard {path lobe}) q.q.pax) cay] :: ~& %canned :: ~& %checking-out =. ank.dom (map-to-ankh:ze (malt cat)) :: ~& %checked-out :: ~& %waking =. +>.$ =>(wake ?>(?=(^ dok) .)) :: ~& %waked ?~ hez +>.$(dok ~) =+ mus=(must-ergo (turn sim head)) ?: =(~ mus) +>.$(dok ~) =+ ^- sum/(set path) =+ (turn ~(tap by mus) (corl tail tail)) %+ roll - |= {pak/(set path) acc/(set path)} (~(uni in acc) pak) =+ can=(malt sim) :: ~& %forming-ergo :: =- ~& %formed-ergo - %- emit(dok ~) :* hen %pass [%ergoing (scot %p her) syd ~] %f %exec our ~ [her syd %da now] %tabl ^- (list (pair silk:ford silk:ford)) %+ turn ~(tap in sum) |= a/path ^- (pair silk:ford silk:ford) :- [%$ %path !>(a)] =+ b=(~(got by can) a) ?: ?=($del -.b) [%$ %null !>(~)] =+ (~(get by mim.u.dok) a) ?^ - [%$ %mime !>(u.-)] :+ %cast %mime =+ (need (need (read-x:ze let.dom a))) ?: ?=($& -<) [%$ p.-] (lobe-to-silk:ze a p.-) == :: :: Send new data to unix. :: :: Combine the paths in mim in dok and the result of the ford call in :: ++take-patch to create a list of nodes that need to be sent to unix (in :: an %ergo card) to keep unix up-to-date. Send this to unix. :: ++ take-ergo |= res/gage:ford ^+ +> ?: ?=($| -.res) (print-to-dill '!' %rose [" " "" ""] leaf+"clay ergo failed" p.res) ?~ hez ~|(%no-sync-duct !!) =+ ^- can/(map path (unit mime)) %- malt ^- mode %+ turn (gage-to-cages res) |= {pax/cage mim/cage} ?. ?=($path p.pax) ~|(%ergo-bad-path-mark !!) :- ((hard path) q.q.pax) ?. ?=($mime p.mim) ~ `((hard mime) q.q.mim) =+ mus=(must-ergo (turn ~(tap by can) head)) %- emil %+ turn ~(tap by mus) |= {pot/term len/@ud pak/(set path)} :* u.hez %give %ergo pot %+ turn ~(tap in pak) |= pax/path [(slag len pax) (~(got by can) pax)] == :: :: Called when a foreign ship answers one of our requests. :: :: After updating ref (our request manager), we handle %x, %w, and %y :: responses. For %x, we call ++validate-x to validate the type of the :: response. For %y, we coerce the result to an arch. :: :: For %w, we check to see if it's a @ud response (e.g. for :: cw+//~sampel-sipnym/desk/~time-or-label). If so, it's easy. Otherwise, :: we look up our subscription request, then assert the response was a nako. :: If this is the first update for a desk, we assume everything's well-typed :: and call ++apply-foreign-update directly. Otherwise, we call :: ++validate-plops to verify that the data we're getting is well typed. :: :: Be careful to call ++wake if/when necessary (i.e. when the state changes :: enough that a subscription could be filled). Every case must call it :: individually. :: ++ take-foreign-update :: external change |= {inx/@ud rut/(unit rand)} ^+ +> ?> ?=(^ ref) |- ^+ +>+.$ =+ ruv=(~(get by bom.u.ref) inx) ?~ ruv +>+.$ => ?. |(?=($~ rut) ?=($sing -.q.u.ruv)) . %_ . bom.u.ref (~(del by bom.u.ref) inx) fod.u.ref (~(del by fod.u.ref) p.u.ruv) == ?~ rut =+ rav=`rave`q.u.ruv =< ?>(?=(^ ref) .) %_ wake lim ?.(&(?=($many -.rav) ?=($da -.q.q.rav)) lim `@da`p.q.q.rav) :: haw.u.ref ?. ?=($sing -.rav) haw.u.ref (~(put by haw.u.ref) p.rav ~) == ?- p.p.u.rut $d ~| %totally-temporary-error-please-replace-me !! $p ~| %requesting-foreign-permissions-is-invalid !! $u ~| %im-thinkin-its-prolly-a-bad-idea-to-request-rang-over-the-network !! :: $v ~| %weird-we-shouldnt-get-a-dome-request-over-the-network !! :: $x =< ?>(?=(^ ref) .) (validate-x p.p.u.rut q.p.u.rut q.u.rut r.u.rut) :: $w =. haw.u.ref %+ ~(put by haw.u.ref) [p.p.u.rut q.p.u.rut q.u.rut] :+ ~ p.r.u.rut ?+ p.r.u.rut ~| %strange-w-over-nextwork !! $aeon !>(((hard aeon) q.r.u.rut)) $null [[%atom %n ~] ~] $nako !>(~|([%harding [&1 &2 &3]:q.r.u.rut] ((hard nako) q.r.u.rut))) == ?. ?=($nako p.r.u.rut) [?>(?=(^ ref) .)]:wake =+ rav=`rave`q.u.ruv ?> ?=($many -.rav) |- ^+ +>+.^$ =+ nez=[%w [%ud let.dom] ~] =+ nex=(~(get by haw.u.ref) nez) ?~ nex +>+.^$ ?~ u.nex +>+.^$ :: should never happen =. nak.u.ref `((hard nako) q.q.u.u.nex) =. +>+.^$ ?: =(0 let.dom) =< ?>(?=(^ ref) .) %+ apply-foreign-update ?.(?=($da -.q.q.rav) ~ `p.q.q.rav) (need nak.u.ref) =< ?>(?=(^ ref) .) %^ validate-plops [%ud let.dom] ?.(?=($da -.q.q.rav) ~ `p.q.q.rav) bar:(need nak.u.ref) %= $ haw.u.ref (~(del by haw.u.ref) nez) == :: $y =< ?>(?=(^ ref) .) %_ wake haw.u.ref %+ ~(put by haw.u.ref) [p.p.u.rut q.p.u.rut q.u.rut] `[p.r.u.rut !>(((hard arch) q.r.u.rut))] == :: $z ~| %its-prolly-not-reasonable-to-request-ankh-over-the-network-sorry !! == :: :: Check that given data is actually of the mark it claims to be. :: :: Result is handled in ++take-foreign-x :: ++ validate-x |= {car/care cas/case pax/path peg/page} ^+ +> %- emit :* hen %pass [%foreign-x (scot %p our) (scot %p her) syd car (scot cas) pax] %f %exec our ~ [her syd cas] (vale-page peg) == :: :: Create a silk to validate a page. :: :: If the mark is %hoon, we short-circuit the validation for bootstrapping :: purposes. :: ++ vale-page |= a/page ^- silk:ford ?. ?=($hoon p.a) [%vale a] ?. ?=(@t q.a) [%dude |.(>%weird-hoon<) %ride [%zpzp ~] %$ *cage] [%$ p.a [%atom %t ~] q.a] :: :: Verify the foreign data is of the the mark it claims to be. :: :: This completes the receiving of %x foreign data. :: ++ take-foreign-x |= {car/care cas/case pax/path res/gage:ford} ^+ +> ?> ?=(^ ref) ?. ?=($& -.res) ~| "validate foreign x failed" =+ why=?-(-.res $| p.res, $tabl ~[>%bad-marc<]) ~> %mean.|.(%*(. >[%plop-fail %why]< |1.+> why)) !! ?> ?=(@ p.p.res) wake(haw.u.ref (~(put by haw.u.ref) [car cas pax] `p.res)) :: :: When we get a %w foreign update, store this in our state. :: :: We get the commits and blobs from the nako and add them to our object :: store, then we update the map of aeons to commits and the latest aeon. :: :: We call ++wake at the end to update anyone whose subscription is fulfilled :: by this state change. :: ++ apply-foreign-update :: apply subscription |= $: lem/(unit @da) :: complete up to gar/(map aeon tako) :: new ids let/aeon :: next id lar/(set yaki) :: new commits bar/(set blob) :: new content == ^+ +> =< wake =+ ^- nut/(map tako yaki) %- molt ^- (list (pair tako yaki)) %+ turn ~(tap in lar) |= yak/yaki [r.yak yak] =+ ^- nat/(map lobe blob) %- molt ^- (list (pair lobe blob)) %+ turn ~(tap in bar) |= bol/blob [p.bol bol] ~| :* %bad-foreign-update :* gar=gar let=let nut=(~(run by nut) $~) nat=(~(run by nat) $~) == :* hitdom=hit.dom letdom=let.dom hutran=(~(run by hut.ran) $~) latran=(~(run by lat.ran) $~) == == =+ hit=(~(uni by hit.dom) gar) =+ let=let =+ hut=(~(uni by hut.ran) nut) =+ lat=(~(uni by lat.ran) nat) =+ ?: =(0 let) ~ =+ yon=`aeon`1 :: sanity check |- ~| yon=yon =+ tak=(~(got by hit) yon) =+ yak=(~(got by hut) tak) =+ %- ~(urn by q.yak) |= {pax/path lob/lobe} ~| [pax=path lob=lobe] (~(got by lat) lob) ?: =(let yon) ~ $(yon +(yon)) %= +>.$ lim (max (fall lem lim) lim) hit.dom hit let.dom (max let let.dom) hut.ran hut lat.ran lat == :: :: Make sure that incoming data is of the correct type. :: :: This is a ford call to make sure that incoming data is of the mark it :: claims to be. The result is handled in ++take-foreign-plops. :: ++ validate-plops |= {cas/case lem/(unit @da) pop/(set plop)} ^+ +> =+ lum=(scot %da (fall lem *@da)) %- emit :* hen %pass [%foreign-plops (scot %p our) (scot %p her) syd lum ~] %f %exec our ~ [her syd cas] %tabl ^- (list (pair silk:ford silk:ford)) %+ turn ~(tap in pop) |= a/plop ?- -.a $direct [[%$ %blob !>([%direct p.a *page])] (vale-page p.q.a q.q.a)] $delta [[%$ %blob !>([%delta p.a q.a *page])] (vale-page p.r.a q.r.a)] == == :: :: Verify that foreign plops validated correctly. If so, apply them to our :: state. :: ++ take-foreign-plops |= {lem/(unit @da) res/gage:ford} ^+ +> ?> ?=(^ ref) ?> ?=(^ nak.u.ref) =+ ^- lat/(list blob) %+ turn ~|("validate foreign plops failed" (gage-to-cages res)) |= {bob/cage cay/cage} ?. ?=($blob p.bob) ~| %plop-not-blob !! =+ bol=((hard blob) q.q.bob) ?- -.bol $delta [-.bol p.bol q.bol p.cay q.q.cay] $direct [-.bol p.bol p.cay q.q.cay] == %^ apply-foreign-update lem gar.u.nak.u.ref :+ let.u.nak.u.ref lar.u.nak.u.ref (silt lat) :: ++ mabe :: maybe fire function |= {rov/rove fun/$-(@da _.)} ^+ +>.$ %+ fall %+ bind ^- (unit @da) ?- -.rov $sing ?. ?=($da -.q.p.rov) ~ `p.q.p.rov :: $next ~ :: $mult ~ :: $many %^ hunt lth ?. ?=($da -.p.q.rov) ~ ?.((lth now p.p.q.rov) ~ [~ p.p.q.rov]) ?. ?=($da -.q.q.rov) ~ (hunt gth [~ now] [~ p.q.q.rov]) == fun +>.$ :: ++ reve |= rov/rove ^- rave ?- -.rov $sing rov $next [- p]:rov $mult [- p]:rov $many [- p q]:rov == :: :: Loop through open subscriptions and check if we can fill any of them. :: ++ wake :: update subscribers ^+ . =+ xiq=~(tap by qyx) =| xaq/(list {p/wove q/(set duct)}) |- ^+ ..wake ?~ xiq ..wake(qyx (~(gas by *cult) xaq)) ?: =(~ q.i.xiq) $(xiq t.xiq, xaq xaq) :: drop forgotten =* for p.p.i.xiq =* rov q.p.i.xiq ?- -.rov $sing =+ cas=?~(ref ~ (~(get by haw.u.ref) `mood`p.rov)) ?^ cas %= $ xiq t.xiq ..wake ?~ u.cas (blub-all q.i.xiq ~) (blab-all q.i.xiq p.rov %& u.u.cas) == =+ nao=(case-to-aeon:ze q.p.rov) ?~ nao $(xiq t.xiq, xaq [i.xiq xaq]) :: ~& %reading-at-aeon =+ vid=(read-at-aeon:ze for u.nao p.rov) :: ~& %red-at-aeon ?~ vid :: ?: =(0 u.nao) :: ~& [%oh-poor `path`[syd '0' r.p.rov]] :: $(xiq t.xiq) :: ~& [%oh-well desk=syd mood=p.rov aeon=u.nao] $(xiq t.xiq, xaq [i.xiq xaq]) $(xiq t.xiq, ..wake (balk-all q.i.xiq u.vid p.rov)) :: :: %next is just %mult with one path, so we pretend %next = %mult here. ?($next $mult) :: because %mult requests need to wait on multiple files for each :: revision that needs to be checked for changes, we keep two cache maps. :: {old} is the revision at {(dec yon)}, {new} is the revision at {yon}. :: if we have no {yon} yet, that means it was still unknown last time :: we checked. =* vor rov |^ =/ rov/rove ?: ?=($mult -.vor) vor :* %mult [q.p.vor [[p.p.vor r.p.vor] ~ ~]] `let.dom [[[p.p.vor r.p.vor] q.vor] ~ ~] ~ == ?> ?=($mult -.rov) =* mol p.rov =* yon q.rov =* old r.rov =* new s.rov :: we will either respond, or store the maybe updated request. =; res/(each (map mood (each cage lobe)) rove) ?: ?=($& -.res) (respond p.res) (store p.res) |- :: so that we can retry for the next aeon if possible/needed. :: if we don't have an aeon yet, see if we have one now. ?~ yon =+ aey=(case-to-aeon:ze p.mol) :: if we still don't, wait. ?~ aey |+rov :: if we do, update the request and retry. $(rov [-.rov mol `+(u.aey) ~ ~]) :: if old isn't complete, try filling in the gaps. =? old !(complete old) (read-unknown mol(p [%ud (dec u.yon)]) old) :: if the next aeon we want to compare is in the future, wait again. =+ aey=(case-to-aeon:ze [%ud u.yon]) ?~ aey |+rov :: if new isn't complete, try filling in the gaps. =? new !(complete new) (read-unknown mol(p [%ud u.yon]) new) :: if they're still not both complete, wait again. ?. ?& (complete old) (complete new) == |+rov :: if there are any changes, send response. if none, move onto next aeon. =; res ?^ res &+res $(rov [-.rov mol `+(u.yon) old ~]) %+ roll ~(tap by old) |= $: {{car/care pax/path} ole/cach} res/(map mood (each cage lobe)) == =+ neu=(~(got by new) car pax) ?< |(?=($~ ole) ?=($~ neu)) =- ?~(- res (~(put by res) u.-)) ^- (unit (pair mood (each cage lobe))) =+ mod=[car [%ud u.yon] pax] ?~ u.ole ?~ u.neu ~ :: not added `[mod u.u.neu] :: added ?~ u.neu `[mod [%& %null [%atom %n ~] ~]] :: deleted ?: (equivalent-data:ze u.u.neu u.u.ole) ~ :: unchanged `[mod u.u.neu] :: changed :: ++ store :: check again later |= rov/rove ^+ ..wake =- ^^$(xiq t.xiq, xaq [i.xiq(p [for -]) xaq]) ?> ?=($mult -.rov) ?: ?=($mult -.vor) rov ?> ?=({* $~ $~} r.rov) =* one n.r.rov [%next [p.p.one p.p.rov q.p.one] q.one] :: ++ respond :: send changes |= res/(map mood (each cage lobe)) ^+ ..wake ::NOTE want to use =-, but compiler bug? ?: ?=($mult -.vor) ^^$(xiq t.xiq, ..wake (blas-all q.i.xiq ~(key by res))) ?> ?=({* $~ $~} res) ^^$(xiq t.xiq, ..wake (blab-all q.i.xiq n.res)) :: ++ complete :: no unknowns |= hav/(map (pair care path) cach) ?& ?=(^ hav) (levy ~(tap by `(map (pair care path) cach)`hav) know) == :: ++ know |=({(pair care path) c/cach} ?=(^ c)) :: know about file :: ++ read-unknown :: fill in the blanks |= {mol/mool hav/(map (pair care path) cach)} %. |= {{c/care p/path} o/cach} ?^(o o (aver for c p.mol p)) =- ~(urn by -) ?^ hav hav %- ~(gas by *(map (pair care path) cach)) (turn ~(tap in q.mol) |=({c/care p/path} [[c p] ~])) -- :: $many =+ mot=`moat`q.rov =* sav r.rov =+ nab=(case-to-aeon:ze p.mot) ?~ nab $(xiq t.xiq, xaq [i.xiq xaq]) =+ huy=(case-to-aeon:ze q.mot) ?~ huy =. p.mot [%ud +(let.dom)] %= $ xiq t.xiq xaq [i.xiq(q.q.p mot) xaq] ..wake =+ ^= ear (lobes-at-path:ze for let.dom r.mot) ?: =(sav ear) ..wake (bleb-all q.i.xiq let.dom ?:(p.rov ~ `[u.nab let.dom])) == %= $ xiq t.xiq ..wake =- (blub-all:- q.i.xiq ~) =+ ^= ear (lobes-at-path:ze for u.huy r.mot) ?: =(sav ear) (blub-all q.i.xiq ~) (bleb-all q.i.xiq +(u.nab) ?:(p.rov ~ `[u.nab u.huy])) == == ++ drop-me ^+ . ?~ mer . %- emit(mer ~) ^- move :* hen.u.mer %give %mere %| %user-interrupt >sor.u.mer< >our< >cas.u.mer< >gem.u.mer< ~ == :: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: :: This core has no additional state, and the distinction exists purely for :: documentation. The overarching theme is that `++de` directly contains :: logic for metadata about the desk, while `++ze` is composed primarily :: of helper functions for manipulating the desk state (`++dome`) itself. :: Functions include: :: :: -- converting between cases, commit hashes, commits, content hashes, :: and content :: -- creating commits and content and adding them to the tree :: -- finding which data needs to be sent over the network to keep the :: other urbit up-to-date :: -- reading from the file tree through different `++care` options :: -- the `++me` core for merging. :: :: The dome is composed of the following: :: :: -- `ank` is the ankh, which is the file data itself. An ankh is both :: a possible file and a possible directory. An ankh has both: :: -- `fil`, a possible file, stored as both a cage and its hash :: -- `dir`, a map of @ta to more ankhs. :: -- `let` is the number of the most recent revision. :: -- `hit` is a map of revision numbers to commit hashes. :: -- `lab` is a map of labels to revision numbers. :: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ++ ze |% :: These convert between aeon (version number), tako (commit hash), yaki :: (commit data structure), lobe (content hash), and blob (content). ++ aeon-to-tako ~(got by hit.dom) ++ aeon-to-yaki (cork aeon-to-tako tako-to-yaki) ++ lobe-to-blob ~(got by lat.ran) ++ tako-to-yaki ~(got by hut.ran) ++ lobe-to-mark |= a/lobe => (lobe-to-blob a) ?- - $delta p.q $direct p.q == :: :: Creates a silk to put a type on a page (which is a {mark noun}). :: ++ page-to-silk :: %hoon bootstrapping |= a/page ?. ?=($hoon p.a) [%volt a] [%$ p.a [%atom %t ~] q.a] :: :: Creates a silk out of a lobe (content hash). :: ++ lobe-to-silk |= {pax/path lob/lobe} ^- silk:ford =+ ^- hat/(map path lobe) ?: =(let.dom 0) ~ q:(aeon-to-yaki let.dom) =+ lol=`(unit lobe)`?.(=(~ ref) `0vsen.tinel (~(get by hat) pax)) |- ^- silk:ford ?: =([~ lob] lol) =+ (need (need (read-x let.dom pax))) ?> ?=($& -<) [%$ p.-] =+ bol=(~(got by lat.ran) lob) ?- -.bol $direct (page-to-silk q.bol) $delta ~| delta+q.q.bol [%pact $(lob q.q.bol) (page-to-silk r.bol)] == :: :: Hashes a page to get a lobe. :: ++ page-to-lobe |=(page (shax (jam +<))) :: :: Checks whether two pieces of data (either cages or lobes) are the same. :: ++ equivalent-data |= {one/(each cage lobe) two/(each cage lobe)} ^- ? ?: ?=($& -.one) ?: ?=($& -.two) =([p q.q]:p.one [p q.q]:p.two) =(p.two (page-to-lobe [p q.q]:p.one)) ?: ?=($& -.two) =(p.one (page-to-lobe [p q.q]:p.two)) =(p.one p.two) :: :: Make a direct blob out of a page. :: ++ make-direct-blob |= p/page ^- blob [%direct (page-to-lobe p) p] :: :: Make a delta blob out of a lobe, mark, lobe of parent, and page of diff. :: ++ make-delta-blob |= {p/lobe q/{p/mark q/lobe} r/page} ^- blob [%delta p q r] :: :: Make a commit out of a list of parents, content, and date. :: ++ make-yaki |= {p/(list tako) q/(map path lobe) t/@da} ^- yaki =+ ^= has %^ cat 7 (sham [%yaki (roll p add) q t]) (sham [%tako (roll p add) q t]) [p q has t] :: :: Reduce a case to an aeon (version number) :: :: We produce null if we can't yet reduce the case for whatever resaon :: (usually either the time or aeon hasn't happened yet or the label hasn't :: been created), we produce null. :: ++ case-to-aeon |= lok/case :: act count through ^- (unit aeon) ?- -.lok $da ?: (gth p.lok lim) ~ |- ^- (unit aeon) ?: =(0 let.dom) [~ 0] :: avoid underflow ?: %+ gte p.lok =< t ~| [%letdom let=let.dom hit=hit.dom hut=(~(run by hut.ran) $~)] ~| [%getdom (~(get by hit.dom) let.dom)] %- aeon-to-yaki let.dom [~ let.dom] $(let.dom (dec let.dom)) :: $tas (~(get by lab.dom) p.lok) $ud ?:((gth p.lok let.dom) ~ [~ p.lok]) == :: :: Convert a map of paths to data into an ankh. :: ++ map-to-ankh |= hat/(map path (pair lobe cage)) ^- ankh :: %- cosh %+ roll ~(tap by hat) |= {{pat/path lob/lobe zar/cage} ank/ankh} ^- ankh :: %- cosh ?~ pat ank(fil [~ lob zar]) =+ nak=(~(get by dir.ank) i.pat) %= ank dir %+ ~(put by dir.ank) i.pat $(pat t.pat, ank (fall nak *ankh)) == :: :: Applies a change list, creating the commit and applying it to the :: current state. :: :: Also produces the new data from the commit for convenience. :: ++ execute-changes |= {wen/@da lem/nuri} ^- {(unit (map path lobe)) _..ze} ?- -.lem $& =^ yak lat.ran (forge-yaki wen p.lem) :: create new commit ?. ?| =(0 let.dom) !=((lent p.yak) 1) !=(q.yak q:(aeon-to-yaki let.dom)) == `..ze :: silently ignore =: let.dom +(let.dom) hit.dom (~(put by hit.dom) +(let.dom) r.yak) hut.ran (~(put by hut.ran) r.yak yak) == [`q.yak ..ze] :: +>.$(ank (map-to-ankh q.yak)) $| ?< (~(has by lab.dom) p.lem) [~ ..ze(lab.dom (~(put by lab.dom) p.lem let.dom))] == :: :: Create a commit out of a list of changes against the current state. :: :: First call ++apply-changes to apply the list of changes and get the new :: state of the content. Then, call ++update-lat to add any new content to :: the blob store. Finally, create the new yaki (commit) and produce both :: it and the new lat (blob store). :: ++ forge-yaki |= {wen/@da lem/suba} =+ par=?:(=(0 let.dom) ~ [(aeon-to-tako let.dom) ~]) =+ new=(apply-changes lem) =+ gar=(update-lat new lat.ran) :- (make-yaki par +.gar wen) :: from existing diff -.gar :: fix lat :: :: Apply a list of changes against the current state and produce the new :: state. :: ++ apply-changes :: apply-changes:ze |= lar/(list {p/path q/misu}) :: store changes ^- (map path blob) =+ ^= hat :: current state ?: =(let.dom 0) :: initial commit ~ :: has nothing =< q %- aeon-to-yaki let.dom =- =+ sar=(silt (turn lar |=({p/path *} p))) :: changed paths %+ roll ~(tap by hat) :: find unchanged =< .(bat bar) |= {{pax/path gar/lobe} bat/(map path blob)} ?: (~(has in sar) pax) :: has update bat %+ ~(put by bat) pax ~| [pax gar (lent ~(tap by lat.ran))] (lobe-to-blob gar) :: use original ^= bar ^- (map path blob) %+ roll lar |= {{pax/path mys/misu} bar/(map path blob)} ^+ bar ?- -.mys $ins :: insert if not exist ?: (~(has by bar) pax) !! :: ?: (~(has by hat) pax) !! :: %+ ~(put by bar) pax %- make-direct-blob ?: &(?=($mime -.p.mys) =([%hoon ~] (slag (dec (lent pax)) pax))) `page`[%hoon +.+.q.q.p.mys] [p q.q]:p.mys :: $del :: delete if exists ?. |((~(has by hat) pax) (~(has by bar) pax)) !! (~(del by bar) pax) :: $dif :: mutate, must exist =+ ber=(~(get by bar) pax) :: XX typed =+ her==>((flop pax) ?~(. %$ i)) ?~ ber =+ har=(~(get by hat) pax) ?~ har !! %+ ~(put by bar) pax (make-delta-blob p.mys [(lobe-to-mark u.har) u.har] [p q.q]:q.mys) :: XX check vase !evil :: XX of course that's a problem, p.u.ber isn't in rang since it :: was just created. We shouldn't be sending multiple :: diffs :: %+ ~(put by bar) pax :: %^ make-delta-blob p.mys :: [(lobe-to-mark p.u.ber) p.u.ber] :: [p q.q]:q.mys :: :: XX check vase !evil ~|([%two-diffs-for-same-file syd pax] !!) == :: :: Update the object store with new blobs. :: :: Besides new object store, converts the given (map path blob) to :: (map path lobe). :: ++ update-lat :: update-lat:ze |= {lag/(map path blob) sta/(map lobe blob)} :: fix lat ^- {(map lobe blob) (map path lobe)} %+ roll ~(tap by lag) =< .(lut sta) |= {{pat/path bar/blob} {lut/(map lobe blob) gar/(map path lobe)}} ?~ (~(has by lut) p.bar) [lut (~(put by gar) pat p.bar)] :- (~(put by lut) p.bar bar) (~(put by gar) pat p.bar) :: :: Gets a map of the data at the given path and all children of it. :: ++ lobes-at-path |= {for/(unit ship) yon/aeon pax/path} ^- (map path lobe) ?: =(0 yon) ~ %- malt %+ skim %~ tap by =< q %- aeon-to-yaki yon == |= {p/path q/lobe} ?| ?=($~ pax) ?& !?=($~ p) =(-.pax -.p) $(p +.p, pax +.pax) == == :: :: Creates a nako of all the changes between a and b. :: ++ make-nako |= {a/aeon b/aeon} ^- nako :+ ?> (lte b let.dom) |- ?: =(b let.dom) hit.dom $(hit.dom (~(del by hit.dom) let.dom), let.dom (dec let.dom)) b ?: =(0 b) [~ ~] (data-twixt-takos (~(get by hit.dom) a) (aeon-to-tako b)) :: :: Gets the data between two commit hashes, assuming the first is an :: ancestor of the second. :: :: Get all the takos before `a`, then get all takos before `b` except the :: ones we found before `a`. Then convert the takos to yakis and also get :: all the data in all the yakis. :: ++ data-twixt-takos |= {a/(unit tako) b/tako} ^- {(set yaki) (set plop)} =+ old=?~(a ~ (reachable-takos u.a)) =+ ^- yal/(set tako) %- silt %+ skip ~(tap in (reachable-takos b)) |=(tak/tako (~(has in old) tak)) :- (silt (turn ~(tap in yal) tako-to-yaki)) (silt (turn ~(tap in (new-lobes (new-lobes ~ old) yal)) lobe-to-blob)) :: :: Traverses parentage and finds all ancestor hashes :: ++ reachable-takos :: reachable |= p/tako ^- (set tako) =+ y=(tako-to-yaki p) %+ roll p.y =< .(s (~(put in *(set tako)) p)) |= {q/tako s/(set tako)} ?: (~(has in s) q) :: already done s :: hence skip (~(uni in s) ^$(p q)) :: otherwise traverse :: :: Get all the lobes that are referenced in `a` except those that are :: already in `b`. :: ++ new-lobes :: object hash set |= {b/(set lobe) a/(set tako)} :: that aren't in b ^- (set lobe) %+ roll ~(tap in a) |= {tak/tako bar/(set lobe)} ^- (set lobe) =+ yak=(tako-to-yaki tak) %+ roll ~(tap by q.yak) =< .(far bar) |= {{path lob/lobe} far/(set lobe)} ^- (set lobe) ?~ (~(has in b) lob) :: don't need far =+ gar=(lobe-to-blob lob) ?- -.gar $direct (~(put in far) lob) $delta (~(put in $(lob q.q.gar)) lob) == :: :: Should be refactored, is only called form `++read`, and even then it :: can't be called with `$v` as the care, so it's really just a crash. :: :: To be clear the refactoring should start at ++read-at-aeon and probably :: eliminate ++read and ++query :: ++ query :: query:ze |= ren/$?($p $u $v $x $y $z) :: endpoint query ^- (unit cage) ?- ren $p !! $u !! :: [~ %null [%atom %n] ~] $v [~ %dome !>(dom)] $x !! :: ?~(q.ank.dom ~ [~ q.u.q.ank.dom]) $y !! :: [~ %arch !>(as-arch)] $z !! :: [~ %ankh !>(ank.dom)] == :: :: See ++query. :: ++ read :: read:ze |= mun/mood :: read at point ^- (unit cage) ?: ?=($d p.mun) ~& %dead-d ~ ?: ?=($v p.mun) [~ %dome !>(dom)] :: dead code ?: &(?=($w p.mun) !?=($ud -.q.mun)) ?^(r.mun ~ [~ %aeon !>(let.dom)]) :: dead code ?: ?=($w p.mun) =+ ^= yak %- aeon-to-yaki let.dom ?^(r.mun ~ !!) :: [~ %w !>([t.yak (forge-nori yak)])])-all (query(ank.dom ank:(descend-path:(zu ank.dom) r.mun)) p.mun) :: dead code :: :: Gets the permissions that apply to a particular node. :: :: If the node has no permissions of its own, we use its parent's. :: If no permissions have been set for the entire tree above the node, :: we default to fully private (empty whitelist). :: ++ read-p |= pax/path ^- (unit (unit (each cage lobe))) =- [~ ~ %& %noun !>(-)] :- (read-p-in pax per.red) (read-p-in pax pew.red) :: ++ read-p-in |= {pax/path pes/(map path rule)} ^- dict =+ rul=(~(get by pes) pax) ?^ rul [pax u.rul] ?~ pax [/ %white ~] $(pax t.pax) :: ++ may-read |= {who/ship car/care yon/aeon pax/path} ^- ? ?+ car (allowed-by who pax per.red) :: $p =(who our) :: ?($y $z) =+ tak=(~(get by hit.dom) yon) ?~ tak | =+ yak=(tako-to-yaki u.tak) =+ len=(lent pax) =- (levy ~(tap in -) |=(p/path (allowed-by who p per.red))) %+ roll ~(tap in (~(del in ~(key by q.yak)) pax)) |= {p/path s/(set path)} ?. =(pax (scag len p)) s %- ~(put in s) ?: ?=($z car) p (scag +(len) p) == :: ++ may-write |= {w/ship p/path} (allowed-by w p pew.red) :: ++ allowed-by |= {who/ship pax/path pes/(map path rule)} ^- ? =+ rul=rul:(read-p-in pax pes) =- =(0 -) %+ mix ?=($black mod.rul) %- ~(rep in who.rul) |= {w/whom h/?} ?: h & ?: ?=($& -.w) =(w &+who) (~(has in (fall (~(get by cez) p.w) ~)) who) :: :: Checks for existence of a node at an aeon. :: :: This checks for existence of content at the node, and does *not* look :: at any of its children. :: ++ read-u |= {yon/aeon pax/path} ^- (unit (unit (each {$null (hypo $~)} lobe))) =+ tak=(~(get by hit.dom) yon) ?~ tak ~ ``[%& %null [%atom %n ~] ~] :: :: Gets the dome (desk state) at a particular aeon. :: :: For past aeons, we don't give an actual ankh in the dome, but the rest :: of the data is legit. :: ++ read-v |= {yon/aeon pax/path} ^- (unit (unit {$dome (hypo dome)})) ?: (lth yon let.dom) :* ~ ~ %dome -:!>(%dome) ank=`[[%ank-in-old-v-not-implemented *ankh] ~ ~] let=yon hit=(molt (skim ~(tap by hit.dom) |=({p/@ud *} (lte p yon)))) lab=(molt (skim ~(tap by lab.dom) |=({* p/@ud} (lte p yon)))) == ?: (gth yon let.dom) ~ ``[%dome -:!>(*dome) dom] :: :: Gets the data at a node. :: :: If it's in our ankh (current state cache), we can just produce the :: result. Otherwise, we've got to look up the node at the aeon to get the :: content hash, use that to find the blob, and use the blob to get the :: data. We also special-case the hoon mark for bootstrapping purposes. :: ++ read-x |= {yon/aeon pax/path} ^- (unit (unit (each cage lobe))) ?: =(0 yon) [~ ~] =+ tak=(~(get by hit.dom) yon) ?~ tak ~ ?: &(?=($~ ref) =(yon let.dom)) :- ~ %+ bind fil.ank:(descend-path:(zu ank.dom) pax) |=(a/{p/lobe q/cage} [%& q.a]) =+ yak=(tako-to-yaki u.tak) =+ lob=(~(get by q.yak) pax) ?~ lob [~ ~] =+ mar=(lobe-to-mark u.lob) ?. ?=($hoon mar) [~ ~ %| u.lob] :^ ~ ~ %& :+ mar [%atom %t ~] |- ^- @t :: (urge cord) would be faster =+ bol=(lobe-to-blob u.lob) ?: ?=($direct -.bol) ((hard @t) q.q.bol) ?> ?=($delta -.bol) =+ txt=$(u.lob q.q.bol) ?> ?=($txt-diff p.r.bol) =+ dif=((hard (urge cord)) q.r.bol) =, format =+ pac=(of-wain (lurk:differ (to-wain (cat 3 txt '\0a')) dif)) (end 3 (dec (met 3 pac)) pac) :: :: Gets an arch (directory listing) at a node. :: ++ read-y |= {yon/aeon pax/path} ^- (unit (unit {$arch (hypo arch)})) ?: =(0 yon) ``[%arch -:!>(*arch) *arch] =+ tak=(~(get by hit.dom) yon) ?~ tak ~ =+ yak=(tako-to-yaki u.tak) =+ len=(lent pax) :^ ~ ~ %arch :: ~& cy+pax :- -:!>(*arch) ^- arch :- (~(get by q.yak) pax) ^- (map knot $~) %- molt ^- (list (pair knot $~)) %+ turn ^- (list (pair path lobe)) %+ skim ~(tap by (~(del by q.yak) pax)) |= {paf/path lob/lobe} =(pax (scag len paf)) |= {paf/path lob/lobe} =+ pat=(slag len paf) [?>(?=(^ pat) i.pat) ~] :: :: Gets a recursive hash of a node and all its children. :: ++ read-z |= {yon/aeon pax/path} ^- (unit (unit {$uvi (hypo @uvI)})) ?: =(0 yon) ``uvi+[-:!>(*@uvI) *@uvI] =+ tak=(~(get by hit.dom) yon) ?~ tak ~ =+ yak=(tako-to-yaki u.tak) =+ len=(lent pax) :: ~& read-z+[yon=yon qyt=~(wyt by q.yak) pax=pax] =+ ^- descendants/(list (pair path lobe)) :: ~& %turning :: =- ~& %turned - %+ turn :: ~& %skimming :: =- ~& %skimmed - %+ skim ~(tap by (~(del by q.yak) pax)) |= {paf/path lob/lobe} =(pax (scag len paf)) |= {paf/path lob/lobe} [(slag len paf) lob] =+ us=(~(get by q.yak) pax) ^- (unit (unit {$uvi (hypo @uvI)})) :^ ~ ~ %uvi :- -:!>(*@uvI) ?: &(?=($~ descendants) ?=($~ us)) *@uvI %+ roll ^- (list (pair path lobe)) [[~ ?~(us *lobe u.us)] descendants] |=({{path lobe} @uvI} (shax (jam +<))) :: :: Get a value at an aeon. :: :: Value can be either null, meaning we don't have it yet, {null null}, :: meaning we know it doesn't exist, or {null null (each cage lobe)}, :: meaning we either have the value directly or a content hash of the :: value. :: :: Should change last few lines to an explicit ++read-w. :: ++ read-at-aeon :: read-at-aeon:ze |= {for/(unit ship) yon/aeon mun/mood} :: seek and read ^- (unit (unit (each cage lobe))) ?. |(?=($~ for) (may-read u.for p.mun yon r.mun)) ~ ?: &(?=($w p.mun) !?=($ud -.q.mun)) :: NB only her speed ?^(r.mun [~ ~] [~ ~ %& %aeon !>(yon)]) ?: ?=($d p.mun) =+ rom=(~(get by fat.ruf) her) ?~ rom ~&(%null-rom-cd [~ ~]) ?^ r.mun ~&(%no-cd-path [~ ~]) [~ ~ %& %noun !>(~(key by dos.u.rom))] ?: ?=($p p.mun) (read-p r.mun) ?: ?=($u p.mun) (read-u yon r.mun) ?: ?=($v p.mun) (bind (read-v yon r.mun) (lift |=(a/cage [%& a]))) ?: ?=($x p.mun) (read-x yon r.mun) ?: ?=($y p.mun) :: =- ~& :* %dude-someones-getting-curious :: mun=mun :: yon=yon :: our=our :: her=her :: syd=syd :: hep=- :: == :: - (bind (read-y yon r.mun) (lift |=(a/cage [%& a]))) ?: ?=($z p.mun) (bind (read-z yon r.mun) (lift |=(a/cage [%& a]))) %+ bind (rewind yon) |= a/(unit _+>.$) ^- (unit (each cage lobe)) ?~ a ~ `(unit (each cage lobe))`(bind (read:u.a mun) |=(a/cage [%& a])) :: :: Stubbed out, should be removed in the refactoring mentioned in ++query. :: ++ rewind :: rewind:ze |= yon/aeon :: rewind to aeon ^- (unit (unit _+>)) ?: =(let.dom yon) ``+> ?: (gth yon let.dom) !! :: don't have version =+ hat=q:(aeon-to-yaki yon) ?: (~(any by hat) |=(a/lobe ?=($delta [-:(lobe-to-blob a)]))) ~ ~ ::=+ ^- (map path cage) :: %- ~(run by hat) :: |= a=lobe :: =+ (lobe-to-blob a) :: ?-(-.- %direct q.-, %delta !!) ::`+>.$(ank.dom (map-to-ankh -), let.dom yon) :: :: Traverse an ankh. :: ++ zu :: filesystem |= ank/ankh :: filesystem state =| ram/path :: reverse path into |% ++ descend :: descend |= lol/@ta ^+ +> =+ you=(~(get by dir.ank) lol) +>.$(ram [lol ram], ank ?~(you [~ ~] u.you)) :: ++ descend-path :: descend recursively |= way/path ^+ +> ?~(way +> $(way t.way, +> (descend i.way))) -- :: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: :: This core is specific to any currently running merge. This is :: basically a simple (DAG-shaped) state machine. We always say we're :: merging from 'ali' to 'bob'. The basic steps, not all of which are :: always needed, are: :: :: -- fetch ali's desk :: -- diff ali's desk against the mergebase :: -- diff bob's desk against the mergebase :: -- merge the diffs :: -- build the new state :: -- "checkout" (apply to actual `++dome`) the new state :: -- "ergo" (tell unix about) any changes :: :: The state filled in order through each step. See ++mery for a :: description of the state. :: :: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ++ me :: merge ali into bob |= {ali/(pair ship desk) alh/(unit dome) new/?} :: from =+ bob=`(pair ship desk)`[our syd] :: to =+ ^- dat/(each mery term) ?~ mer ?: new =+ *mery [%& -(sor ali:+, hen hen:+, wat %null)] [%| %not-actually-merging] ?. new ?: =(ali sor.u.mer) [%& u.mer] ~& :* %already-merging-from-somewhere-else ali=ali sor=sor.u.mer gem=gem.u.mer wat=wat.u.mer cas=cas.u.mer hen=hen henmer=hen.u.mer == [%| %already-merging-from-somewhere-else] ~& :* %already-merging-from-somewhere ali=ali sor=sor.u.mer gem=gem.u.mer wat=wat.u.mer cas=cas.u.mer hen=hen henmer=hen.u.mer == [%| %already-merging-from-somewhere] ?: ?=($| -.dat) ~|(p.dat !!) =+ dat=p.dat =| don/? :: keep going |% :: :: Resolve. If we're done, produce a result. :: ++ abet ^+ ..me ?: don ..me(mer `dat) =. mer ~ => (emit hen.dat %give %mere gon.dat) ..me :: :: Send a move. :: ++ emit |= move %_(+> ..ze (^emit +<)) :: :: Send a list of moves. :: ++ emil |= (list move) %_(+> ..ze (^emil +<)) :: :: Route responses from clay or ford. :: :: Check that the stage of the response is the same as the stage we think :: we're in, and call the appropriate function for that stage. :: ++ route |= {sat/term res/(each riot gage:ford)} ^+ +>.$ ?. =(sat wat.dat) ~| :* %hold-your-horses-merge-out-of-order sat=sat wat=wat.dat ali=ali bob=bob hepres=-.res == !! ?+ +< ~|((crip <[%bad-stage sat ?~(-.res %riot %gage)]>) !!) {$ali $& *} %.(p.res fetched-ali) {$diff-ali $| *} %.(p.res diffed-ali) {$diff-bob $| *} %.(p.res diffed-bob) {$merge $| *} %.(p.res merged) {$build $| *} %.(p.res built) {$checkout $| *} %.(p.res checked-out) {$ergo $| *} %.(p.res ergoed) == :: :: Start a merge. :: :: Sets cas.dat, gem.dat, and bob.dat. Unless there's an error, leads :: to ++fetch-ali. :: ++ start |= {cas/case gem/germ} ^+ +> ?: &(=(0 let.dom) !?=(?($init $that) gem)) (error:he %no-bob-desk ~) =. cas.dat cas =. gem.dat gem ?: =(0 let.dom) fetch-ali(gem.dat %init) =+ (~(get by hit.dom) let.dom) ?~ - (error:he %no-bob--version ~) =+ (~(get by hut.ran) u.-) ?~ - (error:he %no-bob-commit ~) fetch-ali(bob.dat u.-) :: :: Tell clay to get the state at the requested case for ali's desk. :: ++ fetch-ali ^+ . %- emit(wat.dat %ali) :* hen %pass [%merge (scot %p p.bob) q.bob (scot %p p.ali) q.ali %ali ~] %c %warp [p.bob p.ali] q.ali `[%sing %v cas.dat /] == :: :: Parse the state of ali's desk, and get the most recent commit. :: :: Sets ali.dat. :: ++ fetched-ali |= rot/riot ^+ +> ?~ rot (error:he %bad-fetch-ali ~) =+ ^= dum %- (hard {ank/* let/@ud hit/(map @ud tako) lab/(map @tas @ud)}) q.q.r.u.rot ?: =(0 let.dum) (error:he %no-ali-desk ~) =+ (~(get by hit.dum) let.dum) ?~ - (error:he %no-ali-version ~) =+ (~(get by hut.ran) u.-) ?~ - (error:he %no-ali-commit ~) =. ali.dat u.- |- ?- gem.dat :: :: If this is an %init merge, we set the ali's commit to be bob's, and :: we checkout the new state. :: $init =. new.dat ali.dat =. hut.ran (~(put by hut.ran) r.new.dat new.dat) =. erg.dat (~(run by q.ali.dat) |=(lobe %&)) checkout :: :: If this is a %this merge, we check to see if ali's and bob's commits :: are the same, in which case we're done. Otherwise, we check to see :: if ali's commit is in the ancestry of bob's, in which case we're :: done. Otherwise, we create a new commit with bob's data plus ali :: and bob as parents. Then we checkout the new state. :: $this ?: =(r.ali.dat r.bob.dat) done:he ?: (~(has in (reachable-takos r.bob.dat)) r.ali.dat) done:he =. new.dat (make-yaki [r.ali.dat r.bob.dat ~] q.bob.dat now) =. hut.ran (~(put by hut.ran) r.new.dat new.dat) =. erg.dat ~ checkout :: :: If this is a %that merge, we check to see if ali's and bob's commits :: are the same, in which case we're done. Otherwise, we create a new :: commit with ali's data plus ali and bob as parents. Then we :: checkout the new state. :: $that ?: =(r.ali.dat r.bob.dat) done:he =. new.dat (make-yaki [r.ali.dat r.bob.dat ~] q.ali.dat now) =. hut.ran (~(put by hut.ran) r.new.dat new.dat) =. erg.dat %- malt ^- (list {path ?}) %+ murn ~(tap by (~(uni by q.bob.dat) q.ali.dat)) |= {pax/path lob/lobe} ^- (unit {path ?}) =+ a=(~(get by q.ali.dat) pax) =+ b=(~(get by q.bob.dat) pax) ?: =(a b) ~ `[pax !=(~ a)] checkout :: :: If this is a %fine merge, we check to see if ali's and bob's commits :: are the same, in which case we're done. Otherwise, we check to see :: if ali's commit is in the ancestry of bob's, in which case we're :: done. Otherwise, we check to see if bob's commit is in the ancestry :: of ali's. If not, this is not a fast-forward merge, so we error :: out. If it is, we add ali's commit to bob's desk and checkout. :: $fine ?: =(r.ali.dat r.bob.dat) :: ~& [%fine-trivial ali= bob= r.ali.dat r.bob.dat] done:he ?: (~(has in (reachable-takos r.bob.dat)) r.ali.dat) :: ~& [%fine-mostly-trivial ali= bob=] done:he ?. (~(has in (reachable-takos r.ali.dat)) r.bob.dat) :: ~& [%fine-not-so-trivial ali= bob=] (error:he %bad-fine-merge ~) :: ~& [%fine-lets-go ali= bob=] =. new.dat ali.dat =. erg.dat %- malt ^- (list {path ?}) %+ murn ~(tap by (~(uni by q.bob.dat) q.ali.dat)) |= {pax/path lob/lobe} ^- (unit {path ?}) =+ a=(~(get by q.ali.dat) pax) =+ b=(~(get by q.bob.dat) pax) ?: =(a b) ~ `[pax !=(~ a)] checkout :: :: If this is a %meet, %mate, or %meld merge, we may need to fetch :: more data. If this merge is either trivial or a fast-forward, we :: short-circuit to either ++done or the %fine case. :: :: Otherwise, we find the best common ancestor(s) with :: ++find-merge-points. If there's no common ancestor, we error out. :: Additionally, if there's more than one common ancestor (i.e. this :: is a criss-cross merge), we error out. Something akin to git's :: recursive merge should probably be used here, but it isn't. :: :: Once we have our single best common ancestor (merge base), we store :: it in bas.dat. If this is a %mate or %meld merge, we need to diff :: ali's commit against the merge base, so we pass control over to :: ++diff-ali. :: :: Otherwise (i.e. this is a %meet merge), we create a list of all the :: changes between the mege base and ali's commit and store it in :: dal.dat, and we put a similar list for bob's commit in dob.dat. :: Then we create bof, which is the a set of changes in both ali and :: bob's commits. If this has any members, we have conflicts, which is :: an error in a %meet merge, so we error out. :: :: Otherwise, we merge the merge base data with ali's data and bob's :: data, which produces the data for the new commit, which we put in :: new.dat. Then we checkout the new data. :: ?($meet $mate $meld) ?: =(r.ali.dat r.bob.dat) done:he ?. (~(has by hut.ran) r.bob.dat) (error:he %bad-bob-tako >r.bob.dat< ~) ?: (~(has in (reachable-takos r.bob.dat)) r.ali.dat) done:he ?: (~(has in (reachable-takos r.ali.dat)) r.bob.dat) $(gem.dat %fine) =+ r=(find-merge-points:he ali.dat bob.dat) ?~ r (error:he %merge-no-merge-base ~) ?. ?=({* $~ $~} r) =+ (lent ~(tap in `(set yaki)`r)) (error:he %merge-criss-cross >[-]< ~) =. bas.dat n.r ?: ?=(?($mate $meld) gem.dat) diff-ali =. new.dal.dat %- molt %+ skip ~(tap by q.ali.dat) |= {pax/path lob/lobe} (~(has by q.bas.dat) pax) =. cal.dal.dat %- molt %+ skip ~(tap by q.ali.dat) |= {pax/path lob/lobe} =+ (~(get by q.bas.dat) pax) |(=(~ -) =([~ lob] -)) =. can.dal.dat ~ =. old.dal.dat %- malt ^- (list {path $~}) %+ murn ~(tap by q.bas.dat) |= {pax/path lob/lobe} ^- (unit (pair path $~)) ?. =(~ (~(get by q.ali.dat) pax)) ~ `[pax ~] =. new.dob.dat %- molt %+ skip ~(tap by q.bob.dat) |= {pax/path lob/lobe} (~(has by q.bas.dat) pax) =. cal.dob.dat %- molt %+ skip ~(tap by q.bob.dat) |= {pax/path lob/lobe} =+ (~(get by q.bas.dat) pax) |(=(~ -) =([~ lob] -)) =. can.dob.dat ~ =. old.dob.dat %- malt ^- (list {path $~}) %+ murn ~(tap by q.bas.dat) |= {pax/path lob/lobe} ^- (unit (pair path $~)) ?. =(~ (~(get by q.bob.dat) pax)) ~ `[pax ~] =+ ^= bof %- %~ int by %- ~(uni by `(map path *)`new.dal.dat) %- ~(uni by `(map path *)`cal.dal.dat) %- ~(uni by `(map path *)`can.dal.dat) `(map path *)`old.dal.dat == %- ~(uni by `(map path *)`new.dob.dat) %- ~(uni by `(map path *)`cal.dob.dat) %- ~(uni by `(map path *)`can.dob.dat) `(map path *)`old.dob.dat ?^ bof (error:he %meet-conflict >(~(run by `(map path *)`bof) $~)< ~) =+ ^- old/(map path lobe) %+ roll ~(tap by (~(uni by old.dal.dat) old.dob.dat)) =< .(old q.bas.dat) |= {{pax/path $~} old/(map path lobe)} (~(del by old) pax) =+ ^= hat %- ~(uni by old) %- ~(uni by new.dal.dat) %- ~(uni by new.dob.dat) %- ~(uni by cal.dal.dat) cal.dob.dat =+ ^- del/(map path ?) (~(run by (~(uni by old.dal.dat) old.dob.dat)) |=($~ %|)) =. new.dat (make-yaki [r.ali.dat r.bob.dat ~] hat now) =. hut.ran (~(put by hut.ran) r.new.dat new.dat) =. erg.dat %- ~(uni by del) ^- (map path ?) %. |=(lobe %&) ~(run by (~(uni by new.dal.dat) cal.dal.dat)) checkout == :: :: Common code for ++diff-ali and ++diff-bob. :: :: Diffs a commit against a the mergebase. Result comes back in either :: ++diffed-ali or ++diffed-ali. :: ++ diff-bas |= {nam/term yak/yaki oth/(trel ship desk case) yuk/yaki} ^+ +> %- emit :* hen %pass =+ (cat 3 %diff- nam) [%merge (scot %p p.bob) q.bob (scot %p p.ali) q.ali - ~] %f %exec p.bob ~ [p.oth q.oth r.oth] %tabl ^- (list (pair silk:ford silk:ford)) %+ murn ~(tap by q.bas.dat) |= {pax/path lob/lobe} ^- (unit (pair silk:ford silk:ford)) =+ a=(~(get by q.yak) pax) ?~ a ~ ?: =(lob u.a) ~ =+ (~(get by q.yuk) pax) ?~ - ~ ?: =(u.a u.-) ~ :- ~ :- [%$ %path !>(pax)] [%diff (lobe-to-silk pax lob) (lobe-to-silk pax u.a)] == :: :: Diff ali's commit against the mergebase. :: ++ diff-ali ^+ . (diff-bas(wat.dat %diff-ali) %ali ali.dat [p.ali q.ali cas.dat] bob.dat) :: :: Store the diff of ali's commit versus the mergebase in dal.dat and :: call ++diff-bob. :: ++ diffed-ali |= res/gage:ford ^+ +> =+ tay=(gage-to-cages-or-error res) ?: ?=($| -.tay) (error:he %diff-ali-bad-made leaf+"merge diff ali failed" p.tay) =+ can=(cages-to-map p.tay) ?: ?=($| -.can) (error:he %diff-ali p.can) ?: ?=($| -.gon.dat) +>.$ =. new.dal.dat %- molt %+ skip ~(tap by q.ali.dat) |= {pax/path lob/lobe} (~(has by q.bas.dat) pax) =. cal.dal.dat %- molt ^- (list (pair path lobe)) %+ murn ~(tap by q.bas.dat) |= {pax/path lob/lobe} ^- (unit (pair path lobe)) =+ a=(~(get by q.ali.dat) pax) =+ b=(~(get by q.bob.dat) pax) ?. ?& ?=(^ a) !=([~ lob] a) =([~ lob] b) == ~ `[pax +.a] =. can.dal.dat p.can =. old.dal.dat %- malt ^- (list {path $~}) %+ murn ~(tap by q.bas.dat) |= {pax/path lob/lobe} ?. =(~ (~(get by q.ali.dat) pax)) ~ (some pax ~) diff-bob :: :: Diff bob's commit against the mergebase. :: ++ diff-bob ^+ . (diff-bas(wat.dat %diff-bob) %bob bob.dat [p.bob q.bob da+now] ali.dat) :: :: Store the diff of bob's commit versus the mergebase in dob.dat and :: call ++merge. :: ++ diffed-bob |= res/gage:ford ^+ +> =+ tay=(gage-to-cages-or-error res) ?: ?=($| -.tay) (error:he %diff-bob-bad-made leaf+"merge diff bob failed" p.tay) =+ can=(cages-to-map p.tay) ?: ?=($| -.can) (error:he %diff-bob p.can) ?: ?=($| -.gon.dat) +>.$ =. new.dob.dat %- molt %+ skip ~(tap by q.bob.dat) |= {pax/path lob/lobe} (~(has by q.bas.dat) pax) =. cal.dob.dat %- molt ^- (list (pair path lobe)) %+ murn ~(tap by q.bas.dat) |= {pax/path lob/lobe} ^- (unit (pair path lobe)) =+ a=(~(get by q.ali.dat) pax) =+ b=(~(get by q.bob.dat) pax) ?. ?& ?=(^ b) !=([~ lob] b) =([~ lob] a) == ~ `[pax +.b] =. can.dob.dat p.can =. old.dob.dat %- malt ^- (list {path $~}) %+ murn ~(tap by q.bas.dat) |= {pax/path lob/lobe} ?. =(~ (~(get by q.bob.dat) pax)) ~ (some pax ~) merge :: :: Merge the conflicting diffs in can.dat.dat and can.dob.dat. :: :: Result is handled in ++merged. :: ++ merge ^+ . |- ^+ +.$ ?+ gem.dat ~| [%merge-weird-gem gem.dat] !! ?($mate $meld) %- emit(wat.dat %merge) :* hen %pass [%merge (scot %p p.bob) q.bob (scot %p p.ali) q.ali %merge ~] %f %exec p.bob ~ [p.bob q.bob da+now] %tabl ^- (list (pair silk:ford silk:ford)) %+ turn ~(tap by (~(int by can.dal.dat) can.dob.dat)) |= {pax/path *} ^- (pair silk:ford silk:ford) =+ cal=(~(got by can.dal.dat) pax) =+ cob=(~(got by can.dob.dat) pax) =+ ^= her =+ (slag (dec (lent pax)) pax) ?~(- %$ i.-) :- [%$ %path !>(pax)] [%join her [%$ cal] [%$ cob]] == == :: :: Put merged changes in bof.dat and call ++build. :: ++ merged |= res/gage:ford =+ tay=(gage-to-cages-or-error res) ?: ?=($| -.tay) (error:he %merge-bad-made leaf+"merging failed" p.tay) =+ can=(cages-to-map p.tay) ?: ?=($| -.can) (error:he %merge p.can) =+ bof=(~(run by p.can) (flit |=({a/mark ^} !?=($null a)))) ?: ?=($| -.gon.dat) +>.$ =. bof.dat bof build :: :: Apply the patches in bof.dat to get the new merged content. :: :: Result is handled in ++built :: ++ build ^+ . %- emit(wat.dat %build) :* hen %pass [%merge (scot %p p.bob) q.bob (scot %p p.ali) q.ali %build ~] %f %exec p.bob ~ [p.bob q.bob da+now] %tabl ^- (list (pair silk:ford silk:ford)) %+ murn ~(tap by bof.dat) |= {pax/path cay/(unit cage)} ^- (unit (pair silk:ford silk:ford)) ?~ cay ~ :- ~ :- [%$ %path !>(pax)] =+ (~(get by q.bas.dat) pax) ?~ - ~| %mate-strange-diff-no-base !! [%pact (lobe-to-silk pax u.-) [%$ u.cay]] == :: :: Create new commit. :: :: Gather all the changes between ali's and bob's commits and the :: mergebase. This is similar to the %meet of ++fetched-ali, except :: where they touch the same file, we use the merged versions we created :: earlier (bop.dat). :: :: Sum all the changes into a new commit (new.dat), and checkout. :: ++ built |= res/gage:ford ^+ +> =+ tay=(gage-to-cages-or-error res) ?: ?=($| -.tay) (error:he %build-bad-made leaf+"delta building failed" p.tay) =+ bop=(cages-to-map p.tay) ?: ?=($| -.bop) (error:he %built p.bop) ?: ?=($| -.gon.dat) +>.$ =. bop.dat p.bop =+ ^- con/(map path *) :: 2-change conflict %- molt %+ skim ~(tap by bof.dat) |=({pax/path cay/(unit cage)} ?=($~ cay)) =+ ^- cas/(map path lobe) :: conflict base %- ~(urn by con) |= {pax/path *} (~(got by q.bas.dat) pax) =. con :: change+del conflict %- ~(uni by con) %- malt ^- (list {path *}) %+ skim ~(tap by old.dal.dat) |= {pax/path $~} ?: (~(has by new.dob.dat) pax) ~| %strange-add-and-del !! (~(has by can.dob.dat) pax) =. con :: change+del conflict %- ~(uni by con) %- malt ^- (list {path *}) %+ skim ~(tap by old.dob.dat) |= {pax/path $~} ?: (~(has by new.dal.dat) pax) ~| %strange-del-and-add !! (~(has by can.dal.dat) pax) =. con :: add+add conflict %- ~(uni by con) %- malt ^- (list {path *}) %+ skip ~(tap by (~(int by new.dal.dat) new.dob.dat)) |= {pax/path *} =((~(got by new.dal.dat) pax) (~(got by new.dob.dat) pax)) ?: &(?=($mate gem.dat) ?=(^ con)) =+ (turn ~(tap by `(map path *)`con) |=({path *} >[+<-]<)) (error:he %mate-conflict -) =+ ^- old/(map path lobe) :: oldies but goodies %+ roll ~(tap by (~(uni by old.dal.dat) old.dob.dat)) =< .(old q.bas.dat) |= {{pax/path $~} old/(map path lobe)} (~(del by old) pax) =+ ^- can/(map path cage) :: content changes %- molt ^- (list (pair path cage)) %+ murn ~(tap by bof.dat) |= {pax/path cay/(unit cage)} ^- (unit (pair path cage)) ?~ cay ~ `[pax u.cay] =^ hot lat.ran :: new content ^- {(map path lobe) (map lobe blob)} %+ roll ~(tap by can) =< .(lat lat.ran) |= {{pax/path cay/cage} hat/(map path lobe) lat/(map lobe blob)} =+ ^= bol =+ (~(get by q.bas.dat) pax) ?~ - ~| %mate-strange-diff-no-base !! %^ make-delta-blob (page-to-lobe [p q.q]:(~(got by bop.dat) pax)) [(lobe-to-mark u.-) u.-] [p q.q]:cay [(~(put by hat) pax p.bol) (~(put by lat) p.bol bol)] :: ~& old=(~(run by old) mug) :: ~& newdal=(~(run by new.dal.dat) mug) :: ~& newdob=(~(run by new.dob.dat) mug) :: ~& caldal=(~(run by cal.dal.dat) mug) :: ~& caldob=(~(run by cal.dob.dat) mug) :: ~& hot=(~(run by hot) mug) :: ~& cas=(~(run by cas) mug) =+ ^- hat/(map path lobe) :: all the content %- ~(uni by old) %- ~(uni by new.dal.dat) %- ~(uni by new.dob.dat) %- ~(uni by cal.dal.dat) %- ~(uni by cal.dob.dat) %- ~(uni by hot) cas :: ~& > hat=(~(run by hat) mug) =+ ^- del/(map path ?) (~(run by (~(uni by old.dal.dat) old.dob.dat)) |=($~ %|)) =. gon.dat [%& (silt (turn ~(tap by con) head))] =. new.dat (make-yaki [r.ali.dat r.bob.dat ~] hat now) =. hut.ran (~(put by hut.ran) r.new.dat new.dat) =. erg.dat %- ~(uni by del) ^- (map path ?) %. |=(lobe %&) %~ run by %- ~(uni by new.dal.dat) %- ~(uni by cal.dal.dat) %- ~(uni by cas) hot == checkout :: :: Convert new commit into actual data (i.e. blobs rather than lobes). :: :: Result is handled in ++checked-out. :: ++ checkout ^+ . =+ ^- val/beak ?: ?=($init gem.dat) [p.ali q.ali cas.dat] [p.bob q.bob da+now] %- emit(wat.dat %checkout) :* hen %pass [%merge (scot %p p.bob) q.bob (scot %p p.ali) q.ali %checkout ~] %f %exec p.bob ~ val %tabl ^- (list (pair silk:ford silk:ford)) %+ murn ~(tap by q.new.dat) |= {pax/path lob/lobe} ^- (unit (pair silk:ford silk:ford)) ?: (~(has by bop.dat) pax) ~ `[[%$ %path !>(pax)] (merge-lobe-to-silk:he pax lob)] == :: :: Apply the new commit to our state and, if we need to tell unix about :: some of the changes, call ++ergo. :: ++ checked-out |= res/gage:ford ^+ +> =+ tay=(gage-to-cages-or-error res) ?: ?=($| -.tay) (error:he %checkout-bad-made leaf+"merge checkout failed" p.tay) =+ can=(cages-to-map p.tay) ?: ?=($| -.can) (error:he %checkout p.can) ?: ?=($| -.gon.dat) +>.$ =. let.dom +(let.dom) =. hit.dom (~(put by hit.dom) let.dom r.new.dat) =. ank.dat %- map-to-ankh:ze %- ~(run by (~(uni by bop.dat) p.can)) |=(cage [(page-to-lobe p q.q) +<]) =. ank.dom ank.dat => .(..wake wake) ?~ hez done:he =+ mus=(must-ergo (turn ~(tap by erg.dat) head)) ?: =(~ mus) done:he ergo :: :: Cast all the content that we're going to tell unix about to %mime. :: :: Result is handled in ++ergoed. :: ++ ergo ^+ . =+ ^- sum/(set path) =+ (must-ergo (turn ~(tap by erg.dat) head)) =+ (turn ~(tap by -) (corl tail tail)) %+ roll - |= {pak/(set path) acc/(set path)} (~(uni in acc) pak) =+ zez=ze(ank.dom ank.dat) =+ ^- val/beak ?: ?=($init gem.dat) [p.ali q.ali cas.dat] [p.bob q.bob da+now] %- emit(wat.dat %ergo) :* hen %pass [%merge (scot %p p.bob) q.bob (scot %p p.ali) q.ali %ergo ~] %f %exec p.bob ~ val %tabl ^- (list (pair silk:ford silk:ford)) %+ turn ~(tap in sum) |= a/path ^- (pair silk:ford silk:ford) :- [%$ %path !>(a)] =+ b=(~(got by erg.dat) a) ?. b [%$ %null !>(~)] :+ %cast %mime (lobe-to-silk:zez a (~(got by q.new.dat) a)) == :: :: Tell unix about the changes made by the merge. :: ++ ergoed |= res/gage:ford ^+ +> =+ tay=(gage-to-cages-or-error res) ?: ?=($| -.tay) (error:he %ergo-bad-made leaf+"merge ergo failed" p.tay) =+ =| nac/mode |- ^- tan/$^(mode {p/term q/tang}) ?~ p.tay nac =* pax p.i.p.tay ?. ?=($path p.pax) [%ergo >[%expected-path got=p.pax]< ~] =* mim q.i.p.tay =+ mit=?.(?=($mime p.mim) ~ `((hard mime) q.q.mim)) $(p.tay t.p.tay, nac :_(nac [((hard path) q.q.pax) mit])) ?: ?=({@ *} tan) (error:he tan) =+ `can/(map path (unit mime))`(malt tan) ?~ hez (error:he %ergo-no-hez ~) ?: ?=($| -.gon.dat) +>.$ =+ mus=(must-ergo (turn ~(tap by erg.dat) head)) =< done:he %- emil %+ turn ~(tap by mus) |= {pot/term len/@ud pak/(set path)} :* u.hez %give %ergo pot %+ turn ~(tap in pak) |= pax/path [(slag len pax) (~(got by can) pax)] == :: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: :: This core is a small set of helper functions to assist in merging. :: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: ++ he |% :: :: Assert that we're goig to be returning something, and set don to :: true, so that ++abet knows we're done. :: ++ done ^+ ..he ?< ?=($| -.gon.dat) ..he(don |) :: :: Cancel the merge gracefully and produce an error. :: ++ error |= {err/term tan/(list tank)} ^+ ..he ..he(don |, gon.dat [%| err >ali< >bob< >cas.dat< >gem.dat< tan]) :: :: Create a silk to turn a lobe into a blob. :: :: We short-circuit if we already have the content somewhere. :: ++ merge-lobe-to-silk |= {pax/path lob/lobe} ^- silk:ford =+ hat=q.ali.dat =+ hot=q.bob.dat =+ ^= lal %+ biff alh |= had/dome (~(get by q:(tako-to-yaki (~(got by hit.had) let.had))) pax) =+ lol=(~(get by hot) pax) |- ^- silk:ford ?: =([~ lob] lol) =+ (need (need (read-x let.dom pax))) ?> ?=($& -<) [%$ p.-] ?: =([~ lob] lal) [%$ +:(need fil.ank:(descend-path:(zu ank:(need alh)) pax))] =+ bol=(~(got by lat.ran) lob) ?- -.bol $direct (page-to-silk q.bol) $delta [%pact $(lob q.q.bol) (page-to-silk r.bol)] == :: :: Find the most recent common ancestor(s). :: ++ find-merge-points |= {p/yaki q/yaki} :: maybe need jet ^- (set yaki) %- reduce-merge-points =+ r=(reachable-takos r.p) |- ^- (set yaki) ?: (~(has in r) r.q) (~(put in *(set yaki)) q) %+ roll p.q |= {t/tako s/(set yaki)} ?: (~(has in r) t) (~(put in s) (tako-to-yaki t)) :: found (~(uni in s) ^$(q (tako-to-yaki t))) :: traverse :: :: Helper for ++find-merge-points. :: ++ reduce-merge-points |= unk/(set yaki) :: maybe need jet =| gud/(set yaki) =+ ^= zar ^- (map tako (set tako)) %+ roll ~(tap in unk) |= {yak/yaki qar/(map tako (set tako))} (~(put by qar) r.yak (reachable-takos r.yak)) |- ^- (set yaki) ?~ unk gud =+ bun=(~(del in `(set yaki)`unk) n.unk) ?: %+ levy ~(tap by (~(uni in gud) bun)) |= yak/yaki !(~(has in (~(got by zar) r.yak)) r.n.unk) $(gud (~(put in gud) n.unk), unk bun) $(unk bun) -- -- -- -- -- :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: :: section 4cA, filesystem vane :: :: This is the arvo interface vane. Our formal state is a `++raft`, which :: has five components: :: :: -- `fat` is the state for all local desks. :: -- `hoy` is the state for all foreign desks. :: -- `ran` is the global, hash-addressed object store. :: -- `mon` is the set of mount points in unix. :: -- `hez` is the duct to the unix sync. :: :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: =| :: instrument state $: $4 :: vane version ruf/raft :: revision tree == :: |= {now/@da eny/@ ski/sley} :: activate ^? :: opaque core |% :: ++ call :: handle request |= $: hen/duct hic/(hypo (hobo task:able)) == => %= . :: XX temporary q.hic ^- task:able ?: ?=($soft -.q.hic) =+ ~|([%bad-soft (@t -.p.q.hic)] ((soft task:able) p.q.hic)) ?~ - ~& [%bad-softing (@t -.p.q.hic)] !! u.- ?: (~(nest ut -:!>(*task:able)) | p.hic) q.hic ~& [%clay-call-flub (@tas `*`-.q.hic)] ((hard task:able) q.hic) == ^+ [p=*(list move) q=..^$] ?- -.q.hic $boat :_ ..^$ [hen %give %hill (turn ~(tap by mon.ruf) head)]~ ::. $cred =. cez.ruf ?~ cew.q.hic (~(del by cez.ruf) nom.q.hic) (~(put by cez.ruf) nom.q.hic cew.q.hic) :: wake all desks, a request may have been affected. =| mos/(list move) =+ rom=(fall (~(get by fat.ruf) our.q.hic) *room) =+ des=~(tap in ~(key by dos.rom)) |- ?~ des [[[hen %give %mack ~] mos] ..^^$] =+ den=((de now hen ruf) [. .]:our.q.hic i.des) =^ mor ruf abet:wake:den $(des t.des, mos (weld mos mor)) :: $crew [[hen %give %cruz cez.ruf]~ ..^$] :: $drop =^ mos ruf =+ den=((de now hen ruf) [. .]:p.q.hic q.q.hic) abet:drop-me:den [mos ..^$] :: $info ?: =(%$ q.q.hic) [~ ..^$] =^ mos ruf =+ den=((de now hen ruf) [. .]:p.q.hic q.q.hic) abet:(edit:den now r.q.hic) [mos ..^$] :: $init :_ %_ ..^$ fat.ruf ?< (~(has by fat.ruf) p.q.hic) (~(put by fat.ruf) p.q.hic [-(hun hen)]:[*room .]) == =+ [bos=(sein:title p.q.hic) can=(clan:title p.q.hic)] %- zing ^- (list (list move)) :~ ?: =(bos p.q.hic) ~ [hen %pass /init-merge %c %merg p.q.hic %base bos %kids da+now %init]~ :: ~ == :: $into =. hez.ruf `hen :_ ..^$ =+ bem=(~(get by mon.ruf) p.q.hic) ?: &(?=($~ bem) !=(%$ p.q.hic)) ~|([%bad-mount-point-from-unix p.q.hic] !!) =+ ^- bem/beam ?^ bem u.bem [[?>(?=(^ fat.ruf) p.n.fat.ruf) %base %ud 1] ~] =+ rom=(~(get by fat.ruf) p.bem) ?~ rom ~ =+ dos=(~(get by dos.u.rom) q.bem) ?~ dos ~ ?: =(0 let.dom.u.dos) =+ cos=(mode-to-soba ~ s.bem q.q.hic r.q.hic) =+ ^- {one/(list {path miso}) two/(list {path miso})} %+ skid cos |= {a/path b/miso} ?& ?=($ins -.b) ?=($mime p.p.b) ?=({$hoon $~} (slag (dec (lent a)) a)) == :~ [hen %pass /one %c %info p.bem q.bem %& one] [hen %pass /two %c %info p.bem q.bem %& two] == =+ yak=(~(got by hut.ran.ruf) (~(got by hit.dom.u.dos) let.dom.u.dos)) =+ cos=(mode-to-soba q.yak (flop s.bem) q.q.hic r.q.hic) [hen %pass /both %c %info p.bem q.bem %& cos]~ :: $merg :: direct state up ?: =(%$ q.q.hic) [~ ..^$] =^ mos ruf =+ den=((de now hen ruf) [. .]:p.q.hic q.q.hic) abet:abet:(start:(me:ze:den [r.q.hic s.q.hic] ~ &) t.q.hic u.q.hic) [mos ..^$] :: $mont =. hez.ruf ?^(hez.ruf hez.ruf `[[%$ %sync ~] ~]) =+ pot=(~(get by mon.ruf) p.q.hic) ?^ pot ~& [%already-mounted pot] [~ ..^$] =. mon.ruf (~(put by mon.ruf) p.q.hic [p.q.q.hic q.q.q.hic r.q.q.hic] s.q.q.hic) =+ yar=(~(get by fat.ruf) p.q.q.hic) ?~ yar [~ ..^$] =+ dos=(~(get by dos.u.yar) q.q.q.hic) ?~ dos [~ ..^$] =^ mos ruf =+ den=((de now hen ruf) [. .]:p.q.q.hic q.q.q.hic) abet:(mont:den p.q.hic q.q.hic) [mos ..^$] :: $dirk ?~ hez.ruf ~& %no-sync-duct [~ ..^$] ?. (~(has by mon.ruf) p.q.hic) ~& [%not-mounted p.q.hic] [~ ..^$] :- ~[[u.hez.ruf %give %dirk p.q.hic]] ..^$ :: $ogre ?~ hez.ruf ~& %no-sync-duct [~ ..^$] ?@ p.q.hic ?. (~(has by mon.ruf) p.q.hic) ~& [%not-mounted p.q.hic] [~ ..^$] :_ ..^$(mon.ruf (~(del by mon.ruf) p.q.hic)) [u.hez.ruf %give %ogre p.q.hic]~ :_ %_ ..^$ mon.ruf %- molt %+ skip ~(tap by mon.ruf) (corl (cury test p.q.hic) tail) == %+ turn (skim ~(tap by mon.ruf) (corl (cury test p.q.hic) tail)) |= {pot/term bem/beam} [u.hez.ruf %give %ogre pot] :: $perm =^ mos ruf ::TODO after new boot system, just use our from global. =+ den=((de now hen ruf) [. .]:our.q.hic des.q.hic) abet:(perm:den pax.q.hic rit.q.hic) [mos ..^$] :: ?($warp $werp) =^ for q.hic ?: ?=($warp -.q.hic) [~ q.hic] :_ [%warp q.q.hic r.q.hic] ?: =(p.q.hic p.q.q.hic) ~&([%huh-this-west-may-be-weird p.q.hic] ~) `p.q.hic ?> ?=($warp -.q.hic) =^ mos ruf =+ den=((de now hen ruf) p.q.hic p.q.q.hic) :: =- ~? ?=([~ %sing %w *] q.r.q.hic) :: :* %someones-warping :: rav=u.q.r.q.hic :: mos=-< :: == :: - =< abet ?~ q.q.q.hic cancel-request:den (start-request:den for u.q.q.q.hic) [mos ..^$] :: $went :: this won't happen until we send responses. !! :: $west ?: ?=({$question *} q.q.hic) =+ ryf=((hard riff) r.q.hic) :_ ..^$ :~ [hen %give %mack ~] :- hen :^ %pass [(scot %p p.p.q.hic) (scot %p q.p.q.hic) t.q.q.hic] %c [%werp q.p.q.hic [p.p.q.hic p.p.q.hic] ryf] == ?> ?=({$answer @ @ $~} q.q.hic) =+ syd=(slav %tas i.t.q.q.hic) =+ inx=(slav %ud i.t.t.q.q.hic) =^ mos ruf =+ den=((de now hen ruf) p.q.hic syd) abet:(take-foreign-update:den inx ((hard (unit rand)) r.q.hic)) [[[hen %give %mack ~] mos] ..^$] :: $wegh :_ ..^$ :_ ~ :^ hen %give %mass :- %clay :- %| :~ domestic+[%& fat.ruf] foreign+[%& hoy.ruf] :- %object-store :- %| :~ commits+[%& hut.ran.ruf] blobs+[%& lat.ran.ruf] == == == :: :: All timers are handled by `%behn` nowadays. ++ doze |= {now/@da hen/duct} ^- (unit @da) ~ :: ++ load => |% += wove-3 rove ++ cult-3 (jug wove-3 duct) ++ dojo-3 $: qyx/cult-3 dom/dome dok/(unit dork) mer/(unit mery) == ++ rede-3 $: lim/@da ref/(unit rind) qyx/cult-3 dom/dome dok/(unit dork) mer/(unit mery) == ++ room-3 (cork room |=(a/room a(dos (~(run by dos.a) dojo-3)))) ++ rung-3 (cork rung |=(a/rung a(rus (~(run by rus.a) rede-3)))) ++ raft-3 $: fat/(map ship room-3) hoy/(map ship rung-3) ran/rang mon/(map term beam) hez/(unit duct) == ++ axle $%({$3 ruf/raft-3} {$4 ruf/raft}) -- |= old/axle ^+ ..^$ ?- -.old $4 ..^$(ruf ruf.old) $3 =/ wov |= a/wove-3 ^- wove [~ a] =/ cul |= a/cult-3 ^- cult %- ~(gas by *cult) (turn ~(tap by a) |=({p/wove-3 q/(set duct)} [(wov p) q])) =/ rom =+ doj=|=(dojo-3 [(cul qyx) dom dok mer ~ ~]) |=(a/room-3 a(dos (~(run by dos.a) doj))) =/ run =/ red |= rede-3 =+ [[/ %black ~] ~ ~] [lim ref (cul qyx) dom dok mer - -] |=(a/rung-3 a(rus (~(run by rus.a) red))) =+ ruf.old $(old [%4 [(~(run by fat) rom) (~(run by hoy) run) ran mon hez ~]]) == :: ++ scry :: inspect |= {fur/(unit (set monk)) ren/@tas why/shop syd/desk lot/coin tyl/path} ^- (unit (unit cage)) ?. ?=($& -.why) ~ =* his p.why :: ~& scry+[ren `path`[(scot %p his) syd ~(rent co lot) tyl]] :: =- ~& %scry-done - =+ got=(~(has by fat.ruf) his) =+ luk=?.(?=($$ -.lot) ~ ((soft case) p.lot)) ?~ luk [~ ~] ?: =(%$ ren) [~ ~] =+ run=((soft care) ren) ?~ run [~ ~] ::TODO if it ever gets filled properly, pass in the full fur. =/ for/(unit ship) %- ~(rep in (fall fur ~)) |= {m/monk s/(unit ship)} ?^ s s ?: ?=($| -.m) ~ ?: =(p.m his) ~ `p.m =+ den=((de now [/scryduct ~] ruf) [. .]:his syd) =+ (aver:den for u.run u.luk tyl) ?~ - - ?~ u.- - ?: ?=($& -.u.u.-) ``p.u.u.- ~ :: ++ stay [%4 ruf] ++ take :: accept response |= {tea/wire hen/duct hin/(hypo sign)} ^+ [p=*(list move) q=..^$] ?: ?=({$merge @ @ @ @ @ $~} tea) ?> ?=(?($writ $made) +<.q.hin) =+ our=(slav %p i.t.tea) =* syd i.t.t.tea =+ her=(slav %p i.t.t.t.tea) =* sud i.t.t.t.t.tea =* sat i.t.t.t.t.t.tea =+ dat=?-(+<.q.hin $writ [%& p.q.hin], $made [%| q.q.hin]) =+ ^- kan/(unit dome) %+ biff (~(get by fat.ruf) her) |= room %+ bind (~(get by dos) sud) |= dojo dom =^ mos ruf =+ den=((de now hen ruf) [. .]:our syd) abet:abet:(route:(me:ze:den [her sud] kan |) sat dat) [mos ..^$] ?: ?=({$blab care @ @ *} tea) ?> ?=($made +<.q.hin) ?. ?=($& -.q.q.hin) ~| %blab-fail ~> %mean.|.(?+(-.q.q.hin -.q.q.hin $| p.q.q.hin)) !! :: interpolate ford fail into stack trace :_ ..^$ :_ ~ :* hen %give %writ ~ ^- {care case @tas} [i.t.tea ((hard case) +>:(slay i.t.t.tea)) i.t.t.t.tea] :: `path`t.t.t.t.tea `cage`p.q.q.hin == ?- -.+.q.hin :: $crud [[[hen %slip %d %flog +.q.hin] ~] ..^$] :: $made ?~ tea !! ?+ -.tea !! $inserting ?> ?=({@ @ @ $~} t.tea) =+ our=(slav %p i.t.tea) =+ syd=(slav %tas i.t.t.tea) =+ wen=(slav %da i.t.t.t.tea) =^ mos ruf =+ den=((de now hen ruf) [. .]:our syd) abet:(take-inserting:den wen q.q.hin) [mos ..^$] :: $diffing ?> ?=({@ @ @ $~} t.tea) =+ our=(slav %p i.t.tea) =+ syd=(slav %tas i.t.t.tea) =+ wen=(slav %da i.t.t.t.tea) =^ mos ruf =+ den=((de now hen ruf) [. .]:our syd) abet:(take-diffing:den wen q.q.hin) [mos ..^$] :: $castifying ?> ?=({@ @ @ $~} t.tea) =+ our=(slav %p i.t.tea) =+ syd=(slav %tas i.t.t.tea) =+ wen=(slav %da i.t.t.t.tea) =^ mos ruf =+ den=((de now hen ruf) [. .]:our syd) abet:(take-castify:den wen q.q.hin) [mos ..^$] :: $mutating ?> ?=({@ @ @ $~} t.tea) =+ our=(slav %p i.t.tea) =+ syd=(slav %tas i.t.t.tea) =+ wen=(slav %da i.t.t.t.tea) =^ mos ruf =+ den=((de now hen ruf) [. .]:our syd) abet:(take-mutating:den wen q.q.hin) [mos ..^$] :: $patching ?> ?=({@ @ $~} t.tea) =+ our=(slav %p i.t.tea) =+ syd=(slav %tas i.t.t.tea) =^ mos ruf =+ den=((de now hen ruf) [. .]:our syd) abet:(take-patch:den q.q.hin) [mos ..^$] :: $ergoing ?> ?=({@ @ $~} t.tea) =+ our=(slav %p i.t.tea) =+ syd=(slav %tas i.t.t.tea) =^ mos ruf =+ den=((de now hen ruf) [. .]:our syd) abet:(take-ergo:den q.q.hin) [mos ..^$] :: $foreign-plops ?> ?=({@ @ @ @ $~} t.tea) =+ our=(slav %p i.t.tea) =+ her=(slav %p i.t.t.tea) =* syd i.t.t.t.tea =+ lem=(slav %da i.t.t.t.t.tea) =^ mos ruf =+ den=((de now hen ruf) [our her] syd) abet:(take-foreign-plops:den ?~(lem ~ `lem) q.q.hin) [mos ..^$] :: $foreign-x ?> ?=({@ @ @ @ @ *} t.tea) =+ our=(slav %p i.t.tea) =+ her=(slav %p i.t.t.tea) =+ syd=(slav %tas i.t.t.t.tea) =+ car=((hard care) i.t.t.t.t.tea) =+ ^- cas/case =+ (slay i.t.t.t.t.t.tea) ?> ?=({$~ $$ case} -) ->+ =* pax t.t.t.t.t.t.tea =^ mos ruf =+ den=((de now hen ruf) [our her] syd) abet:(take-foreign-x:den car cas pax q.q.hin) [mos ..^$] == :: $mere ?: ?=($& -.p.+.q.hin) ~& 'initial merge succeeded' [~ ..^$] ~> %slog. :^ 0 %rose [" " "[" "]"] :^ leaf+"initial merge failed" leaf+"my most sincere apologies" >p.p.p.+.q.hin< q.p.p.+.q.hin [~ ..^$] :: $note [[hen %give +.q.hin]~ ..^$] $wake ~| %why-wakey !! :: =+ dal=(turn ~(tap by fat.ruf) |=([a=@p b=room] a)) :: =| mos=(list move) :: |- ^- [p=(list move) q=_..^^$] :: ?~ dal [mos ..^^$] :: =+ une=(un i.dal now hen ruf) :: =^ som une wake:une :: $(dal t.dal, ruf abet:une, mos (weld som mos)) :: $writ ?> ?=({@ @ *} tea) ~| i=i.tea ~| it=i.t.tea =+ our=(slav %p i.tea) =+ him=(slav %p i.t.tea) :_ ..^$ :~ :* hen %pass /writ-want %a %want [our him] [%c %answer t.t.tea] (bind p.+.q.hin rant-to-rand) == == :: $send [[[hen %give +.q.hin] ~] ..^$] :: $woot [~ ..^$] :: ?~ r.q.hin [~ ..^$] :: ~& [%clay-lost p.q.hin r.q.hin tea] :: [~ ..^$] == :: ++ rant-to-rand |= rant ^- rand [p q [p q.q]:r] :: ++ mode-to-soba |= {hat/(map path lobe) pax/path all/? mod/mode} ^- soba %+ weld ^- (list (pair path miso)) ?. all ~ =+ mad=(malt mod) =+ len=(lent pax) =+ ^- descendants/(list path) %+ turn %+ skim ~(tap by hat) |= {paf/path lob/lobe} =(pax (scag len paf)) |= {paf/path lob/lobe} (slag len paf) %+ murn descendants |= pat/path ^- (unit (pair path {$del $~})) ?: (~(has by mad) pat) ~ `[(weld pax pat) %del ~] ^- (list (pair path miso)) %+ murn mod |= {pat/path mim/(unit mime)} ^- (unit (pair path miso)) =+ paf=(weld pax pat) ?~ mim =+ (~(get by hat) paf) ?~ - ~& [%deleting-already-gone pax pat] ~ `[paf %del ~] =+ (~(get by hat) paf) ?~ - `[paf %ins %mime -:!>(*mime) u.mim] `[paf %mut %mime -:!>(*mime) u.mim] --