shrub/sys/vane/clay.hoon
2018-08-22 12:57:43 -07:00

4191 lines
143 KiB
Plaintext

!:
:: clay (4c), revision control
::
:: This is split in three top-level sections: structure definitions, main
:: logic, and arvo interface.
::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
::
:: Here are the structures. `++raft` is the formal arvo state. It's also
:: worth noting that many of the clay-related structures are defined in zuse.
::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|= pit/vase
=, clay
=> |%
+$ aeon @ud :: version number
::
:: Recursive structure of a desk's data.
::
:: We keep an ankh only for the current version of local desks. Everywhere
:: else we store it as (map path lobe).
::
+$ ankh :: expanded node
$~ [~ ~]
$: fil/(unit {p/lobe q/cage}) :: file
dir/(map @ta ankh) :: folders
== ::
::
:: Part of ++mery, representing the set of changes between the mergebase and
:: one of the desks being merged.
::
:: -- `new` is the set of files in the new desk and not in the mergebase.
:: -- `cal` is the set of changes in the new desk from the mergebase except
:: for any that are also in the other new desk.
:: -- `can` is the set of changes in the new desk from the mergebase and that
:: are also in the other new desk (potential conflicts).
:: -- `old` is the set of files in the mergebase and not in the new desk.
::
+$ cane
$: new/(map path lobe)
cal/(map path lobe)
can/(map path cage)
old/(map path ~)
==
::
:: Type of request.
::
:: %d produces a set of desks, %p gets file permissions, %u checks for
:: existence, %v produces a ++dome of all desk data, %w gets @ud and @da
:: variants for the given case, %x gets file contents, %y gets a directory
:: listing, and %z gets a recursive hash of the file contents and children.
::
:: ++ care ?($d $p $u $v $w $x $y $z)
::
:: Keeps track of subscribers.
::
:: A map of requests to a set of all the subscribers who should be notified
:: when the request is filled/updated.
::
+$ cult (jug wove duct)
::
:: Domestic desk state.
::
:: Includes subscriber list, dome (desk content), possible commit state (for
:: local changes), possible merge state (for incoming merges), and permissions.
::
++ dojo
$: qyx/cult :: subscribers
dom/dome :: desk state
dok/(unit dork) :: commit state
mer/(unit mery) :: merge state
per/regs :: read perms per path
pew/regs :: write perms per path
==
::
:: Desk state.
::
:: Includes a checked-out ankh with current content, most recent version, map
:: of all version numbers to commit hashes (commits are in hut.rang), and map
:: of labels to version numbers.
::
++ dome
$: ank/ankh :: state
let/aeon :: top id
hit/(map aeon tako) :: versions by id
lab/(map @tas aeon) :: labels
== ::
::
:: Commit state.
::
:: -- `del` is the paths we're deleting.
:: -- `ink` is the insertions of hoon files (short-circuited for
:: bootstrapping).
:: -- `ins` is all the other insertions.
:: -- `dig` is all the %dif changes (i.e. we were given a diff to apply).
:: -- `dif` is the diffs in `dig` applied to their files.
:: -- `muc` is all the %mut changes (i.e. we were give a new version of a
:: file).
:: -- `muh` is the hashes of all the new content in `muc`.
:: -- `mut` is the diffs between `muc` and the original files.
:: -- `mim` is a cache of all new content that came with a mime mark. Often,
:: we need to convert to mime anyway to send to unix, so we just keep it
:: around.
::
++ dork :: diff work
$: del/(list path) :: deletes
ink/(list (pair path cage)) :: hoon inserts
ins/(unit (list (pair path cage))) :: inserts
dig/(map path cage) :: store diffs
dif/(unit (list (trel path lobe cage))) :: changes
muc/(map path cage) :: store mutations
muh/(map path lobe) :: store hashes
mut/(unit (list (trel path lobe cage))) :: mutations
mim/(map path mime) :: mime cache
== ::
::
:: Hash of a blob, for lookup in the object store (lat.ran)
::
++ lobe @uvI :: blob ref
::
:: Merge state.
::
:: Merges are said to be from 'ali' to 'bob'. See ++me for more details.
::
:: -- `sor` is the urbit and desk of ali.
:: -- `hen` is the duct that instigated the merge.
:: -- `gem` is the merge strategy. These are described in `++fetched-ali`.
:: -- `wat` is the current step of the merge process.
:: -- `cas` is the case in ali's desk that we're merging from.
:: -- `ali` is the commit from ali's desk.
:: -- `bob` is the commit from bob's desk.
:: -- `bas` is the commit from the mergebase.
:: -- `dal` is the set of changes from the mergebase to ali's desk.
:: -- `dob` is the set of changes from the mergebase to bob's desk.
:: Check ++cane for more details on these two
:: -- `bof` is the set of changes to the same files in ali and bob. Null for
:: a file means a conflict while a cage means the diffs have been merged.
:: -- `bop` is the result of patching the original files with the above merged
:: diffs.
:: -- `new` is the newly-created commit.
:: -- `ank` is the ankh for the new state.
:: -- `erg` is the sets of files that should be told to unix. True means to
:: write the file while false means to delete the file.
:: -- `gon` is the return value of the merge. On success we produce a set of
:: the paths that had conflicting changes. On failure we produce an error
:: code and message.
::
++ mery :: merge state
$: sor/(pair ship desk) :: merge source
hen/duct :: formal source
gem/germ :: strategy
wat/wait :: waiting on
cas/case :: ali's case
ali/yaki :: ali's commit
bob/yaki :: bob's commit
bas/yaki :: mergebase
dal/cane :: diff(bas,ali)
dob/cane :: diff(bas,bob)
bof/(map path (unit cage)) :: conflict diffs
bop/(map path cage) :: conflict patches
new/yaki :: merge(dal,dob)
ank/ankh :: new state
erg/(map path ?) :: ergoable changes
gon/(each (set path) (pair term (list tank))) :: return value
== ::
::
:: New desk data.
::
:: Sent to other ships to update them about a particular desk. Includes a map
:: of all new aeons to hashes of their commits, the most recent aeon, and sets
:: of all new commits and data.
::
++ nako :: subscription state
$: gar/(map aeon tako) :: new ids
let/aeon :: next id
lar/(set yaki) :: new commits
bar/(set plop) :: new content
== ::
::
:: Formal vane state.
::
:: -- `fat` is a collection of our domestic ships.
:: -- `hoy` is a collection of foreign ships where we know something about
:: their clay.
:: -- `ran` is the object store.
:: -- `mon` is a collection of mount points (mount point name to urbit
:: location).
:: -- `hez` is the unix duct that %ergo's should be sent to.
:: -- `cez` is a collection of named permission groups.
::
++ raft :: filesystem
$: fat/(map ship room) :: domestic
hoy/(map ship rung) :: foreign
ran/rang :: hashes
mon/(map term beam) :: mount points
hez/(unit duct) :: sync duct
cez/(map @ta crew) :: permission groups
== ::
::
:: Object store.
::
:: Maps of commit hashes to commits and content hashes to content.
::
++ rang ::
$: hut/(map tako yaki) ::
lat/(map lobe blob) ::
== ::
::
:: Unvalidated response to a request.
::
:: Like a ++rant, but with a page of data rather than a cage of it.
::
++ rand :: unvalidated rant
$: p/{p/care q/case r/@tas} :: clade release book
q/path :: spur
r/page :: data
== ::
::
:: Generic desk state.
::
:: -- `lim` is the most recent date we're confident we have all the
:: information for. For local desks, this is always `now`. For foreign
:: desks, this is the last time we got a full update from the foreign
:: urbit.
:: -- `ref` is a possible request manager. For local desks, this is null.
:: For foreign desks, this keeps track of all pending foreign requests
:: plus a cache of the responses to previous requests.
:: -- `qyx` is the set of subscriptions, with listening ducts. These
:: subscriptions exist only until they've been filled.
:: -- `dom` is the actual state of the filetree. Since this is used almost
:: exclusively in `++ze`, we describe it there.
:: -- `dok` is a possible set of outstanding requests to ford to perform
:: various tasks on commit. This is null iff we're not in the middle of
:: a commit.
:: -- `mer` is the state of a possible pending merge. This is null iff
:: we're not in the middle of a merge. Since this is used almost
:: exclusively in `++me`, we describe it there.
::
++ rede :: universal project
$: lim/@da :: complete to
ref/(unit rind) :: outgoing requests
qyx/cult :: subscribers
dom/dome :: revision state
dok/(unit dork) :: outstanding diffs
mer/(unit mery) :: outstanding merges
per/regs :: read perms per path
pew/regs :: write perms per path
== ::
::
:: Foreign request manager.
::
:: When we send a request to a foreign ship, we keep track of it in here. This
:: includes a request counter, a map of request numbers to requests, a reverse
:: map of requesters to request numbers, a simple cache of common %sing
:: requests, and a possible nako if we've received data from the other ship and
:: are in the process of validating it.
::
++ rind :: request manager
$: nix/@ud :: request index
bom/(map @ud {p/duct q/rave}) :: outstanding
fod/(map duct @ud) :: current requests
haw/(map mood (unit cage)) :: simple cache
nak/(unit nako) :: pending validation
== ::
::
:: Domestic ship.
::
:: `hun` is the duct to dill, and `dos` is a collection of our desks.
::
++ room :: fs per ship
$: hun/duct :: terminal duct
dos/(map desk dojo) :: native desk
== ::
::
:: Stored request.
::
:: Like a ++rave but with caches of current versions for %next and %many.
:: Generally used when we store a request in our state somewhere.
::
++ cach (unit (unit (each cage lobe))) :: cached result
++ wove {p/(unit ship) q/rove} :: stored source + req
++ rove :: stored request
$% {$sing p/mood} :: single request
{$next p/mood q/(unit aeon) r/cach} :: next version of one
$: $mult :: next version of any
p/mool :: original request
q/(unit aeon) :: checking for change
r/(map (pair care path) cach) :: old version
s/(map (pair care path) cach) :: new version
== ::
{$many p/? q/moat r/(map path lobe)} :: change range
== ::
::
:: Foreign desk data.
::
+= rung rus/(map desk rede) :: neighbor desks
::
:: Hash of a commit, for lookup in the object store (hut.ran)
::
++ tako @ :: yaki ref
::
:: Merge state.
::
++ wait $? $null $ali $diff-ali $diff-bob :: what are we
$merge $build $checkout $ergo :: waiting for?
== ::
::
:: Commit.
::
:: List of parents, content, hash of self, and time commited.
::
++ yaki :: snapshot
$: p/(list tako) :: parents
q/(map path lobe) :: fileset
r/tako ::
:: :: XX s?
t/@da :: date
== ::
::
:: Unvalidated blob
::
++ plop blob :: unvalidated blob
-- =>
|%
++ move {p/duct q/(wind note gift:able)} :: local move
++ note :: out request $->
$% $: $a :: to %ames
$% {$want p/sock q/path r/*} ::
== == ::
$: $c :: to %clay
$% {$info p/@p q/@tas r/nori} :: internal edit
{$merg p/@p q/@tas r/@p s/@tas t/case u/germ} :: merge desks
{$warp p/sock q/riff} ::
{$werp p/ship q/sock r/riff} ::
== == ::
$: $d ::
$% {$flog p/{$crud p/@tas q/(list tank)}} :: to %dill
== == ::
$: $f ::
$% [%build our=@p live=? schematic=schematic:ford] ::
== ==
$: $b ::
$% {$wait p/@da} ::
{$rest p/@da} ::
== == == ::
++ riot (unit rant) :: response+complete
++ sign :: in result $<-
$% $: $a :: by %ames
$% {$woot p/ship q/coop} ::
{$send p/lane:ames q/@} :: transmit packet
== == ::
$: $c :: by %clay
$% {$note p/@tD q/tank} ::
{$mere p/(each (set path) (pair term tang))}
{$writ p/riot} ::
== == ::
$: $f ::
$% [%made date=@da result=made-result:ford] ::
== == ::
$: $b ::
$% {$wake ~} :: timer activate
== == ::
$: @tas :: by any
$% {$crud p/@tas q/(list tank)} ::
== == == ::
-- =>
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: section 4cA, filesystem logic
::
:: This core contains the main logic of clay. Besides `++ze`, this directly
:: contains the logic for commiting new revisions (local urbits), managing
:: and notifying subscribers (reactivity), and pulling and validating content
:: (remote urbits).
::
:: The state includes:
::
:: -- current time `now`
:: -- current duct `hen`
:: -- local urbit `our`
:: -- target urbit `her`
:: -- target desk `syd`
:: -- all vane state `++raft` (rarely used, except for the object store)
::
:: For local desks, `our` == `her` is one of the urbits on our pier. For
:: foreign desks, `her` is the urbit the desk is on and `our` is the local
:: urbit that's managing the relationship with the foreign urbit. Don't mix
:: up those two, or there will be wailing and gnashing of teeth.
::
:: While setting up `++de`, we check if the given `her` is a local urbit. If
:: so, we pull the room from `fat` in the raft and get the desk information
:: from `dos` in there. Otherwise, we get the rung from `hoy` and get the
:: desk information from `rus` in there. In either case, we normalize the
:: desk information to a `++rede`, which is all the desk-specific data that
:: we utilize in `++de`. Because it's effectively a part of the `++de`
:: state, let's look at what we've got:
::
:: -- `lim` is the most recent date we're confident we have all the
:: information for. For local desks, this is always `now`. For foreign
:: desks, this is the last time we got a full update from the foreign
:: urbit.
:: -- `ref` is a possible request manager. For local desks, this is null.
:: For foreign desks, this keeps track of all pending foreign requests
:: plus a cache of the responses to previous requests.
:: -- `qyx` is the set of subscriptions, with listening ducts. These
:: subscriptions exist only until they've been filled.
:: -- `dom` is the actual state of the filetree. Since this is used almost
:: exclusively in `++ze`, we describe it there.
:: -- `dok` is a possible set of outstanding requests to ford to perform
:: various tasks on commit. This is null iff we're not in the middle of
:: a commit.
:: -- `mer` is the state of a possible pending merge. This is null iff
:: we're not in the middle of a merge. Since this is used almost
:: exclusively in `++me`, we describe it there.
::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|%
++ de :: per desk
|= {now/@da hen/duct raft}
|= {{our/@p her/@p} syd/desk}
=* ruf +>+<+>
=+ ^- {hun/(unit duct) rede}
=+ rom=(~(get by fat.ruf) her)
?~ rom
:- ~
%+ fall
(~(get by rus:(fall (~(get by hoy.ruf) her) *rung)) syd)
:* lim=~2000.1.1
ref=[~ *rind]
qyx=~
dom=*dome
dok=~
mer=~
per=~
pew=~
==
:- `hun.u.rom
=+ jod=(fall (~(get by dos.u.rom) syd) *dojo)
:* lim=now
ref=~
qyx=qyx.jod
dom=dom.jod
dok=dok.jod
mer=mer.jod
per=per.jod
pew=pew.jod
==
=* red ->
=| mow/(list move)
|%
++ abet :: resolve
^- {(list move) raft}
:_ =+ rom=(~(get by fat.ruf) her)
?~ rom
=+ rug=(~(put by rus:(fall (~(get by hoy.ruf) her) *rung)) syd red)
ruf(hoy (~(put by hoy.ruf) her rug))
=+ dos=(~(put by dos.u.rom) syd [qyx dom dok mer per pew])
ruf(fat (~(put by fat.ruf) her [(need hun) dos]))
(flop mow)
::
:: Handle `%sing` requests
::
++ aver
|= {for/(unit ship) mun/mood}
^- (unit (unit (each cage lobe)))
=+ ezy=?~(ref ~ (~(get by haw.u.ref) mun))
?^ ezy
`(bind u.ezy |=(a/cage [%& a]))
=+ nao=(case-to-aeon:ze q.mun)
:: ~& [%aver-mun nao [%from syd lim q.mun]]
?~(nao ~ (read-at-aeon:ze for u.nao mun))
::
++ ford-fail |=(tan/tang ~|(%ford-fail (mean tan)))
::
:: Takes either a result or a stack trace. If it's a stack trace, we crash;
:: else, we produce the result.
::
++ unwrap-tang
|* res/(each * tang)
?:(?=(%& -.res) p.res (mean p.res))
::
:: Parse a gage to a list of pairs of cages, crashing on error.
::
:: Composition of ++gage-to-cages-or-error and ++unwrap-tang. Maybe same as
:: ++gage-to-success-cages?
::
++ made-result-to-cages
|= result=made-result:ford
^- (list (pair cage cage))
(unwrap-tang (made-result-to-cages-or-error result))
::
:: Same as ++gage-to-cages-or-error except crashes on error. Maybe same as
:: ++gage-to-cages?
::
++ made-result-to-success-cages
|= result=made-result:ford
^- (list (pair cage cage))
?. ?=([%complete %success %list *] result)
(ford-fail >%strange-ford-result< ~)
:: process each row in the list, filtering out errors
::
%+ murn results.build-result.result
|= row=build-result:ford
^- (unit [cage cage])
::
?: ?=([%error *] row)
~& [%clay-whole-build-failed message.row]
~
?: ?=([%success [%error *] *] row)
~& [%clay-first-failure message.head.row]
~
?: ?=([%success [%success *] [%error *]] row)
~& [%clay-second-failure message.tail.row]
~
?. ?=([%success [%success *] [%success *]] row)
~
`[(result-to-cage:ford head.row) (result-to-cage:ford tail.row)]
::
:: Expects a single-level gage (i.e. a list of pairs of cages). If the
:: result is of a different form, or if some of the computations in the gage
:: failed, we produce a stack trace. Otherwise, we produce the list of pairs
:: of cages.
::
++ made-result-to-cages-or-error
|= result=made-result:ford
^- (each (list (pair cage cage)) tang)
::
?: ?=([%incomplete *] result)
(mule |.(`~`(ford-fail tang.result)))
?. ?=([%complete %success %list *] result)
(mule |.(`~`(ford-fail >%strange-ford-result -.build-result.result< ~)))
=/ results=(list build-result:ford)
results.build-result.result
=< ?+(. [%& .] {@ *} .)
|-
^- ?((list [cage cage]) (each ~ tang))
?~ results ~
::
?. ?=([%success ^ *] i.results)
(mule |.(`~`(ford-fail >%strange-ford-result< ~)))
?: ?=([%error *] head.i.results)
(mule |.(`~`(ford-fail message.head.i.results)))
?: ?=([%error *] tail.i.results)
(mule |.(`~`(ford-fail message.tail.i.results)))
::
=+ $(results t.results)
?: ?=([@ *] -) -
:_ -
[(result-to-cage:ford head.i.results) (result-to-cage:ford tail.i.results)]
::
:: Assumes the list of pairs of cages is actually a listified map of paths
:: to cages, and converts it to (map path cage) or a stack trace on error.
::
++ cages-to-map
|= tay/(list (pair cage cage))
=| can/(map path cage)
|- ^- (each (map path cage) tang)
?~ tay [%& can]
=* pax p.i.tay
?. ?=($path p.pax)
(mule |.(`~`~|([%expected-path got=p.pax] !!)))
$(tay t.tay, can (~(put by can) ((hard path) q.q.pax) q.i.tay))
::
:: Queue a move.
::
++ emit
|= mof/move
%_(+> mow [mof mow])
::
:: Queue a list of moves
::
++ emil
|= mof/(list move)
%_(+> mow (weld mof mow))
::
:: Produce either null or a result along a subscription.
::
:: Producing null means subscription has been completed or cancelled.
::
++ balk
|= {hen/duct cay/(unit (each cage lobe)) mun/mood}
^+ +>
?~ cay (blub hen)
(blab hen mun u.cay)
::
:: Set timer.
::
++ bait
|= {hen/duct tym/@da}
(emit hen %pass /tyme %b %wait tym)
::
:: Cancel timer.
::
++ best
|= {hen/duct tym/@da}
(emit hen %pass /tyme %b %rest tym)
::
:: Give subscription result.
::
:: Result can be either a direct result (cage) or a lobe of a result. In
:: the latter case we fetch the data at the lobe and produce that.
::
++ blab
|= {hen/duct mun/mood dat/(each cage lobe)}
^+ +>
?: ?=(%& -.dat)
(emit hen %give %writ ~ [p.mun q.mun syd] r.mun p.dat)
%- emit
:* hen %pass [%blab p.mun (scot q.mun) syd r.mun]
%f %build our live=%.n %pin
(case-to-date q.mun)
(lobe-to-schematic:ze [her syd] r.mun p.dat)
==
::
++ case-to-date
|= =case
^- @da
:: if the case is already a date, use it.
::
?: ?=([%da *] case)
p.case
:: translate other cases to dates
::
=/ aey (case-to-aeon:ze case)
?~ aey `@da`0
?: =(0 u.aey) `@da`0
t:(aeon-to-yaki:ze u.aey)
::
++ blas
|= {hen/duct das/(set mood)}
^+ +>
?> ?=(^ das)
:: translate the case to a date
::
=/ cas [%da (case-to-date q.n.das)]
=- (emit hen %give %wris cas -)
(~(run in `(set mood)`das) |=(m/mood [p.m r.m]))
::
:: Give next step in a subscription.
::
++ bleb
|= {hen/duct ins/@ud hip/(unit (pair aeon aeon))}
^+ +>
%^ blab hen [%w [%ud ins] ~]
:- %&
?~ hip
[%null [%atom %n ~] ~]
[%nako !>((make-nako:ze u.hip))]
::
:: Tell subscriber that subscription is done.
::
++ blub
|= hen/duct
(emit hen %give %writ ~)
::
:: Lifts a function so that a single result can be fanned out over a set of
:: subscriber ducts.
::
:: Thus, `((duct-lift func) subs arg)` runs `(func sub arg)` for each `sub`
:: in `subs`.
::
++ duct-lift
|* send/_|=({duct *} ..duct-lift)
|= {a/(set duct) arg/_+<+.send} ^+ ..duct-lift
=+ all=~(tap by a)
|- ^+ ..duct-lift
?~ all ..duct-lift
=. +>.send ..duct-lift
$(all t.all, duct-lift (send i.all arg))
::
++ blub-all (duct-lift |=({a/duct ~} (blub a))) :: lifted ++blub
++ blab-all (duct-lift blab) :: lifted ++blab
++ blas-all (duct-lift blas) :: lifted ++blas
++ balk-all (duct-lift balk) :: lifted ++balk
++ bleb-all (duct-lift bleb) :: lifted ++bleb
::
:: Sends a tank straight to dill for printing.
::
++ print-to-dill
|= {car/@tD tan/tank}
=+ bar=emit
=+ foo=+26.bar
=+ moo=,.+26.bar
(emit (need hun) %give %note car tan)
::
:: Transfer a request to another ship's clay.
::
++ send-over-ames
|= {a/duct b/path c/ship d/{p/@ud q/riff}}
(emit a %pass b %a %want [our c] [%c %question p.q.d (scot %ud p.d) ~] q.d)
::
:: Create a request that cannot be filled immediately.
::
:: If it's a local request, we just put in in `qyx`, setting a timer if it's
:: waiting for a particular time. If it's a foreign request, we add it to
:: our request manager (ref, which is a ++rind) and make the request to the
:: foreign ship.
::
++ duce :: produce request
|= wov/wove
^+ +>
=. wov (dedupe wov)
=. qyx (~(put ju qyx) wov hen)
?~ ref
(mabe q.wov |=(@da (bait hen +<)))
|- ^+ +>+.$
=+ rav=(reve q.wov)
=+ ^= vaw ^- rave
?. ?=({$sing $v *} rav) rav
[%many %| [%ud let.dom] `case`q.p.rav r.p.rav]
=+ inx=nix.u.ref
=. +>+.$
=< ?>(?=(^ ref) .)
(send-over-ames hen [(scot %ud inx) ~] her inx syd ~ vaw)
%= +>+.$
nix.u.ref +(nix.u.ref)
bom.u.ref (~(put by bom.u.ref) inx [hen vaw])
fod.u.ref (~(put by fod.u.ref) hen inx)
==
::
:: If a similar request exists, switch to the existing request.
::
:: "Similar" requests are those %next and %many requests which are the same
:: up to starting case, but we're already after the starting case. This
:: stacks later requests for something onto the same request so that they
:: all get filled at once.
::
++ dedupe :: find existing alias
|= wov/wove
^- wove
=; won/(unit wove) (fall won wov)
=* rov q.wov
?- -.rov
$sing ~
$next
=+ aey=(case-to-aeon:ze q.p.rov)
?~ aey ~
%- ~(rep in ~(key by qyx))
|= {haw/wove res/(unit wove)}
?^ res res
?. =(p.wov p.haw) ~
=* hav q.haw
=- ?:(- `haw ~)
?& ?=($next -.hav)
=(p.hav p.rov(q q.p.hav))
::
:: only a match if this request is before
:: or at our starting case.
=+ hay=(case-to-aeon:ze q.p.hav)
?~(hay | (lte u.hay u.aey))
==
::
$mult
=+ aey=(case-to-aeon:ze p.p.rov)
?~ aey ~
%- ~(rep in ~(key by qyx))
|= {haw/wove res/(unit wove)}
?^ res res
?. =(p.wov p.haw) ~
=* hav q.haw
=- ?:(- `haw ~)
?& ?=($mult -.hav)
=(p.hav p.rov(p p.p.hav))
::
:: only a match if this request is before
:: or at our starting case, and it has been
:: tested at least that far.
=+ hay=(case-to-aeon:ze p.p.hav)
?& ?=(^ hay)
(lte u.hay u.aey)
?=(^ q.hav)
(gte u.q.hav u.aey)
==
==
::
$many
=+ aey=(case-to-aeon:ze p.q.rov)
?~ aey ~
%- ~(rep in ~(key by qyx))
|= {haw/wove res/(unit wove)}
?^ res res
?. =(p.wov p.haw) ~
=* hav q.haw
=- ?:(- `haw ~)
?& ?=($many -.hav)
=(hav rov(p.q p.q.hav))
::
:: only a match if this request is before
:: or at our starting case.
=+ hay=(case-to-aeon:ze p.q.hav)
?~(hay | (lte u.hay u.aey))
==
==
::
:: Takes a list of changed paths and finds those paths that are inside a
:: mount point (listed in `mon`).
::
:: Output is a map of mount points to {length-of-mounted-path set-of-paths}.
::
++ must-ergo
|= can/(list path)
^- (map term (pair @ud (set path)))
%- malt ^- (list (trel term @ud (set path)))
%+ murn ~(tap by mon)
|= {nam/term bem/beam}
^- (unit (trel term @ud (set path)))
=- ?~(- ~ `[nam (lent s.bem) (silt `(list path)`-)])
%+ skim can
|= pax/path
&(=(p.bem her) =(q.bem syd) =((flop s.bem) (scag (lent s.bem) pax)))
::
:: Initializes a new mount point.
::
++ mont
|= {pot/term bem/beam}
^+ +>
=+ pax=s.bem
=+ cas=(need (case-to-aeon:ze r.bem))
=+ can=(turn ~(tap by q:(aeon-to-yaki:ze cas)) head)
=+ mus=(skim can |=(paf/path =(pax (scag (lent pax) paf))))
?~ mus
+>.$
%- emit
^- move
:* hen %pass [%ergoing (scot %p her) syd ~] %f
%build our live=%.n %list
^- (list schematic:ford)
%+ turn `(list path)`mus
|= a/path
:- [%$ %path !>(a)]
:^ %cast [her syd] %mime
=+ (need (need (read-x:ze cas a)))
?: ?=(%& -<)
[%$ p.-]
(lobe-to-schematic:ze [her syd] a p.-)
==
::
:: Set permissions for a node.
::
++ perm
|= {pax/path rit/rite}
^+ +>
=/ mis/(set @ta)
%+ roll
=- ~(tap in -)
?- -.rit
$r who:(fall red.rit *rule)
$w who:(fall wit.rit *rule)
$rw (~(uni in who:(fall red.rit *rule)) who:(fall wit.rit *rule))
==
|= {w/whom s/(set @ta)}
?: |(?=(%& -.w) (~(has by cez) p.w)) s
(~(put in s) p.w)
?^ mis
=- (emit hen %give %mack `[%leaf "No such group(s): {-}"]~)
%+ roll ~(tap in `(set @ta)`mis)
|= {g/@ta t/tape}
?~ t (trip g)
:(weld t ", " (trip g))
=< (emit hen %give %mack ~)
?- -.rit
$r wake(per (put-perm per pax red.rit))
$w wake(pew (put-perm pew pax wit.rit))
$rw wake(per (put-perm per pax red.rit), pew (put-perm pew pax wit.rit))
==
::
++ put-perm
|= {pes/regs pax/path new/(unit rule)}
?~ new (~(del by pes) pax)
(~(put by pes) pax u.new)
::
:: Remove a group from all rules.
::
++ forget-crew
|= nom/@ta
%= +>
per (forget-crew-in nom per)
pew (forget-crew-in nom pew)
==
::
++ forget-crew-in
|= {nom/@ta pes/regs}
%- ~(run by pes)
|= r/rule
r(who (~(del in who.r) |+nom))
::
:: Cancel a request.
::
:: For local requests, we just remove it from `qyx`. For foreign requests,
:: we remove it from `ref` and tell the foreign ship to cancel as well.
::
++ cancel-request :: release request
^+ .
=^ wos/(list wove) qyx
:_ (~(run by qyx) |=(a/(set duct) (~(del in a) hen)))
%- ~(rep by qyx)
|= {{a/wove b/(set duct)} c/(list wove)}
?.((~(has in b) hen) c [a c])
?~ ref
=> .(ref `(unit rind)`ref) :: XX TMI
?: =(~ wos) + :: XX handle?
|- ^+ +>
?~ wos +>
$(wos t.wos, +> (mabe q.i.wos |=(@da (best hen +<))))
^+ ..cancel-request
=+ nux=(~(get by fod.u.ref) hen)
?~ nux ..cancel-request
=: fod.u.ref (~(del by fod.u.ref) hen)
bom.u.ref (~(del by bom.u.ref) u.nux)
==
(send-over-ames hen [(scot %ud u.nux) ~] her u.nux syd ~)
::
:: Handles a request.
::
:: `%sing` requests are handled by ++aver. `%next` requests are handled by
:: running ++aver at the given case, and then subsequent cases until we find
:: a case where the two results aren't equivalent. If it hasn't happened
:: yet, we wait. `%many` requests are handled by producing as much as we can
:: and then waiting if the subscription range extends into the future.
::
++ start-request
|= {for/(unit ship) rav/rave}
^+ +>
?- -.rav
$sing
=+ ver=(aver for p.rav)
?~ ver
(duce for rav)
?~ u.ver
(blub hen)
(blab hen p.rav u.u.ver)
::
:: for %mult and %next, get the data at the specified case, then go forward
:: in time until we find a change (as long as we have no unknowns).
:: if we find no change, store request for later.
:: %next is just %mult with one path, so we pretend %next = %mult here.
?($next $mult)
|^
=+ cas=?:(?=($next -.rav) q.p.rav p.p.rav)
=+ aey=(case-to-aeon:ze cas)
:: if the requested case is in the future, we can't know anything yet.
?~ aey (store ~ ~ ~)
=+ old=(read-all-at cas)
=+ yon=+(u.aey)
|- ^+ ..start-request
:: if we need future revisions to look for change, wait.
?: (gth yon let.dom)
(store `yon old ~)
=+ new=(read-all-at [%ud yon])
:: if we don't know everything now, store the request for later.
?. &((levy ~(tap by old) know) (levy ~(tap by new) know))
(store `yon old new)
:: if we do know everything now, compare old and new.
:: if there are differences, send response. if not, try next aeon.
=; res
?~ res $(yon +(yon))
(respond res)
%+ roll ~(tap by old)
|= $: {{car/care pax/path} ole/cach}
res/(map mood (each cage lobe))
==
=+ neu=(~(got by new) car pax)
?< |(?=(~ ole) ?=(~ neu))
=- ?~(- res (~(put by res) u.-))
^- (unit (pair mood (each cage lobe)))
=+ mod=[car [%ud yon] pax]
?~ u.ole
?~ u.neu ~ :: not added
`[mod u.u.neu] :: added
?~ u.neu
`[mod [%& %null [%atom %n ~] ~]] :: deleted
?: (equivalent-data:ze u.u.neu u.u.ole) ~ :: unchanged
`[mod u.u.neu] :: changed
::
++ store :: check again later
|= $: nex/(unit aeon)
old/(map (pair care path) cach)
new/(map (pair care path) cach)
==
^+ ..start-request
%+ duce for
^- rove
?: ?=($mult -.rav)
[-.rav p.rav nex old new]
:^ -.rav p.rav nex
=+ ole=~(tap by old)
?> (lte (lent ole) 1)
?~ ole ~
q:(snag 0 `(list (pair (pair care path) cach))`ole)
::
++ respond :: send changes
|= res/(map mood (each cage lobe))
^+ ..start-request
?: ?=($mult -.rav) (blas hen ~(key by res))
?> ?=({* ~ ~} res)
(blab hen n.res)
::
++ know |=({(pair care path) c/cach} ?=(^ c)) :: know about file
::
++ read-all-at :: files at case, maybe
|= cas/case
%- ~(gas by *(map (pair care path) cach))
=/ req/(set (pair care path))
?: ?=($mult -.rav) q.p.rav
[[p.p.rav r.p.rav] ~ ~]
%+ turn ~(tap by req)
|= {c/care p/path}
^- (pair (pair care path) cach)
[[c p] (aver for c cas p)]
--
::
$many
=+ nab=(case-to-aeon:ze p.q.rav)
?~ nab
?> =(~ (case-to-aeon:ze q.q.rav))
(duce for [- p q ~]:rav)
=+ huy=(case-to-aeon:ze q.q.rav)
?: &(?=(^ huy) |((lth u.huy u.nab) &(=(0 u.huy) =(0 u.nab))))
(blub hen)
=+ top=?~(huy let.dom u.huy)
=+ ear=(lobes-at-path:ze for top r.q.rav)
=. +>.$
(bleb hen u.nab ?:(p.rav ~ `[u.nab top]))
?^ huy
(blub hen)
=+ ^= ptr ^- case
[%ud +(let.dom)]
(duce for `rove`[%many p.rav [ptr q.q.rav r.q.rav] ear])
==
::
:: Print a summary of changes to dill.
::
++ print-changes
|= {wen/@da lem/nuri}
^+ +>
=+ pre=`path`~[(scot %p her) syd (scot %ud let.dom)]
?- -.lem
%| (print-to-dill '=' %leaf :(weld (trip p.lem) " " (spud pre)))
%& |- ^+ +>.^$
?~ p.lem +>.^$
=. +>.^$
%+ print-to-dill
?-(-.q.i.p.lem $del '-', $ins '+', $dif ':')
:+ %rose ["/" "/" ~]
%+ turn (weld pre p.i.p.lem)
|= a/cord
?: ((sane %ta) a)
[%leaf (trip a)]
[%leaf (dash:us (trip a) '\'' ~)]
$(p.lem t.p.lem)
==
::
:: This is the entry point to the commit flow. It deserves some
:: explaining, since it's rather long and convoluted.
::
:: In short, ++edit takes a ++nori and turns it into a ++nuri, which is the
:: same thing except that every change is a misu instead of a miso. Thus,
:: insertions are converted to the correct mark, diffs are applied, and
:: mutations (change content by replacement) are diffed. It also fills out
:: the other fields in `++dork`. We run `++apply-edit` to create the final
:: nuri and execute the changes.
::
:: We take a `++nori`, which is either a label-add request or a `++soba`,
:: which is a list of changes. If it's a label, it's easy and we just pass
:: it to `++execute-changes:ze`.
::
:: If the given `++nori` is a list of file changes, then we our goal is to
:: convert the list of `++miso` changes to `++misu` changes. In other
:: words, turn the `++nori` into a `++nuri`. Then, we pass it to
:: `++execute-changes:ze`, which applies the changes to our state, and then
:: we check out the new revision. XX reword
::
:: Anyhow, enough of high-level talk. It's time to get down to the
:: nitty-gritty.
::
:: When we get a list of `++miso` changes, we split them into four types:
:: deletions, insertions, diffs (i.e. change from diff), and mutations
:: (i.e. change from new data). We do four different things with them.
::
:: For deletions, we just fill in `del` in `++dork` with a list of the
:: deleted files.
::
:: For insertions, we distinguish bewtween `%hoon` files and all other
:: files. For `%hoon` files, we just store them to `ink` in `++dork` so
:: that we add diff them directly. `%hoon` files have to be treated
:: specially to make the bootstrapping sequence work, since the mark
:: definitions are themselves `%hoon` files.
::
:: For the other files, we make a `%tabl` compound ford request to convert
:: the data for the new file to the the mark indicated by the last knot in
:: the path.
::
:: For diffs, we make a `%tabl` compound ford request to apply the diff to
:: the existing content. We also store the diffs in `dig` in `++dork`.
::
:: For mutations, we make a `%tabl` compound ford request to convert the
:: given new data to the mark of the already-existing file. Later on in
:: `++take-castify` we'll create the ford request to actually perform the
:: diff. We also store the mutations in `muc` in `++dork`. I'm pretty
:: sure that's useless because who cares about the original data.
:: XX delete `muc`.
::
:: Finally, for performance reasons we cache any of the data that came in
:: as a `%mime` cage. We do this because many commits come from unix,
:: where they're passed in as `%mime` and need to be turned back into it
:: for the ergo. We cache both `%hoon` and non-`%hoon` inserts and
:: mutations.
::
:: At this point, the flow of control goes through the three ford requests
:: back to `++take-inserting`, `++take-diffing`, and `++take-castifying`,
:: which itself leads to `++take-mutating`. Once each of those has
:: completed, we end up at `++apply-edit`, where our unified story picks up
:: again.
::
++ edit :: apply changes
|= {wen/@da lem/nori}
^+ +>
?: ?=(%| -.lem)
=^ hat +>.$
(execute-changes:ze wen lem)
?~ hat
+>.$
wake:(print-changes:(checkout-ankh u.hat) wen lem)
?. =(~ dok)
~& %already-applying-changes +>
=+ del=(skim p.lem :(corl (cury test %del) head tail))
=+ ins=(skim p.lem :(corl (cury test %ins) head tail))
=+ dif=(skim p.lem :(corl (cury test %dif) head tail))
=+ mut=(skim p.lem :(corl (cury test %mut) head tail))
=^ ink ins
^- {(list (pair path miso)) (list (pair path miso))}
%+ skid `(list (pair path miso))`ins
|= {pax/path mis/miso}
?> ?=($ins -.mis)
?& ?=({$hoon *} (flop pax))
?=($mime p.p.mis)
==
=. +>.$
%- emil
^- (list move)
:~ :* hen %pass
[%inserting (scot %p her) syd (scot %da wen) ~]
%f %build our live=%.n %pin wen %list
^- (list schematic:ford)
%+ turn ins
|= {pax/path mis/miso}
?> ?=($ins -.mis)
:- [%$ %path -:!>(*path) pax]
=+ =>((flop pax) ?~(. %$ i))
[%cast [her syd] - [%$ p.mis]]
==
:* hen %pass
[%diffing (scot %p her) syd (scot %da wen) ~]
%f %build our live=%.n %pin wen %list
^- (list schematic:ford)
%+ turn dif
|= {pax/path mis/miso}
?> ?=($dif -.mis)
=+ (need (need (read-x:ze let.dom pax)))
?> ?=(%& -<)
:- [%$ %path -:!>(*path) pax]
[%pact [her syd] [%$ p.-] [%$ p.mis]]
==
:* hen %pass
[%castifying (scot %p her) syd (scot %da wen) ~]
%f %build our live=%.n %pin wen %list
::~ [her syd %da wen] %tabl
^- (list schematic:ford)
%+ turn mut
|= {pax/path mis/miso}
?> ?=($mut -.mis)
:- [%$ %path -:!>(*path) pax]
=+ (lobe-to-mark:ze (~(got by q:(aeon-to-yaki:ze let.dom)) pax))
[%cast [her syd] - [%$ p.mis]]
==
==
%_ +>.$
dok
:- ~
:* (turn del |=({pax/path mis/miso} ?>(?=($del -.mis) pax)))
::
%+ turn ink
|= {pax/path mis/miso}
^- (pair path cage)
?> ?=($ins -.mis)
=+ =>((flop pax) ?~(. %$ i))
[pax - [%atom %t ~] ((hard @t) +>.q.q.p.mis)]
::
~
::
%- malt
(turn dif |=({pax/path mis/miso} ?>(?=($dif -.mis) [pax p.mis])))
::
~
::
%- malt
(turn mut |=({pax/path mis/miso} ?>(?=($mut -.mis) [pax p.mis])))
::
~
::
~
::
%- molt ^- (list (pair path mime))
;: weld
^- (list (pair path mime))
%+ murn ins
|= {pax/path mis/miso}
^- (unit (pair path mime))
?> ?=($ins -.mis)
?. ?=($mime p.p.mis)
~
`[pax ((hard mime) q.q.p.mis)]
::
^- (list (pair path mime))
%+ murn ink
|= {pax/path mis/miso}
^- (unit (pair path mime))
?> ?=($ins -.mis)
?> ?=($mime p.p.mis)
`[pax ((hard mime) q.q.p.mis)]
::
^- (list (pair path mime))
%+ murn mut
|= {pax/path mis/miso}
^- (unit (pair path mime))
?> ?=($mut -.mis)
?. ?=($mime p.p.mis)
~
`[pax ((hard mime) q.q.p.mis)]
==
==
==
::
:: Handle result of insertion.
::
:: For commit flow overview, see ++edit.
::
:: Insertions are cast to the correct mark, and here we put the result in
:: ins.dok. If dif and mut are full in dok (i.e. we've already processed
:: diffs and mutations), then we go ahead and run ++apply-edit.
::
++ take-inserting
|= {wen/@da res/made-result:ford}
^+ +>
?~ dok
~& %clay-take-inserting-unexpected-made +>.$
?. =(~ ins.u.dok)
~& %clay-take-inserting-redundant-made +>.$
=- =. ins.u.dok `-
?: ?& ?=(^ dif.u.dok)
?=(^ mut.u.dok)
==
(apply-edit wen)
+>.$
^- (list (pair path cage))
%+ turn (made-result-to-success-cages res)
|= {pax/cage cay/cage}
?. ?=($path p.pax)
~|(%clay-take-inserting-strange-path-mark !!)
[((hard path) q.q.pax) cay]
::
:: Handle result of diffing.
::
:: For commit flow overview, see ++edit.
::
:: Diffs are applied to the original data, and here we put the result in
:: dif.dok. If ins and mut are full in dok (i.e. we've already processed
:: insertions and mutations), then we go ahead and run ++apply-edit.
::
++ take-diffing
|= {wen/@da res/made-result:ford}
^+ +>
?~ dok
~& %clay-take-diffing-unexpected-made +>.$
?. =(~ dif.u.dok)
~& %clay-take-diffing-redundant-made +>.$
=- =. dif.u.dok `-
?: ?& ?=(^ ins.u.dok)
?=(^ mut.u.dok)
==
(apply-edit wen)
+>.$
^- (list (trel path lobe cage))
%+ turn (made-result-to-cages res)
|= {pax/cage cay/cage}
^- (pair path (pair lobe cage))
?. ?=($path p.pax)
~|(%clay-take-diffing-strange-path-mark !!)
=+ paf=((hard path) q.q.pax)
[paf (page-to-lobe:ze [p q.q]:cay) (~(got by dig.u.dok) paf)]
::
:: Handle result of casting mutations.
::
:: For commit flow overview, see ++edit.
::
:: The new content from a mutation is first casted to the correct mark, and
:: here we hash the correctly-marked content and put the result in muh.dok.
:: Then we diff the new content against the original content. The result of
:: this is handled in ++take-mutating.
::
++ take-castify
|= {wen/@da res/made-result:ford}
^+ +>
?~ dok
~& %clay-take-castifying-unexpected-made +>.$
?. =(~ muh.u.dok)
~& %clay-take-castifying-redundant-made +>.$
=+ ^- cat/(list (pair path cage))
%+ turn (made-result-to-cages res)
|= {pax/cage cay/cage}
?. ?=($path p.pax)
~|(%castify-bad-path-mark !!)
[((hard path) q.q.pax) cay]
=. muh.u.dok
%- malt
%+ turn cat
|= {pax/path cay/cage}
[pax (page-to-lobe:ze [p q.q]:cay)]
%- emit
:* hen %pass
[%mutating (scot %p her) syd (scot %da wen) ~]
%f %build our live=%.n %pin wen %list
^- (list schematic:ford)
%+ turn cat
|= {pax/path cay/cage}
:- [%$ %path -:!>(*path) pax]
=+ (lobe-to-schematic:ze [her syd] pax (~(got by q:(aeon-to-yaki:ze let.dom)) pax))
[%diff [her syd] - [%$ cay]]
==
::
:: Handle result of diffing mutations.
::
:: For commit flow overview, see ++edit.
::
:: We put the calculated diffs of the new content vs the old content (from
:: ++take-castify) in mut.dok. If ins and mut are full in dok (i.e. we've
:: already processed insertions and diffs), then we go ahead and run
:: ++apply-edit.
::
++ take-mutating
|= {wen/@da res/made-result:ford}
^+ +>
?~ dok
~& %clay-take-mutating-unexpected-made +>.$
?. =(~ mut.u.dok)
~& %clay-take-mutating-redundant-made +>.$
=- =. mut.u.dok `-
?: ?& ?=(^ ins.u.dok)
?=(^ dif.u.dok)
==
(apply-edit wen)
+>.$
^- (list (trel path lobe cage))
%+ murn (made-result-to-cages res)
|= {pax/cage cay/cage}
^- (unit (pair path (pair lobe cage)))
?. ?=($path p.pax)
~|(%clay-take-mutating-strange-path-mark !!)
?: ?=($null p.cay)
~
=+ paf=((hard path) q.q.pax)
`[paf (~(got by muh.u.dok) paf) cay]
::
:: Now that dok is completely filled, we can apply the changes in the commit.
::
:: We collect the relevant data from dok and run ++execute-changes to apply
:: them to our state. Then we run ++checkout-ankh to update our ankh (cache
:: of the content at the current aeon).
::
++ apply-edit
|= wen/@da
^+ +>
:: XX we do the same in ++take-patch, which is confusing and smells foul.
:: Here we run ++execute-changes, but we throw away the state changes. The
:: call in ++take-patch is the one that matters, but we print out changes
:: here, and we also use that info to call ++checkout-ankh (which is what
:: leads to the ++take-patch call).
::
:: I'm guessing this shouldn't call ++execute-changes at all but rather
:: generate the information it needs directly.
=+ ^- sim/(list (pair path misu))
?~ dok
~|(%no-changes !!)
?> ?=(^ ins.u.dok)
?> ?=(^ dif.u.dok)
?> ?=(^ mut.u.dok)
;: weld
^- (list (pair path misu))
(turn del.u.dok |=(pax/path [pax %del ~]))
::
^- (list (pair path misu))
(turn ink.u.dok |=({pax/path cay/cage} [pax %ins cay]))
::
^- (list (pair path misu))
(turn u.ins.u.dok |=({pax/path cay/cage} [pax %ins cay]))
::
^- (list (pair path misu))
(turn u.dif.u.dok |=({pax/path cal/{lobe cage}} [pax %dif cal]))
::
^- (list (pair path misu))
(turn u.mut.u.dok |=({pax/path cal/{lobe cage}} [pax %dif cal]))
==
=+ hat=(execute-changes:ze wen %& sim)
?~ dok ~& %no-changes !!
?~ -.hat
([print-changes(dok ~)]:.(+>.$ +.hat) wen %& sim)
(checkout-ankh(lat.ran lat.ran.+.hat) u.-.hat)
::
:: Takes a map of paths to lobes and tells ford to convert to an ankh.
::
:: Specifically, we tell ford to convert each lobe into a blob, then we call
:: ++take-patch to apply the result to our current ankh and update unix.
::
++ checkout-ankh
|= hat/(map path lobe)
^+ +>
%- emit
:* hen %pass [%patching (scot %p her) syd ~] %f
%build our live=%.n %list
^- (list schematic:ford)
%+ turn ~(tap by hat)
|= {a/path b/lobe}
^- schematic:ford
:- [%$ %path-hash !>([a b])]
(lobe-to-schematic:ze [her syd] a b)
==
::
:: Handle the result of the ford call in ++checkout-ankh.
::
:: We apply the changes by calling ++execute-changes, then we convert the
:: result of the ford call from ++checkout-ankh into a map of paths to data
:: for the current aeon of this desk. We turn this into an ankh and store
:: it to our state. Finally, we choose which paths need to be synced to
:: unix, and convert the data at those paths to mime (except those paths
:: which were added originally as mime, because we still have that stored in
:: mim in dok). The result is handled in ++take-ergo.
::
++ take-patch
|= res/made-result:ford
^+ +>
:: ~& %taking-patch
?. ?=([%complete %success *] res)
=. dok ~
=* message (made-result-as-error:ford res)
(print-to-dill '!' %rose [" " "" ""] leaf+"clay patch failed" message)
:: ~& %editing
=+ ^- sim/(list (pair path misu))
?~ dok
~|(%no-changes !!)
?> ?=(^ ins.u.dok)
?> ?=(^ dif.u.dok)
?> ?=(^ mut.u.dok)
;: weld
^- (list (pair path misu))
(turn del.u.dok |=(pax/path [pax %del ~]))
::
^- (list (pair path misu))
(turn ink.u.dok |=({pax/path cay/cage} [pax %ins cay]))
::
^- (list (pair path misu))
(turn u.ins.u.dok |=({pax/path cay/cage} [pax %ins cay]))
::
^- (list (pair path misu))
(turn u.dif.u.dok |=({pax/path cal/{lobe cage}} [pax %dif cal]))
::
^- (list (pair path misu))
(turn u.mut.u.dok |=({pax/path cal/{lobe cage}} [pax %dif cal]))
==
=^ hat +>.$ (execute-changes:ze now %& sim)
:: XX do same in ++apply-edit
?~ dok ~& %no-dok +>.$
=>
%= .
+>.$
?< ?=(~ hat) :: XX whut?
(print-changes now %& sim)
==
?~ dok ~& %no-dok +>.$
=+ ^- cat/(list (trel path lobe cage))
%+ turn (made-result-to-cages res)
|= {pax/cage cay/cage}
?. ?=($path-hash p.pax)
~|(%patch-bad-path-mark !!)
[-< -> +]:[((hard {path lobe}) q.q.pax) cay]
:: ~& %canned
:: ~& %checking-out
=. ank.dom (map-to-ankh:ze (malt cat))
:: ~& %checked-out
:: ~& %waking
=. +>.$ =>(wake ?>(?=(^ dok) .))
:: ~& %waked
?~ hez +>.$(dok ~)
=+ mus=(must-ergo (turn sim head))
?: =(~ mus)
+>.$(dok ~)
=+ ^- sum/(set path)
=+ (turn ~(tap by mus) (corl tail tail))
%+ roll -
|= {pak/(set path) acc/(set path)}
(~(uni in acc) pak)
=+ can=(malt sim)
:: ~& %forming-ergo
:: =- ~& %formed-ergo -
%- emit(dok ~)
:* hen %pass [%ergoing (scot %p her) syd ~] %f
%build our live=%.n %list
^- (list schematic:ford)
%+ turn ~(tap in sum)
|= a/path
^- schematic:ford
:- [%$ %path !>(a)]
=+ b=(~(got by can) a)
?: ?=($del -.b)
[%$ %null !>(~)]
=+ (~(get by mim.u.dok) a)
?^ - [%$ %mime !>(u.-)]
:^ %cast [her syd] %mime
=+ (need (need (read-x:ze let.dom a)))
?: ?=(%& -<)
[%$ p.-]
(lobe-to-schematic:ze [her syd] a p.-)
==
::
:: Send new data to unix.
::
:: Combine the paths in mim in dok and the result of the ford call in
:: ++take-patch to create a list of nodes that need to be sent to unix (in
:: an %ergo card) to keep unix up-to-date. Send this to unix.
::
++ take-ergo
|= res/made-result:ford
^+ +>
?: ?=([%incomplete *] res)
(print-to-dill '!' %rose [" " "" ""] leaf+"clay ergo failed" tang.res)
?. ?=([%complete %success *] res)
=* message message.build-result.res
(print-to-dill '!' %rose [" " "" ""] leaf+"clay ergo failed" message)
?~ hez ~|(%no-sync-duct !!)
=+ ^- can/(map path (unit mime))
%- malt ^- mode
%+ turn (made-result-to-cages res)
|= {pax/cage mim/cage}
?. ?=($path p.pax)
~|(%ergo-bad-path-mark !!)
:- ((hard path) q.q.pax)
?. ?=($mime p.mim)
~
`((hard mime) q.q.mim)
=+ mus=(must-ergo (turn ~(tap by can) head))
%- emil
%+ turn ~(tap by mus)
|= {pot/term len/@ud pak/(set path)}
:* u.hez %give %ergo pot
%+ turn ~(tap in pak)
|= pax/path
[(slag len pax) (~(got by can) pax)]
==
::
:: Called when a foreign ship answers one of our requests.
::
:: After updating ref (our request manager), we handle %x, %w, and %y
:: responses. For %x, we call ++validate-x to validate the type of the
:: response. For %y, we coerce the result to an arch.
::
:: For %w, we check to see if it's a @ud response (e.g. for
:: cw+//~sampel-sipnym/desk/~time-or-label). If so, it's easy. Otherwise,
:: we look up our subscription request, then assert the response was a nako.
:: If this is the first update for a desk, we assume everything's well-typed
:: and call ++apply-foreign-update directly. Otherwise, we call
:: ++validate-plops to verify that the data we're getting is well typed.
::
:: Be careful to call ++wake if/when necessary (i.e. when the state changes
:: enough that a subscription could be filled). Every case must call it
:: individually.
::
++ take-foreign-update :: external change
|= {inx/@ud rut/(unit rand)}
^+ +>
?> ?=(^ ref)
|- ^+ +>+.$
=+ ruv=(~(get by bom.u.ref) inx)
?~ ruv +>+.$
=> ?. |(?=(~ rut) ?=($sing -.q.u.ruv)) .
%_ .
bom.u.ref (~(del by bom.u.ref) inx)
fod.u.ref (~(del by fod.u.ref) p.u.ruv)
==
?~ rut
=+ rav=`rave`q.u.ruv
=< ?>(?=(^ ref) .)
%_ wake
lim
?.(&(?=($many -.rav) ?=($da -.q.q.rav)) lim `@da`p.q.q.rav)
::
haw.u.ref
?. ?=($sing -.rav) haw.u.ref
(~(put by haw.u.ref) p.rav ~)
==
?- p.p.u.rut
$d
~| %totally-temporary-error-please-replace-me
!!
$p
~| %requesting-foreign-permissions-is-invalid
!!
$t
~| %requesting-foreign-directory-is-vaporware
!!
$u
~| %im-thinkin-its-prolly-a-bad-idea-to-request-rang-over-the-network
!!
::
$v
~| %weird-we-shouldnt-get-a-dome-request-over-the-network
!!
::
$x
=< ?>(?=(^ ref) .)
(validate-x p.p.u.rut q.p.u.rut q.u.rut r.u.rut)
::
$w
=. haw.u.ref
%+ ~(put by haw.u.ref)
[p.p.u.rut q.p.u.rut q.u.rut]
:+ ~
p.r.u.rut
?+ p.r.u.rut ~| %strange-w-over-nextwork !!
$cass !>(((hard cass) q.r.u.rut))
$null [[%atom %n ~] ~]
$nako !>(~|([%harding [&1 &2 &3]:q.r.u.rut] ((hard nako) q.r.u.rut)))
==
?. ?=($nako p.r.u.rut) [?>(?=(^ ref) .)]:wake
=+ rav=`rave`q.u.ruv
?> ?=($many -.rav)
|- ^+ +>+.^$
=+ nez=[%w [%ud let.dom] ~]
=+ nex=(~(get by haw.u.ref) nez)
?~ nex +>+.^$
?~ u.nex +>+.^$ :: should never happen
=. nak.u.ref `((hard nako) q.q.u.u.nex)
=. +>+.^$
?: =(0 let.dom)
=< ?>(?=(^ ref) .)
%+ apply-foreign-update
?.(?=($da -.q.q.rav) ~ `p.q.q.rav)
(need nak.u.ref)
=< ?>(?=(^ ref) .)
%^ validate-plops
[%ud let.dom]
?.(?=($da -.q.q.rav) ~ `p.q.q.rav)
bar:(need nak.u.ref)
%= $
haw.u.ref (~(del by haw.u.ref) nez)
==
::
$y
=< ?>(?=(^ ref) .)
%_ wake
haw.u.ref
%+ ~(put by haw.u.ref)
[p.p.u.rut q.p.u.rut q.u.rut]
`[p.r.u.rut !>(((hard arch) q.r.u.rut))]
==
::
$z
~| %its-prolly-not-reasonable-to-request-ankh-over-the-network-sorry
!!
==
::
:: Check that given data is actually of the mark it claims to be.
::
:: Result is handled in ++take-foreign-x
::
++ validate-x
|= {car/care cas/case pax/path peg/page}
^+ +>
%- emit
:* hen %pass
[%foreign-x (scot %p our) (scot %p her) syd car (scot cas) pax]
%f %build our live=%.n %pin
(case-to-date cas)
(vale-page [her syd] peg)
==
::
:: Create a schematic to validate a page.
::
:: If the mark is %hoon, we short-circuit the validation for bootstrapping
:: purposes.
::
++ vale-page
|= [disc=disc:ford a=page]
^- schematic:ford
?. ?=($hoon p.a) [%vale disc a]
?. ?=(@t q.a) [%dude |.(>%weird-hoon<) %ride [%zpzp ~] %$ *cage]
[%$ p.a [%atom %t ~] q.a]
::
:: Verify the foreign data is of the the mark it claims to be.
::
:: This completes the receiving of %x foreign data.
::
++ take-foreign-x
|= {car/care cas/case pax/path res/made-result:ford}
^+ +>
?> ?=(^ ref)
?. ?=([%complete %success *] res)
~| "validate foreign x failed"
=+ why=(made-result-as-error:ford res)
~> %mean.|.(%*(. >[%plop-fail %why]< |1.+> why))
!!
=* as-cage `(result-to-cage:ford build-result.res)
wake(haw.u.ref (~(put by haw.u.ref) [car cas pax] as-cage))
::
:: When we get a %w foreign update, store this in our state.
::
:: We get the commits and blobs from the nako and add them to our object
:: store, then we update the map of aeons to commits and the latest aeon.
::
:: We call ++wake at the end to update anyone whose subscription is fulfilled
:: by this state change.
::
++ apply-foreign-update :: apply subscription
|= $: lem/(unit @da) :: complete up to
gar/(map aeon tako) :: new ids
let/aeon :: next id
lar/(set yaki) :: new commits
bar/(set blob) :: new content
==
^+ +>
=< wake
=+ ^- nut/(map tako yaki)
%- molt ^- (list (pair tako yaki))
%+ turn ~(tap in lar)
|= yak/yaki
[r.yak yak]
=+ ^- nat/(map lobe blob)
%- molt ^- (list (pair lobe blob))
%+ turn ~(tap in bar)
|= bol/blob
[p.bol bol]
~| :* %bad-foreign-update
:* gar=gar
let=let
nut=(~(run by nut) ,~)
nat=(~(run by nat) ,~)
==
:* hitdom=hit.dom
letdom=let.dom
hutran=(~(run by hut.ran) ,~)
latran=(~(run by lat.ran) ,~)
==
==
=+ hit=(~(uni by hit.dom) gar)
=+ let=let
=+ hut=(~(uni by hut.ran) nut)
=+ lat=(~(uni by lat.ran) nat)
=+ ?: =(0 let) ~
=+ yon=`aeon`1 :: sanity check
|-
~| yon=yon
=+ tak=(~(got by hit) yon)
=+ yak=(~(got by hut) tak)
=+ %- ~(urn by q.yak)
|= {pax/path lob/lobe}
~| [pax=path lob=lobe]
(~(got by lat) lob)
?: =(let yon)
~
$(yon +(yon))
%= +>.$
lim (max (fall lem lim) lim)
hit.dom hit
let.dom (max let let.dom)
hut.ran hut
lat.ran lat
==
::
:: Make sure that incoming data is of the correct type.
::
:: This is a ford call to make sure that incoming data is of the mark it
:: claims to be. The result is handled in ++take-foreign-plops.
::
++ validate-plops
|= {cas/case lem/(unit @da) pop/(set plop)}
^+ +>
=+ lum=(scot %da (fall lem *@da))
%- emit
:* hen %pass
[%foreign-plops (scot %p our) (scot %p her) syd lum ~]
%f %build our live=%.n %pin (case-to-date cas)
%list
^- (list schematic:ford)
%+ turn ~(tap in pop)
|= a/plop
?- -.a
$direct [[%$ %blob !>([%direct p.a *page])] (vale-page [her syd] p.q.a q.q.a)]
$delta
[[%$ %blob !>([%delta p.a q.a *page])] (vale-page [her syd] p.r.a q.r.a)]
==
==
::
:: Verify that foreign plops validated correctly. If so, apply them to our
:: state.
::
++ take-foreign-plops
|= {lem/(unit @da) res/made-result:ford}
^+ +>
?> ?=(^ ref)
?> ?=(^ nak.u.ref)
=+ ^- lat/(list blob)
%+ turn ~|("validate foreign plops failed" (made-result-to-cages res))
|= {bob/cage cay/cage}
?. ?=($blob p.bob)
~| %plop-not-blob
!!
=+ bol=((hard blob) q.q.bob)
?- -.bol
$delta [-.bol p.bol q.bol p.cay q.q.cay]
$direct [-.bol p.bol p.cay q.q.cay]
==
%^ apply-foreign-update
lem
gar.u.nak.u.ref
:+ let.u.nak.u.ref
lar.u.nak.u.ref
(silt lat)
::
++ mabe :: maybe fire function
|= {rov/rove fun/$-(@da _.)}
^+ +>.$
%+ fall
%+ bind
^- (unit @da)
?- -.rov
$sing
?. ?=($da -.q.p.rov) ~
`p.q.p.rov
::
$next ~
::
$mult ~
::
$many
%^ hunt lth
?. ?=($da -.p.q.rov) ~
?.((lth now p.p.q.rov) ~ [~ p.p.q.rov])
?. ?=($da -.q.q.rov) ~
(hunt gth [~ now] [~ p.q.q.rov])
==
fun
+>.$
::
++ reve
|= rov/rove
^- rave
?- -.rov
$sing rov
$next [- p]:rov
$mult [- p]:rov
$many [- p q]:rov
==
::
:: Loop through open subscriptions and check if we can fill any of them.
::
++ wake :: update subscribers
^+ .
=+ xiq=~(tap by qyx)
=| xaq/(list {p/wove q/(set duct)})
|- ^+ ..wake
?~ xiq
..wake(qyx (~(gas by *cult) xaq))
?: =(~ q.i.xiq) $(xiq t.xiq, xaq xaq) :: drop forgotten
=* for p.p.i.xiq
=* rov q.p.i.xiq
?- -.rov
$sing
=+ cas=?~(ref ~ (~(get by haw.u.ref) `mood`p.rov))
?^ cas
%= $
xiq t.xiq
..wake ?~ u.cas (blub-all q.i.xiq ~)
(blab-all q.i.xiq p.rov %& u.u.cas)
==
=+ nao=(case-to-aeon:ze q.p.rov)
?~ nao $(xiq t.xiq, xaq [i.xiq xaq])
:: ~& %reading-at-aeon
=+ vid=(read-at-aeon:ze for u.nao p.rov)
:: ~& %red-at-aeon
?~ vid
:: ?: =(0 u.nao)
:: ~& [%oh-poor `path`[syd '0' r.p.rov]]
:: $(xiq t.xiq)
:: ~& [%oh-well desk=syd mood=p.rov aeon=u.nao]
$(xiq t.xiq, xaq [i.xiq xaq])
$(xiq t.xiq, ..wake (balk-all q.i.xiq u.vid p.rov))
::
:: %next is just %mult with one path, so we pretend %next = %mult here.
?($next $mult)
:: because %mult requests need to wait on multiple files for each
:: revision that needs to be checked for changes, we keep two cache maps.
:: {old} is the revision at {(dec yon)}, {new} is the revision at {yon}.
:: if we have no {yon} yet, that means it was still unknown last time
:: we checked.
=* vor rov
|^
=/ rov/rove
?: ?=($mult -.vor) vor
=* mod p.vor
:* %mult
[q.mod [[p.mod r.mod] ~ ~]]
q.vor
[[[p.mod r.mod] r.vor] ~ ~]
~
==
?> ?=($mult -.rov)
=* mol p.rov
=* yon q.rov
=* old r.rov
=* new s.rov
:: we will either respond, or store the maybe updated request.
=; res/(each (map mood (each cage lobe)) rove)
?: ?=(%& -.res)
(respond p.res)
(store p.res)
|- :: so that we can retry for the next aeon if possible/needed.
:: if we don't have an aeon yet, see if we have one now.
?~ yon
=+ aey=(case-to-aeon:ze p.mol)
:: if we still don't, wait.
?~ aey |+rov
:: if we do, update the request and retry.
$(rov [-.rov mol `+(u.aey) ~ ~])
:: if old isn't complete, try filling in the gaps.
=? old !(complete old)
(read-unknown mol(p [%ud (dec u.yon)]) old)
:: if the next aeon we want to compare is in the future, wait again.
=+ aey=(case-to-aeon:ze [%ud u.yon])
?~ aey |+rov
:: if new isn't complete, try filling in the gaps.
=? new !(complete new)
(read-unknown mol(p [%ud u.yon]) new)
:: if they're still not both complete, wait again.
?. ?& (complete old)
(complete new)
==
|+rov
:: if there are any changes, send response. if none, move onto next aeon.
=; res
?^ res &+res
$(rov [-.rov mol `+(u.yon) old ~])
%+ roll ~(tap by old)
|= $: {{car/care pax/path} ole/cach}
res/(map mood (each cage lobe))
==
=+ neu=(~(got by new) car pax)
?< |(?=(~ ole) ?=(~ neu))
=- ?~(- res (~(put by res) u.-))
^- (unit (pair mood (each cage lobe)))
=+ mod=[car [%ud u.yon] pax]
?~ u.ole
?~ u.neu ~ :: not added
`[mod u.u.neu] :: added
?~ u.neu
`[mod [%& %null [%atom %n ~] ~]] :: deleted
?: (equivalent-data:ze u.u.neu u.u.ole) ~ :: unchanged
`[mod u.u.neu] :: changed
::
++ store :: check again later
|= rov/rove
^+ ..wake
=- ^^$(xiq t.xiq, xaq [i.xiq(p [for -]) xaq])
?> ?=($mult -.rov)
?: ?=($mult -.vor) rov
?> ?=({* ~ ~} r.rov)
=* one n.r.rov
[%next [p.p.one p.p.rov q.p.one] q.rov q.one]
::
++ respond :: send changes
|= res/(map mood (each cage lobe))
^+ ..wake
::NOTE want to use =-, but compiler bug?
?: ?=($mult -.vor)
^^$(xiq t.xiq, ..wake (blas-all q.i.xiq ~(key by res)))
?> ?=({* ~ ~} res)
^^$(xiq t.xiq, ..wake (blab-all q.i.xiq n.res))
::
++ complete :: no unknowns
|= hav/(map (pair care path) cach)
?& ?=(^ hav)
(levy ~(tap by `(map (pair care path) cach)`hav) know)
==
::
++ know |=({(pair care path) c/cach} ?=(^ c)) :: know about file
::
++ read-unknown :: fill in the blanks
|= {mol/mool hav/(map (pair care path) cach)}
%. |= {{c/care p/path} o/cach}
?^(o o (aver for c p.mol p))
=- ~(urn by -)
?^ hav hav
%- ~(gas by *(map (pair care path) cach))
(turn ~(tap in q.mol) |=({c/care p/path} [[c p] ~]))
--
::
$many
=+ mot=`moat`q.rov
=* sav r.rov
=+ nab=(case-to-aeon:ze p.mot)
?~ nab
$(xiq t.xiq, xaq [i.xiq xaq])
=+ huy=(case-to-aeon:ze q.mot)
?~ huy
=. p.mot [%ud +(let.dom)]
%= $
xiq t.xiq
xaq [i.xiq(q.q.p mot) xaq]
..wake =+ ^= ear
(lobes-at-path:ze for let.dom r.mot)
?: =(sav ear) ..wake
(bleb-all q.i.xiq let.dom ?:(p.rov ~ `[u.nab let.dom]))
==
%= $
xiq t.xiq
..wake =- (blub-all:- q.i.xiq ~)
=+ ^= ear
(lobes-at-path:ze for u.huy r.mot)
?: =(sav ear) (blub-all q.i.xiq ~)
(bleb-all q.i.xiq +(u.nab) ?:(p.rov ~ `[u.nab u.huy]))
==
==
++ drop-me
^+ .
?~ mer
.
%- emit(mer ~) ^- move :*
hen.u.mer %give %mere %| %user-interrupt
>sor.u.mer< >our< >cas.u.mer< >gem.u.mer< ~
==
::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
::
:: This core has no additional state, and the distinction exists purely for
:: documentation. The overarching theme is that `++de` directly contains
:: logic for metadata about the desk, while `++ze` is composed primarily
:: of helper functions for manipulating the desk state (`++dome`) itself.
:: Functions include:
::
:: -- converting between cases, commit hashes, commits, content hashes,
:: and content
:: -- creating commits and content and adding them to the tree
:: -- finding which data needs to be sent over the network to keep the
:: other urbit up-to-date
:: -- reading from the file tree through different `++care` options
:: -- the `++me` core for merging.
::
:: The dome is composed of the following:
::
:: -- `ank` is the ankh, which is the file data itself. An ankh is both
:: a possible file and a possible directory. An ankh has both:
:: -- `fil`, a possible file, stored as both a cage and its hash
:: -- `dir`, a map of @ta to more ankhs.
:: -- `let` is the number of the most recent revision.
:: -- `hit` is a map of revision numbers to commit hashes.
:: -- `lab` is a map of labels to revision numbers.
::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
++ ze
|%
:: These convert between aeon (version number), tako (commit hash), yaki
:: (commit data structure), lobe (content hash), and blob (content).
++ aeon-to-tako ~(got by hit.dom)
++ aeon-to-yaki (cork aeon-to-tako tako-to-yaki)
++ lobe-to-blob ~(got by lat.ran)
++ tako-to-yaki ~(got by hut.ran)
++ lobe-to-mark
|= a/lobe
=> (lobe-to-blob a)
?- -
$delta p.q
$direct p.q
==
::
:: Creates a schematic out of a page (which is a [mark noun]).
::
++ page-to-schematic
|= [disc=disc:ford a=page]
^- schematic:ford
::
?. ?=($hoon p.a) [%volt disc a]
:: %hoon bootstrapping
[%$ p.a [%atom %t ~] q.a]
::
:: Creates a schematic out of a lobe (content hash).
::
++ lobe-to-schematic
|= [disc=disc:ford pax=path lob=lobe]
^- schematic:ford
::
=+ ^- hat/(map path lobe)
?: =(let.dom 0)
~
q:(aeon-to-yaki let.dom)
=+ lol=`(unit lobe)`?.(=(~ ref) `0vsen.tinel (~(get by hat) pax))
|- ^- schematic:ford
?: =([~ lob] lol)
=+ (need (need (read-x let.dom pax)))
?> ?=(%& -<)
[%$ p.-]
=+ bol=(~(got by lat.ran) lob)
?- -.bol
$direct (page-to-schematic disc q.bol)
$delta ~| delta+q.q.bol
[%pact disc $(lob q.q.bol) (page-to-schematic disc r.bol)]
==
::
:: Hashes a page to get a lobe.
::
++ page-to-lobe |=(page (shax (jam +<)))
::
:: Checks whether two pieces of data (either cages or lobes) are the same.
::
++ equivalent-data
|= {one/(each cage lobe) two/(each cage lobe)}
^- ?
?: ?=(%& -.one)
?: ?=(%& -.two)
=([p q.q]:p.one [p q.q]:p.two)
=(p.two (page-to-lobe [p q.q]:p.one))
?: ?=(%& -.two)
=(p.one (page-to-lobe [p q.q]:p.two))
=(p.one p.two)
::
:: Make a direct blob out of a page.
::
++ make-direct-blob
|= p/page
^- blob
[%direct (page-to-lobe p) p]
::
:: Make a delta blob out of a lobe, mark, lobe of parent, and page of diff.
::
++ make-delta-blob
|= {p/lobe q/{p/mark q/lobe} r/page}
^- blob
[%delta p q r]
::
:: Make a commit out of a list of parents, content, and date.
::
++ make-yaki
|= {p/(list tako) q/(map path lobe) t/@da}
^- yaki
=+ ^= has
%^ cat 7 (sham [%yaki (roll p add) q t])
(sham [%tako (roll p add) q t])
[p q has t]
::
:: Reduce a case to an aeon (version number)
::
:: We produce null if we can't yet reduce the case for whatever resaon
:: (usually either the time or aeon hasn't happened yet or the label hasn't
:: been created), we produce null.
::
++ case-to-aeon
|= lok/case :: act count through
^- (unit aeon)
?- -.lok
$da
?: (gth p.lok lim) ~
|- ^- (unit aeon)
?: =(0 let.dom) [~ 0] :: avoid underflow
?: %+ gte p.lok
=< t
~| [%letdom let=let.dom hit=hit.dom hut=(~(run by hut.ran) ,~)]
~| [%getdom (~(get by hit.dom) let.dom)]
%- aeon-to-yaki
let.dom
[~ let.dom]
$(let.dom (dec let.dom))
::
$tas (~(get by lab.dom) p.lok)
$ud ?:((gth p.lok let.dom) ~ [~ p.lok])
==
::
:: Convert a map of paths to data into an ankh.
::
++ map-to-ankh
|= hat/(map path (pair lobe cage))
^- ankh
:: %- cosh
%+ roll ~(tap by hat)
|= {{pat/path lob/lobe zar/cage} ank/ankh}
^- ankh
:: %- cosh
?~ pat
ank(fil [~ lob zar])
=+ nak=(~(get by dir.ank) i.pat)
%= ank
dir %+ ~(put by dir.ank) i.pat
$(pat t.pat, ank (fall nak *ankh))
==
::
:: Applies a change list, creating the commit and applying it to the
:: current state.
::
:: Also produces the new data from the commit for convenience.
::
++ execute-changes
|= {wen/@da lem/nuri}
^- {(unit (map path lobe)) _..ze}
?- -.lem
%&
=^ yak lat.ran (forge-yaki wen p.lem) :: create new commit
?. ?| =(0 let.dom)
!=((lent p.yak) 1)
!=(q.yak q:(aeon-to-yaki let.dom))
==
`..ze :: silently ignore
=: let.dom +(let.dom)
hit.dom (~(put by hit.dom) +(let.dom) r.yak)
hut.ran (~(put by hut.ran) r.yak yak)
==
[`q.yak ..ze]
:: +>.$(ank (map-to-ankh q.yak))
%|
?< (~(has by lab.dom) p.lem)
[~ ..ze(lab.dom (~(put by lab.dom) p.lem let.dom))]
==
::
:: Create a commit out of a list of changes against the current state.
::
:: First call ++apply-changes to apply the list of changes and get the new
:: state of the content. Then, call ++update-lat to add any new content to
:: the blob store. Finally, create the new yaki (commit) and produce both
:: it and the new lat (blob store).
::
++ forge-yaki
|= {wen/@da lem/suba}
=+ par=?:(=(0 let.dom) ~ [(aeon-to-tako let.dom) ~])
=+ new=(apply-changes lem)
=+ gar=(update-lat new lat.ran)
:- (make-yaki par +.gar wen) :: from existing diff
-.gar :: fix lat
::
:: Apply a list of changes against the current state and produce the new
:: state.
::
++ apply-changes :: apply-changes:ze
|= lar/(list {p/path q/misu}) :: store changes
^- (map path blob)
=+ ^= hat :: current state
?: =(let.dom 0) :: initial commit
~ :: has nothing
=< q
%- aeon-to-yaki
let.dom
=- =+ sar=(silt (turn lar |=({p/path *} p))) :: changed paths
%+ roll ~(tap by hat) :: find unchanged
=< .(bat bar)
|= {{pax/path gar/lobe} bat/(map path blob)}
?: (~(has in sar) pax) :: has update
bat
%+ ~(put by bat) pax
~| [pax gar (lent ~(tap by lat.ran))]
(lobe-to-blob gar) :: use original
^= bar ^- (map path blob)
%+ roll lar
|= {{pax/path mys/misu} bar/(map path blob)}
^+ bar
?- -.mys
$ins :: insert if not exist
?: (~(has by bar) pax) !! ::
?: (~(has by hat) pax) !! ::
%+ ~(put by bar) pax
%- make-direct-blob
?: &(?=($mime -.p.mys) =([%hoon ~] (slag (dec (lent pax)) pax)))
`page`[%hoon +.+.q.q.p.mys]
[p q.q]:p.mys
::
$del :: delete if exists
?. |((~(has by hat) pax) (~(has by bar) pax)) !!
(~(del by bar) pax)
::
$dif :: mutate, must exist
=+ ber=(~(get by bar) pax) :: XX typed
=+ her==>((flop pax) ?~(. %$ i))
?~ ber
=+ har=(~(get by hat) pax)
?~ har !!
%+ ~(put by bar) pax
(make-delta-blob p.mys [(lobe-to-mark u.har) u.har] [p q.q]:q.mys)
:: XX check vase !evil
:: XX of course that's a problem, p.u.ber isn't in rang since it
:: was just created. We shouldn't be sending multiple
:: diffs
:: %+ ~(put by bar) pax
:: %^ make-delta-blob p.mys
:: [(lobe-to-mark p.u.ber) p.u.ber]
:: [p q.q]:q.mys
:: :: XX check vase !evil
~|([%two-diffs-for-same-file syd pax] !!)
==
::
:: Update the object store with new blobs.
::
:: Besides new object store, converts the given (map path blob) to
:: (map path lobe).
::
++ update-lat :: update-lat:ze
|= {lag/(map path blob) sta/(map lobe blob)} :: fix lat
^- {(map lobe blob) (map path lobe)}
%+ roll ~(tap by lag)
=< .(lut sta)
|= {{pat/path bar/blob} {lut/(map lobe blob) gar/(map path lobe)}}
?~ (~(has by lut) p.bar)
[lut (~(put by gar) pat p.bar)]
:- (~(put by lut) p.bar bar)
(~(put by gar) pat p.bar)
::
:: Gets a map of the data at the given path and all children of it.
::
++ lobes-at-path
|= {for/(unit ship) yon/aeon pax/path}
^- (map path lobe)
?: =(0 yon) ~
:: we use %z for the check because it looks at all child paths.
?: |(?=(~ for) (may-read u.for %z yon pax)) ~
%- malt
%+ skim
%~ tap by
=< q
%- aeon-to-yaki
yon
|= {p/path q/lobe}
?| ?=(~ pax)
?& !?=(~ p)
=(-.pax -.p)
$(p +.p, pax +.pax)
== ==
::
:: Creates a nako of all the changes between a and b.
::
++ make-nako
|= {a/aeon b/aeon}
^- nako
:+ ?> (lte b let.dom)
|-
?: =(b let.dom)
hit.dom
$(hit.dom (~(del by hit.dom) let.dom), let.dom (dec let.dom))
b
?: =(0 b)
[~ ~]
(data-twixt-takos (~(get by hit.dom) a) (aeon-to-tako b))
::
:: Gets the data between two commit hashes, assuming the first is an
:: ancestor of the second.
::
:: Get all the takos before `a`, then get all takos before `b` except the
:: ones we found before `a`. Then convert the takos to yakis and also get
:: all the data in all the yakis.
::
++ data-twixt-takos
|= {a/(unit tako) b/tako}
^- {(set yaki) (set plop)}
=+ old=?~(a ~ (reachable-takos u.a))
=+ ^- yal/(set tako)
%- silt
%+ skip
~(tap in (reachable-takos b))
|=(tak/tako (~(has in old) tak))
:- (silt (turn ~(tap in yal) tako-to-yaki))
(silt (turn ~(tap in (new-lobes (new-lobes ~ old) yal)) lobe-to-blob))
::
:: Traverses parentage and finds all ancestor hashes
::
++ reachable-takos :: reachable
|= p/tako
^- (set tako)
=+ y=(tako-to-yaki p)
%+ roll p.y
=< .(s (~(put in *(set tako)) p))
|= {q/tako s/(set tako)}
?: (~(has in s) q) :: already done
s :: hence skip
(~(uni in s) ^$(p q)) :: otherwise traverse
::
:: Get all the lobes that are referenced in `a` except those that are
:: already in `b`.
::
++ new-lobes :: object hash set
|= {b/(set lobe) a/(set tako)} :: that aren't in b
^- (set lobe)
%+ roll ~(tap in a)
|= {tak/tako bar/(set lobe)}
^- (set lobe)
=+ yak=(tako-to-yaki tak)
%+ roll ~(tap by q.yak)
=< .(far bar)
|= {{path lob/lobe} far/(set lobe)}
^- (set lobe)
?~ (~(has in b) lob) :: don't need
far
=+ gar=(lobe-to-blob lob)
?- -.gar
$direct (~(put in far) lob)
$delta (~(put in $(lob q.q.gar)) lob)
==
::
:: Gets the permissions that apply to a particular node.
::
:: If the node has no permissions of its own, we use its parent's.
:: If no permissions have been set for the entire tree above the node,
:: we default to fully private (empty whitelist).
::
++ read-p
|= pax/path
^- (unit (unit (each cage lobe)))
=- [~ ~ %& %noun !>(-)]
:- (read-p-in pax per.red)
(read-p-in pax pew.red)
::
++ read-p-in
|= {pax/path pes/regs}
^- dict
=/ rul/(unit rule) (~(get by pes) pax)
?^ rul
:+ pax mod.u.rul
%- ~(rep in who.u.rul)
|= {w/whom out/(pair (set ship) (map @ta crew))}
?: ?=({%& @p} w)
[(~(put in p.out) +.w) q.out]
=/ cru/(unit crew) (~(get by cez.ruf) +.w)
?~ cru out
[p.out (~(put by q.out) +.w u.cru)]
?~ pax [/ %white ~ ~]
$(pax (scag (dec (lent pax)) `path`pax))
::
++ may-read
|= {who/ship car/care yon/aeon pax/path}
^- ?
?+ car
(allowed-by who pax per.red)
::
$p
=(who our)
::
?($y $z)
=+ tak=(~(get by hit.dom) yon)
?~ tak |
=+ yak=(tako-to-yaki u.tak)
=+ len=(lent pax)
=- (levy ~(tap in -) |=(p/path (allowed-by who p per.red)))
%+ roll ~(tap in (~(del in ~(key by q.yak)) pax))
|= {p/path s/(set path)}
?. =(pax (scag len p)) s
%- ~(put in s)
?: ?=($z car) p
(scag +(len) p)
==
::
++ may-write
|= {w/ship p/path}
(allowed-by w p pew.red)
::
++ allowed-by
|= {who/ship pax/path pes/regs}
^- ?
=/ rul/real rul:(read-p-in pax pes)
=/ in-list/?
?| (~(has in p.who.rul) who)
::
%- ~(rep by q.who.rul)
|= {{@ta cru/crew} out/_|}
?: out &
(~(has in cru) who)
==
?: =(%black mod.rul)
!in-list
in-list
:: +read-t: produce the list of paths within a yaki with :pax as prefix
::
++ read-t
|= [yon=aeon pax=path]
^- (unit (unit [%file-list (hypo (list path))]))
:: if asked for version 0, produce an empty list of files
::
?: =(0 yon)
``[%file-list -:!>(*(list path)) *(list path)]
:: if asked for a future version, we don't have an answer
::
?~ tak=(~(get by hit.dom) yon)
~
:: look up the yaki snapshot based on the version
::
=/ yak=yaki (tako-to-yaki u.tak)
:: calculate the path length once outside the loop
::
=/ path-length (lent pax)
::
:^ ~ ~ %file-list
:- -:!>(*(list path))
^- (list path)
:: sort the matching paths alphabetically
::
=- (sort - aor)
:: traverse the filesystem, filtering for paths with :pax as prefix
::
%+ skim ~(tap in ~(key by q.yak))
|=(paf=path =(pax (scag path-length paf)))
::
:: Checks for existence of a node at an aeon.
::
:: This checks for existence of content at the node, and does *not* look
:: at any of its children.
::
++ read-u
|= {yon/aeon pax/path}
^- (unit (unit (each {$null (hypo ~)} lobe)))
=+ tak=(~(get by hit.dom) yon)
?~ tak
~
``[%& %null [%atom %n ~] ~]
::
:: Gets the dome (desk state) at a particular aeon.
::
:: For past aeons, we don't give an actual ankh in the dome, but the rest
:: of the data is legit.
::
++ read-v
|= {yon/aeon pax/path}
^- (unit (unit {$dome (hypo dome)}))
?: (lth yon let.dom)
:* ~ ~ %dome -:!>(%dome)
ank=`[[%ank-in-old-v-not-implemented *ankh] ~ ~]
let=yon
hit=(molt (skim ~(tap by hit.dom) |=({p/@ud *} (lte p yon))))
lab=(molt (skim ~(tap by lab.dom) |=({* p/@ud} (lte p yon))))
==
?: (gth yon let.dom)
~
``[%dome -:!>(*dome) dom]
::
:: Gets all cases refering to the same revision as the given case.
::
:: For the %da case, we give just the canonical timestamp of the revision.
::
++ read-w
|= cas/case
^- (unit (unit (each cage lobe)))
=+ aey=(case-to-aeon cas)
?~ aey ~
=- [~ ~ %& %cass !>(-)]
^- cass
:- u.aey
?: =(0 u.aey) `@da`0
t:(aeon-to-yaki u.aey)
::
:: Gets the data at a node.
::
:: If it's in our ankh (current state cache), we can just produce the
:: result. Otherwise, we've got to look up the node at the aeon to get the
:: content hash, use that to find the blob, and use the blob to get the
:: data. We also special-case the hoon mark for bootstrapping purposes.
::
++ read-x
|= {yon/aeon pax/path}
^- (unit (unit (each cage lobe)))
?: =(0 yon)
[~ ~]
=+ tak=(~(get by hit.dom) yon)
?~ tak
~
?: &(?=(~ ref) =(yon let.dom))
:- ~
%+ bind
fil.ank:(descend-path:(zu ank.dom) pax)
|=(a/{p/lobe q/cage} [%& q.a])
=+ yak=(tako-to-yaki u.tak)
=+ lob=(~(get by q.yak) pax)
?~ lob
[~ ~]
=+ mar=(lobe-to-mark u.lob)
?. ?=($hoon mar)
[~ ~ %| u.lob]
:^ ~ ~ %&
:+ mar [%atom %t ~]
|- ^- @t :: (urge cord) would be faster
=+ bol=(lobe-to-blob u.lob)
?: ?=($direct -.bol)
((hard @t) q.q.bol)
?> ?=($delta -.bol)
=+ txt=$(u.lob q.q.bol)
?> ?=($txt-diff p.r.bol)
=+ dif=((hard (urge cord)) q.r.bol)
=, format
=+ pac=(of-wain (lurk:differ (to-wain (cat 3 txt '\0a')) dif))
(end 3 (dec (met 3 pac)) pac)
::
:: Gets an arch (directory listing) at a node.
::
++ read-y
|= {yon/aeon pax/path}
^- (unit (unit {$arch (hypo arch)}))
?: =(0 yon)
``[%arch -:!>(*arch) *arch]
=+ tak=(~(get by hit.dom) yon)
?~ tak
~
=+ yak=(tako-to-yaki u.tak)
=+ len=(lent pax)
:^ ~ ~ %arch
:: ~& cy+pax
:- -:!>(*arch)
^- arch
:- (~(get by q.yak) pax)
^- (map knot ~)
%- molt ^- (list (pair knot ~))
%+ turn
^- (list (pair path lobe))
%+ skim ~(tap by (~(del by q.yak) pax))
|= {paf/path lob/lobe}
=(pax (scag len paf))
|= {paf/path lob/lobe}
=+ pat=(slag len paf)
[?>(?=(^ pat) i.pat) ~]
::
:: Gets a recursive hash of a node and all its children.
::
++ read-z
|= {yon/aeon pax/path}
^- (unit (unit {$uvi (hypo @uvI)}))
?: =(0 yon)
``uvi+[-:!>(*@uvI) *@uvI]
=+ tak=(~(get by hit.dom) yon)
?~ tak
~
=+ yak=(tako-to-yaki u.tak)
=+ len=(lent pax)
:: ~& read-z+[yon=yon qyt=~(wyt by q.yak) pax=pax]
=+ ^- descendants/(list (pair path lobe))
:: ~& %turning
:: =- ~& %turned -
%+ turn
:: ~& %skimming
:: =- ~& %skimmed -
%+ skim ~(tap by (~(del by q.yak) pax))
|= {paf/path lob/lobe}
=(pax (scag len paf))
|= {paf/path lob/lobe}
[(slag len paf) lob]
=+ us=(~(get by q.yak) pax)
^- (unit (unit {$uvi (hypo @uvI)}))
:^ ~ ~ %uvi
:- -:!>(*@uvI)
?: &(?=(~ descendants) ?=(~ us))
*@uvI
%+ roll
^- (list (pair path lobe))
[[~ ?~(us *lobe u.us)] descendants]
|=({{path lobe} @uvI} (shax (jam +<)))
::
:: Get a value at an aeon.
::
:: Value can be either null, meaning we don't have it yet, {null null},
:: meaning we know it doesn't exist, or {null null (each cage lobe)},
:: meaning we either have the value directly or a content hash of the
:: value.
::
++ read-at-aeon :: read-at-aeon:ze
|= {for/(unit ship) yon/aeon mun/mood} :: seek and read
^- (unit (unit (each cage lobe)))
?. |(?=(~ for) (may-read u.for p.mun yon r.mun))
~
?- p.mun
$d
=+ rom=(~(get by fat.ruf) her)
?~ rom
~&(%null-rom-cd [~ ~])
?^ r.mun
~&(%no-cd-path [~ ~])
[~ ~ %& %noun !>(~(key by dos.u.rom))]
::
$p (read-p r.mun)
$t (bind (read-t yon r.mun) (lift |=(a=cage [%& a])))
$u (read-u yon r.mun)
$v (bind (read-v yon r.mun) (lift |=(a/cage [%& a])))
$w (read-w q.mun)
$x (read-x yon r.mun)
$y (bind (read-y yon r.mun) (lift |=(a/cage [%& a])))
$z (bind (read-z yon r.mun) (lift |=(a/cage [%& a])))
==
::
:: Traverse an ankh.
::
++ zu :: filesystem
|= ank/ankh :: filesystem state
=| ram/path :: reverse path into
|%
++ descend :: descend
|= lol/@ta
^+ +>
=+ you=(~(get by dir.ank) lol)
+>.$(ram [lol ram], ank ?~(you [~ ~] u.you))
::
++ descend-path :: descend recursively
|= way/path
^+ +>
?~(way +> $(way t.way, +> (descend i.way)))
--
::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
::
:: This core is specific to any currently running merge. This is
:: basically a simple (DAG-shaped) state machine. We always say we're
:: merging from 'ali' to 'bob'. The basic steps, not all of which are
:: always needed, are:
::
:: -- fetch ali's desk
:: -- diff ali's desk against the mergebase
:: -- diff bob's desk against the mergebase
:: -- merge the diffs
:: -- build the new state
:: -- "checkout" (apply to actual `++dome`) the new state
:: -- "ergo" (tell unix about) any changes
::
:: The state filled in order through each step. See ++mery for a
:: description of the state.
::
::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
++ me :: merge ali into bob
|= {ali/(pair ship desk) alh/(unit dome) new/?} :: from
=+ bob=`(pair ship desk)`[our syd] :: to
=+ ^- dat/(each mery term)
?~ mer
?: new
=+ *mery
[%& -(sor ali:+, hen hen:+, wat %null)]
[%| %not-actually-merging]
?. new
?: =(ali sor.u.mer)
[%& u.mer]
~& :* %already-merging-from-somewhere-else
ali=ali
sor=sor.u.mer
gem=gem.u.mer
wat=wat.u.mer
cas=cas.u.mer
hen=hen
henmer=hen.u.mer
==
[%| %already-merging-from-somewhere-else]
~& :* %already-merging-from-somewhere
ali=ali
sor=sor.u.mer
gem=gem.u.mer
wat=wat.u.mer
cas=cas.u.mer
hen=hen
henmer=hen.u.mer
==
[%| %already-merging-from-somewhere]
?: ?=(%| -.dat)
~|(p.dat !!)
=+ dat=p.dat
=| don/? :: keep going
|%
::
:: Resolve. If we're done, produce a result.
::
++ abet
^+ ..me
?: don
..me(mer `dat)
=. mer ~
=> (emit hen.dat %give %mere gon.dat)
..me
::
:: Send a move.
::
++ emit
|= move
%_(+> ..ze (^emit +<))
::
:: Send a list of moves.
::
++ emil
|= (list move)
%_(+> ..ze (^emil +<))
::
:: Route responses from clay or ford.
::
:: Check that the stage of the response is the same as the stage we think
:: we're in, and call the appropriate function for that stage.
::
++ route
|= {sat/term res/(each riot made-result:ford)}
^+ +>.$
?. =(sat wat.dat)
~| :* %hold-your-horses-merge-out-of-order
sat=sat
wat=wat.dat
ali=ali
bob=bob
hepres=-.res
==
!!
?+ +< ~|((crip <[%bad-stage sat ?~(-.res %riot %gage)]>) !!)
{$ali %& *} %.(p.res fetched-ali)
{$diff-ali %| *} %.(p.res diffed-ali)
{$diff-bob %| *} %.(p.res diffed-bob)
{$merge %| *} %.(p.res merged)
{$build %| *} %.(p.res built)
{$checkout %| *} %.(p.res checked-out)
{$ergo %| *} %.(p.res ergoed)
==
::
:: Start a merge.
::
:: Sets cas.dat, gem.dat, and bob.dat. Unless there's an error, leads
:: to ++fetch-ali.
::
++ start
|= {cas/case gem/germ}
^+ +>
?: &(=(0 let.dom) !?=(?($init $that) gem))
(error:he %no-bob-desk ~)
=. cas.dat cas
=. gem.dat gem
?: =(0 let.dom)
fetch-ali(gem.dat %init)
=+ (~(get by hit.dom) let.dom)
?~ -
(error:he %no-bob--version ~)
=+ (~(get by hut.ran) u.-)
?~ -
(error:he %no-bob-commit ~)
fetch-ali(bob.dat u.-)
::
:: Tell clay to get the state at the requested case for ali's desk.
::
++ fetch-ali
^+ .
%- emit(wat.dat %ali)
:* hen %pass
[%merge (scot %p p.bob) q.bob (scot %p p.ali) q.ali %ali ~]
%c %warp [p.bob p.ali] q.ali
`[%sing %v cas.dat /]
==
::
:: Parse the state of ali's desk, and get the most recent commit.
::
:: Sets ali.dat.
::
++ fetched-ali
|= rot/riot
^+ +>
?~ rot
(error:he %bad-fetch-ali ~)
=+ ^= dum
%- (hard {ank/* let/@ud hit/(map @ud tako) lab/(map @tas @ud)})
q.q.r.u.rot
?: =(0 let.dum)
(error:he %no-ali-desk ~)
=+ (~(get by hit.dum) let.dum)
?~ -
(error:he %no-ali-version ~)
=+ (~(get by hut.ran) u.-)
?~ -
(error:he %no-ali-commit ~)
=. ali.dat u.-
|-
?- gem.dat
::
:: If this is an %init merge, we set the ali's commit to be bob's, and
:: we checkout the new state.
::
$init
=. new.dat ali.dat
=. hut.ran (~(put by hut.ran) r.new.dat new.dat)
=. erg.dat (~(run by q.ali.dat) |=(lobe %&))
checkout
::
:: If this is a %this merge, we check to see if ali's and bob's commits
:: are the same, in which case we're done. Otherwise, we check to see
:: if ali's commit is in the ancestry of bob's, in which case we're
:: done. Otherwise, we create a new commit with bob's data plus ali
:: and bob as parents. Then we checkout the new state.
::
$this
?: =(r.ali.dat r.bob.dat) done:he
?: (~(has in (reachable-takos r.bob.dat)) r.ali.dat) done:he
=. new.dat (make-yaki [r.ali.dat r.bob.dat ~] q.bob.dat now)
=. hut.ran (~(put by hut.ran) r.new.dat new.dat)
=. erg.dat ~
checkout
::
:: If this is a %that merge, we check to see if ali's and bob's commits
:: are the same, in which case we're done. Otherwise, we create a new
:: commit with ali's data plus ali and bob as parents. Then we
:: checkout the new state.
::
$that
?: =(r.ali.dat r.bob.dat) done:he
=. new.dat (make-yaki [r.ali.dat r.bob.dat ~] q.ali.dat now)
=. hut.ran (~(put by hut.ran) r.new.dat new.dat)
=. erg.dat
%- malt ^- (list {path ?})
%+ murn ~(tap by (~(uni by q.bob.dat) q.ali.dat))
|= {pax/path lob/lobe}
^- (unit {path ?})
=+ a=(~(get by q.ali.dat) pax)
=+ b=(~(get by q.bob.dat) pax)
?: =(a b)
~
`[pax !=(~ a)]
checkout
::
:: If this is a %fine merge, we check to see if ali's and bob's commits
:: are the same, in which case we're done. Otherwise, we check to see
:: if ali's commit is in the ancestry of bob's, in which case we're
:: done. Otherwise, we check to see if bob's commit is in the ancestry
:: of ali's. If not, this is not a fast-forward merge, so we error
:: out. If it is, we add ali's commit to bob's desk and checkout.
::
$fine
?: =(r.ali.dat r.bob.dat)
:: ~& [%fine-trivial ali=<ali> bob=<bob> r.ali.dat r.bob.dat]
done:he
?: (~(has in (reachable-takos r.bob.dat)) r.ali.dat)
:: ~& [%fine-mostly-trivial ali=<ali> bob=<bob>]
done:he
?. (~(has in (reachable-takos r.ali.dat)) r.bob.dat)
:: ~& [%fine-not-so-trivial ali=<ali> bob=<bob>]
(error:he %bad-fine-merge ~)
:: ~& [%fine-lets-go ali=<ali> bob=<bob>]
=. new.dat ali.dat
=. erg.dat
%- malt ^- (list {path ?})
%+ murn ~(tap by (~(uni by q.bob.dat) q.ali.dat))
|= {pax/path lob/lobe}
^- (unit {path ?})
=+ a=(~(get by q.ali.dat) pax)
=+ b=(~(get by q.bob.dat) pax)
?: =(a b)
~
`[pax !=(~ a)]
checkout
::
:: If this is a %meet, %mate, or %meld merge, we may need to fetch
:: more data. If this merge is either trivial or a fast-forward, we
:: short-circuit to either ++done or the %fine case.
::
:: Otherwise, we find the best common ancestor(s) with
:: ++find-merge-points. If there's no common ancestor, we error out.
:: Additionally, if there's more than one common ancestor (i.e. this
:: is a criss-cross merge), we error out. Something akin to git's
:: recursive merge should probably be used here, but it isn't.
::
:: Once we have our single best common ancestor (merge base), we store
:: it in bas.dat. If this is a %mate or %meld merge, we need to diff
:: ali's commit against the merge base, so we pass control over to
:: ++diff-ali.
::
:: Otherwise (i.e. this is a %meet merge), we create a list of all the
:: changes between the mege base and ali's commit and store it in
:: dal.dat, and we put a similar list for bob's commit in dob.dat.
:: Then we create bof, which is the a set of changes in both ali and
:: bob's commits. If this has any members, we have conflicts, which is
:: an error in a %meet merge, so we error out.
::
:: Otherwise, we merge the merge base data with ali's data and bob's
:: data, which produces the data for the new commit, which we put in
:: new.dat. Then we checkout the new data.
::
?($meet $mate $meld)
?: =(r.ali.dat r.bob.dat)
done:he
?. (~(has by hut.ran) r.bob.dat)
(error:he %bad-bob-tako >r.bob.dat< ~)
?: (~(has in (reachable-takos r.bob.dat)) r.ali.dat)
done:he
?: (~(has in (reachable-takos r.ali.dat)) r.bob.dat)
$(gem.dat %fine)
=+ r=(find-merge-points:he ali.dat bob.dat)
?~ r
(error:he %merge-no-merge-base ~)
?. ?=({* ~ ~} r)
=+ (lent ~(tap in `(set yaki)`r))
(error:he %merge-criss-cross >[-]< ~)
=. bas.dat n.r
?: ?=(?($mate $meld) gem.dat)
diff-ali
=. new.dal.dat
%- molt
%+ skip ~(tap by q.ali.dat)
|= {pax/path lob/lobe}
(~(has by q.bas.dat) pax)
=. cal.dal.dat
%- molt
%+ skip ~(tap by q.ali.dat)
|= {pax/path lob/lobe}
=+ (~(get by q.bas.dat) pax)
|(=(~ -) =([~ lob] -))
=. can.dal.dat
~
=. old.dal.dat
%- malt ^- (list {path ~})
%+ murn ~(tap by q.bas.dat)
|= {pax/path lob/lobe}
^- (unit (pair path ~))
?. =(~ (~(get by q.ali.dat) pax))
~
`[pax ~]
=. new.dob.dat
%- molt
%+ skip ~(tap by q.bob.dat)
|= {pax/path lob/lobe}
(~(has by q.bas.dat) pax)
=. cal.dob.dat
%- molt
%+ skip ~(tap by q.bob.dat)
|= {pax/path lob/lobe}
=+ (~(get by q.bas.dat) pax)
|(=(~ -) =([~ lob] -))
=. can.dob.dat
~
=. old.dob.dat
%- malt ^- (list {path ~})
%+ murn ~(tap by q.bas.dat)
|= {pax/path lob/lobe}
^- (unit (pair path ~))
?. =(~ (~(get by q.bob.dat) pax))
~
`[pax ~]
=+ ^= bof
%- %~ int by
%- ~(uni by `(map path *)`new.dal.dat)
%- ~(uni by `(map path *)`cal.dal.dat)
%- ~(uni by `(map path *)`can.dal.dat)
`(map path *)`old.dal.dat
%- ~(uni by `(map path *)`new.dob.dat)
%- ~(uni by `(map path *)`cal.dob.dat)
%- ~(uni by `(map path *)`can.dob.dat)
`(map path *)`old.dob.dat
?^ bof
(error:he %meet-conflict >(~(run by `(map path *)`bof) ,~)< ~)
=+ ^- old/(map path lobe)
%+ roll ~(tap by (~(uni by old.dal.dat) old.dob.dat))
=< .(old q.bas.dat)
|= {{pax/path ~} old/(map path lobe)}
(~(del by old) pax)
=+ ^= hat
%- ~(uni by old)
%- ~(uni by new.dal.dat)
%- ~(uni by new.dob.dat)
%- ~(uni by cal.dal.dat)
cal.dob.dat
=+ ^- del/(map path ?)
(~(run by (~(uni by old.dal.dat) old.dob.dat)) |=(~ %|))
=. new.dat
(make-yaki [r.ali.dat r.bob.dat ~] hat now)
=. hut.ran (~(put by hut.ran) r.new.dat new.dat)
=. erg.dat %- ~(uni by del)
^- (map path ?)
%. |=(lobe %&)
~(run by (~(uni by new.dal.dat) cal.dal.dat))
checkout
==
::
:: Common code for ++diff-ali and ++diff-bob.
::
:: Diffs a commit against a the mergebase. Result comes back in either
:: ++diffed-ali or ++diffed-ali.
::
++ diff-bas
|= {nam/term yak/yaki oth/(trel ship desk case) yuk/yaki}
^+ +>
%- emit
^- move
:* hen %pass
=+ (cat 3 %diff- nam)
[%merge (scot %p p.bob) q.bob (scot %p p.ali) q.ali - ~]
%f %build p.bob live=%.n %pin (case-to-date r.oth) %list
^- (list schematic:ford)
%+ murn ~(tap by q.bas.dat)
|= {pax/path lob/lobe}
^- (unit schematic:ford)
=+ a=(~(get by q.yak) pax)
?~ a
~
?: =(lob u.a)
~
=+ (~(get by q.yuk) pax)
?~ -
~
?: =(u.a u.-)
~
:- ~
=/ disc [p.oth q.oth]
:- [%$ %path !>(pax)]
[%diff disc (lobe-to-schematic disc pax lob) (lobe-to-schematic disc pax u.a)]
==
::
:: Diff ali's commit against the mergebase.
::
++ diff-ali
^+ .
(diff-bas(wat.dat %diff-ali) %ali ali.dat [p.ali q.ali cas.dat] bob.dat)
::
:: Store the diff of ali's commit versus the mergebase in dal.dat and
:: call ++diff-bob.
::
++ diffed-ali
|= res/made-result:ford
^+ +>
=+ tay=(made-result-to-cages-or-error res)
?: ?=(%| -.tay)
(error:he %diff-ali-bad-made leaf+"merge diff ali failed" p.tay)
=+ can=(cages-to-map p.tay)
?: ?=(%| -.can)
(error:he %diff-ali p.can)
?: ?=(%| -.gon.dat)
+>.$
=. new.dal.dat
%- molt
%+ skip ~(tap by q.ali.dat)
|= {pax/path lob/lobe}
(~(has by q.bas.dat) pax)
=. cal.dal.dat
%- molt ^- (list (pair path lobe))
%+ murn ~(tap by q.bas.dat)
|= {pax/path lob/lobe}
^- (unit (pair path lobe))
=+ a=(~(get by q.ali.dat) pax)
=+ b=(~(get by q.bob.dat) pax)
?. ?& ?=(^ a)
!=([~ lob] a)
=([~ lob] b)
==
~
`[pax +.a]
=. can.dal.dat p.can
=. old.dal.dat
%- malt ^- (list {path ~})
%+ murn ~(tap by q.bas.dat)
|= {pax/path lob/lobe}
?. =(~ (~(get by q.ali.dat) pax))
~
(some pax ~)
diff-bob
::
:: Diff bob's commit against the mergebase.
::
++ diff-bob
^+ .
(diff-bas(wat.dat %diff-bob) %bob bob.dat [p.bob q.bob da+now] ali.dat)
::
:: Store the diff of bob's commit versus the mergebase in dob.dat and
:: call ++merge.
::
++ diffed-bob
|= res/made-result:ford
^+ +>
=+ tay=(made-result-to-cages-or-error res)
?: ?=(%| -.tay)
(error:he %diff-bob-bad-made leaf+"merge diff bob failed" p.tay)
=+ can=(cages-to-map p.tay)
?: ?=(%| -.can)
(error:he %diff-bob p.can)
?: ?=(%| -.gon.dat)
+>.$
=. new.dob.dat
%- molt
%+ skip ~(tap by q.bob.dat)
|= {pax/path lob/lobe}
(~(has by q.bas.dat) pax)
=. cal.dob.dat
%- molt ^- (list (pair path lobe))
%+ murn ~(tap by q.bas.dat)
|= {pax/path lob/lobe}
^- (unit (pair path lobe))
=+ a=(~(get by q.ali.dat) pax)
=+ b=(~(get by q.bob.dat) pax)
?. ?& ?=(^ b)
!=([~ lob] b)
=([~ lob] a)
==
~
`[pax +.b]
=. can.dob.dat p.can
=. old.dob.dat
%- malt ^- (list {path ~})
%+ murn ~(tap by q.bas.dat)
|= {pax/path lob/lobe}
?. =(~ (~(get by q.bob.dat) pax))
~
(some pax ~)
merge
::
:: Merge the conflicting diffs in can.dat.dat and can.dob.dat.
::
:: Result is handled in ++merged.
::
++ merge
^+ .
|- ^+ +.$
?+ gem.dat ~| [%merge-weird-gem gem.dat] !!
?($mate $meld)
%- emit(wat.dat %merge)
:* hen %pass
[%merge (scot %p p.bob) q.bob (scot %p p.ali) q.ali %merge ~]
%f %build p.bob live=%.n %list
^- (list schematic:ford)
%+ turn ~(tap by (~(int by can.dal.dat) can.dob.dat))
|= {pax/path *}
^- schematic:ford
=+ cal=(~(got by can.dal.dat) pax)
=+ cob=(~(got by can.dob.dat) pax)
=+ ^= her
=+ (slag (dec (lent pax)) pax)
?~(- %$ i.-)
:- [%$ %path !>(pax)]
[%join [p.bob q.bob] her [%$ cal] [%$ cob]]
==
==
::
:: Put merged changes in bof.dat and call ++build.
::
++ merged
|= res/made-result:ford
=+ tay=(made-result-to-cages-or-error res)
?: ?=(%| -.tay)
(error:he %merge-bad-made leaf+"merging failed" p.tay)
=+ can=(cages-to-map p.tay)
?: ?=(%| -.can)
(error:he %merge p.can)
=+ bof=(~(run by p.can) (flit |=({a/mark ^} !?=($null a))))
?: ?=(%| -.gon.dat)
+>.$
=. bof.dat bof
build
::
:: Apply the patches in bof.dat to get the new merged content.
::
:: Result is handled in ++built
::
++ build
^+ .
%- emit(wat.dat %build)
:* hen %pass
[%merge (scot %p p.bob) q.bob (scot %p p.ali) q.ali %build ~]
%f %build p.bob live=%.n %list
^- (list schematic:ford)
%+ murn ~(tap by bof.dat)
|= {pax/path cay/(unit cage)}
^- (unit schematic:ford)
?~ cay
~
:- ~
:- [%$ %path !>(pax)]
=+ (~(get by q.bas.dat) pax)
?~ -
~| %mate-strange-diff-no-base
!!
[%pact [p.bob q.bob] (lobe-to-schematic [p.bob q.bob] pax u.-) [%$ u.cay]]
==
::
:: Create new commit.
::
:: Gather all the changes between ali's and bob's commits and the
:: mergebase. This is similar to the %meet of ++fetched-ali, except
:: where they touch the same file, we use the merged versions we created
:: earlier (bop.dat).
::
:: Sum all the changes into a new commit (new.dat), and checkout.
::
++ built
|= res/made-result:ford
^+ +>
=+ tay=(made-result-to-cages-or-error res)
?: ?=(%| -.tay)
(error:he %build-bad-made leaf+"delta building failed" p.tay)
=+ bop=(cages-to-map p.tay)
?: ?=(%| -.bop)
(error:he %built p.bop)
?: ?=(%| -.gon.dat)
+>.$
=. bop.dat p.bop
=+ ^- con/(map path *) :: 2-change conflict
%- molt
%+ skim ~(tap by bof.dat)
|=({pax/path cay/(unit cage)} ?=(~ cay))
=+ ^- cas/(map path lobe) :: conflict base
%- ~(urn by con)
|= {pax/path *}
(~(got by q.bas.dat) pax)
=. con :: change+del conflict
%- ~(uni by con)
%- malt ^- (list {path *})
%+ skim ~(tap by old.dal.dat)
|= {pax/path ~}
?: (~(has by new.dob.dat) pax)
~| %strange-add-and-del
!!
(~(has by can.dob.dat) pax)
=. con :: change+del conflict
%- ~(uni by con)
%- malt ^- (list {path *})
%+ skim ~(tap by old.dob.dat)
|= {pax/path ~}
?: (~(has by new.dal.dat) pax)
~| %strange-del-and-add
!!
(~(has by can.dal.dat) pax)
=. con :: add+add conflict
%- ~(uni by con)
%- malt ^- (list {path *})
%+ skip ~(tap by (~(int by new.dal.dat) new.dob.dat))
|= {pax/path *}
=((~(got by new.dal.dat) pax) (~(got by new.dob.dat) pax))
?: &(?=($mate gem.dat) ?=(^ con))
=+ (turn ~(tap by `(map path *)`con) |=({path *} >[+<-]<))
(error:he %mate-conflict -)
=+ ^- old/(map path lobe) :: oldies but goodies
%+ roll ~(tap by (~(uni by old.dal.dat) old.dob.dat))
=< .(old q.bas.dat)
|= {{pax/path ~} old/(map path lobe)}
(~(del by old) pax)
=+ ^- can/(map path cage) :: content changes
%- molt
^- (list (pair path cage))
%+ murn ~(tap by bof.dat)
|= {pax/path cay/(unit cage)}
^- (unit (pair path cage))
?~ cay
~
`[pax u.cay]
=^ hot lat.ran :: new content
^- {(map path lobe) (map lobe blob)}
%+ roll ~(tap by can)
=< .(lat lat.ran)
|= {{pax/path cay/cage} hat/(map path lobe) lat/(map lobe blob)}
=+ ^= bol
=+ (~(get by q.bas.dat) pax)
?~ -
~| %mate-strange-diff-no-base
!!
%^ make-delta-blob
(page-to-lobe [p q.q]:(~(got by bop.dat) pax))
[(lobe-to-mark u.-) u.-]
[p q.q]:cay
[(~(put by hat) pax p.bol) (~(put by lat) p.bol bol)]
:: ~& old=(~(run by old) mug)
:: ~& newdal=(~(run by new.dal.dat) mug)
:: ~& newdob=(~(run by new.dob.dat) mug)
:: ~& caldal=(~(run by cal.dal.dat) mug)
:: ~& caldob=(~(run by cal.dob.dat) mug)
:: ~& hot=(~(run by hot) mug)
:: ~& cas=(~(run by cas) mug)
=+ ^- hat/(map path lobe) :: all the content
%- ~(uni by old)
%- ~(uni by new.dal.dat)
%- ~(uni by new.dob.dat)
%- ~(uni by cal.dal.dat)
%- ~(uni by cal.dob.dat)
%- ~(uni by hot)
cas
:: ~& > hat=(~(run by hat) mug)
=+ ^- del/(map path ?)
(~(run by (~(uni by old.dal.dat) old.dob.dat)) |=(~ %|))
=. gon.dat [%& (silt (turn ~(tap by con) head))]
=. new.dat
(make-yaki [r.ali.dat r.bob.dat ~] hat now)
=. hut.ran (~(put by hut.ran) r.new.dat new.dat)
=. erg.dat %- ~(uni by del)
^- (map path ?)
%. |=(lobe %&)
%~ run by
%- ~(uni by new.dal.dat)
%- ~(uni by cal.dal.dat)
%- ~(uni by cas)
hot
checkout
::
:: Convert new commit into actual data (i.e. blobs rather than lobes).
::
:: Result is handled in ++checked-out.
::
++ checkout
^+ .
=+ ^- val/beak
?: ?=($init gem.dat)
[p.ali q.ali cas.dat]
[p.bob q.bob da+now]
%- emit(wat.dat %checkout)
:* hen %pass
[%merge (scot %p p.bob) q.bob (scot %p p.ali) q.ali %checkout ~]
%f %build p.bob live=%.n %pin (case-to-date r.val) %list
:: ~ val %tabl
^- (list schematic:ford)
%+ murn ~(tap by q.new.dat)
|= {pax/path lob/lobe}
^- (unit schematic:ford)
?: (~(has by bop.dat) pax)
~
`[[%$ %path !>(pax)] (merge-lobe-to-schematic:he [p q]:val pax lob)]
==
::
:: Apply the new commit to our state and, if we need to tell unix about
:: some of the changes, call ++ergo.
::
++ checked-out
|= res/made-result:ford
^+ +>
=+ tay=(made-result-to-cages-or-error res)
?: ?=(%| -.tay)
(error:he %checkout-bad-made leaf+"merge checkout failed" p.tay)
=+ can=(cages-to-map p.tay)
?: ?=(%| -.can)
(error:he %checkout p.can)
?: ?=(%| -.gon.dat)
+>.$
=. let.dom +(let.dom)
=. hit.dom (~(put by hit.dom) let.dom r.new.dat)
=. ank.dat
%- map-to-ankh:ze
%- ~(run by (~(uni by bop.dat) p.can))
|=(cage [(page-to-lobe p q.q) +<])
=. ank.dom ank.dat
=> .(..wake wake)
?~ hez done:he
=+ mus=(must-ergo (turn ~(tap by erg.dat) head))
?: =(~ mus) done:he
ergo
::
:: Cast all the content that we're going to tell unix about to %mime.
::
:: Result is handled in ++ergoed.
::
++ ergo
^+ .
=+ ^- sum/(set path)
=+ (must-ergo (turn ~(tap by erg.dat) head))
=+ (turn ~(tap by -) (corl tail tail))
%+ roll -
|= {pak/(set path) acc/(set path)}
(~(uni in acc) pak)
=+ zez=ze(ank.dom ank.dat)
=+ ^- val/beak
?: ?=($init gem.dat)
[p.ali q.ali cas.dat]
[p.bob q.bob da+now]
%- emit(wat.dat %ergo)
:* hen %pass
[%merge (scot %p p.bob) q.bob (scot %p p.ali) q.ali %ergo ~]
%f %build p.bob live=%.n %pin (case-to-date r.val) %list
^- (list schematic:ford)
%+ turn ~(tap in sum)
|= a/path
^- schematic:ford
:- [%$ %path !>(a)]
=+ b=(~(got by erg.dat) a)
?. b
[%$ %null !>(~)]
=/ disc [p q]:val
:^ %cast disc %mime
(lobe-to-schematic:zez disc a (~(got by q.new.dat) a))
==
::
:: Tell unix about the changes made by the merge.
::
++ ergoed
|= res/made-result:ford
^+ +>
=+ tay=(made-result-to-cages-or-error res)
?: ?=(%| -.tay)
(error:he %ergo-bad-made leaf+"merge ergo failed" p.tay)
=+ =| nac/mode
|- ^- tan/$^(mode {p/term q/tang})
?~ p.tay nac
=* pax p.i.p.tay
?. ?=($path p.pax)
[%ergo >[%expected-path got=p.pax]< ~]
=* mim q.i.p.tay
=+ mit=?.(?=($mime p.mim) ~ `((hard mime) q.q.mim))
$(p.tay t.p.tay, nac :_(nac [((hard path) q.q.pax) mit]))
?: ?=({@ *} tan) (error:he tan)
=+ `can/(map path (unit mime))`(malt tan)
?~ hez
(error:he %ergo-no-hez ~)
?: ?=(%| -.gon.dat)
+>.$
=+ mus=(must-ergo (turn ~(tap by erg.dat) head))
=< done:he
%- emil
%+ turn ~(tap by mus)
|= {pot/term len/@ud pak/(set path)}
:* u.hez %give %ergo pot
%+ turn ~(tap in pak)
|= pax/path
[(slag len pax) (~(got by can) pax)]
==
::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
::
:: This core is a small set of helper functions to assist in merging.
::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
++ he
|%
::
:: Assert that we're goig to be returning something, and set don to
:: true, so that ++abet knows we're done.
::
++ done
^+ ..he
?< ?=(%| -.gon.dat)
..he(don |)
::
:: Cancel the merge gracefully and produce an error.
::
++ error
|= {err/term tan/(list tank)}
^+ ..he
..he(don |, gon.dat [%| err >ali< >bob< >cas.dat< >gem.dat< tan])
::
:: Create a schematic to turn a lobe into a blob.
::
:: We short-circuit if we already have the content somewhere.
::
++ merge-lobe-to-schematic
|= [disc=disc:ford pax=path lob=lobe]
^- schematic:ford
=+ hat=q.ali.dat
=+ hot=q.bob.dat
=+ ^= lal
%+ biff alh
|= had/dome
(~(get by q:(tako-to-yaki (~(got by hit.had) let.had))) pax)
=+ lol=(~(get by hot) pax)
|- ^- schematic:ford
?: =([~ lob] lol)
=+ (need (need (read-x let.dom pax)))
?> ?=(%& -<)
[%$ p.-]
?: =([~ lob] lal)
[%$ +:(need fil.ank:(descend-path:(zu ank:(need alh)) pax))]
=+ bol=(~(got by lat.ran) lob)
?- -.bol
$direct (page-to-schematic disc q.bol)
$delta [%pact disc $(lob q.q.bol) (page-to-schematic disc r.bol)]
==
::
:: Find the most recent common ancestor(s).
::
++ find-merge-points
|= {p/yaki q/yaki} :: maybe need jet
^- (set yaki)
%- reduce-merge-points
=+ r=(reachable-takos r.p)
|- ^- (set yaki)
?: (~(has in r) r.q) (~(put in *(set yaki)) q)
%+ roll p.q
|= {t/tako s/(set yaki)}
?: (~(has in r) t)
(~(put in s) (tako-to-yaki t)) :: found
(~(uni in s) ^$(q (tako-to-yaki t))) :: traverse
::
:: Helper for ++find-merge-points.
::
++ reduce-merge-points
|= unk/(set yaki) :: maybe need jet
=| gud/(set yaki)
=+ ^= zar
^- (map tako (set tako))
%+ roll ~(tap in unk)
|= {yak/yaki qar/(map tako (set tako))}
(~(put by qar) r.yak (reachable-takos r.yak))
|-
^- (set yaki)
?~ unk gud
=+ bun=(~(del in `(set yaki)`unk) n.unk)
?: %+ levy ~(tap by (~(uni in gud) bun))
|= yak/yaki
!(~(has in (~(got by zar) r.yak)) r.n.unk)
$(gud (~(put in gud) n.unk), unk bun)
$(unk bun)
--
--
--
--
--
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: section 4cA, filesystem vane
::
:: This is the arvo interface vane. Our formal state is a `++raft`, which
:: has five components:
::
:: -- `fat` is the state for all local desks.
:: -- `hoy` is the state for all foreign desks.
:: -- `ran` is the global, hash-addressed object store.
:: -- `mon` is the set of mount points in unix.
:: -- `hez` is the duct to the unix sync.
::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
=| :: instrument state
$: $1 :: vane version
ruf/raft :: revision tree
== ::
|= {now/@da eny/@ ski/sley} :: activate
^? :: opaque core
|% ::
++ call :: handle request
|= $: hen/duct
hic/(hypo (hobo task:able))
==
=* req q.hic
=> %= . :: XX temporary
req
^- task:able
?: ?=($soft -.req)
=+
~|([%bad-soft (@t -.p.req)] ((soft task:able) p.req))
?~ -
~& [%bad-softing (@t -.p.req)] !!
u.-
?: (~(nest ut -:!>(*task:able)) | p.hic) req
~& [%clay-call-flub (@tas `*`-.req)]
((hard task:able) req)
==
^+ [p=*(list move) q=..^$]
?- -.req
$boat
:_ ..^$
[hen %give %hill (turn ~(tap by mon.ruf) head)]~
::.
$cred
=. cez.ruf
?~ cew.req (~(del by cez.ruf) nom.req)
(~(put by cez.ruf) nom.req cew.req)
:: wake all desks, a request may have been affected.
=| mos/(list move)
=+ rom=(fall (~(get by fat.ruf) our.req) *room)
=+ des=~(tap in ~(key by dos.rom))
|-
?~ des [[[hen %give %mack ~] mos] ..^^$]
=+ den=((de now hen ruf) [. .]:our.req i.des)
=^ mor ruf
=< abet:wake
?: ?=(^ cew.req) den
(forget-crew:den nom.req)
$(des t.des, mos (weld mos mor))
::
$crew
[[hen %give %cruz cez.ruf]~ ..^$]
::
$crow
=+ rom=(fall (~(get by fat.ruf) our.req) *room)
=+ des=~(tap by dos.rom)
=| rus/(map desk {r/regs w/regs})
|^
?~ des [[hen %give %croz rus]~ ..^^$]
=+ per=(filter-rules per.q.i.des)
=+ pew=(filter-rules pew.q.i.des)
=? rus |(?=(^ per) ?=(^ pew))
(~(put by rus) p.i.des per pew)
$(des t.des)
::
++ filter-rules
|= pes/regs
^+ pes
=- (~(gas in *regs) -)
%+ skim ~(tap by pes)
|= {p/path r/rule}
(~(has in who.r) |+nom.req)
--
::
$drop
=^ mos ruf
=+ den=((de now hen ruf) [. .]:our.req des.req)
abet:drop-me:den
[mos ..^$]
::
$info
?: =(%$ des.req)
[~ ..^$]
=^ mos ruf
=+ den=((de now hen ruf) [. .]:our.req des.req)
abet:(edit:den now dit.req)
[mos ..^$]
::
$init
:_ %_ ..^$
fat.ruf
?< (~(has by fat.ruf) our.req)
(~(put by fat.ruf) our.req [-(hun hen)]:[*room .])
==
=+ [bos=(sein:title our.req) can=(clan:title our.req)]
%- zing ^- (list (list move))
:~ ?: =(bos our.req) ~
[hen %pass /init-merge %c %merg our.req %base bos %kids da+now %init]~
::
~
==
::
$into
=. hez.ruf `hen
:_ ..^$
=+ bem=(~(get by mon.ruf) des.req)
?: &(?=(~ bem) !=(%$ des.req))
~|([%bad-mount-point-from-unix des.req] !!)
=+ ^- bem/beam
?^ bem
u.bem
[[?>(?=(^ fat.ruf) p.n.fat.ruf) %base %ud 1] ~]
=+ rom=(~(get by fat.ruf) p.bem)
?~ rom
~
=+ dos=(~(get by dos.u.rom) q.bem)
?~ dos
~
?: =(0 let.dom.u.dos)
=+ cos=(mode-to-soba ~ s.bem all.req fis.req)
=+ ^- {one/(list {path miso}) two/(list {path miso})}
%+ skid cos
|= {a/path b/miso}
?& ?=($ins -.b)
?=($mime p.p.b)
?=({$hoon ~} (slag (dec (lent a)) a))
==
:~ [hen %pass /one %c %info p.bem q.bem %& one]
[hen %pass /two %c %info p.bem q.bem %& two]
==
=+ yak=(~(got by hut.ran.ruf) (~(got by hit.dom.u.dos) let.dom.u.dos))
=+ cos=(mode-to-soba q.yak (flop s.bem) all.req fis.req)
[hen %pass /both %c %info p.bem q.bem %& cos]~
::
$merg :: direct state up
?: =(%$ des.req)
[~ ..^$]
=^ mos ruf
=+ den=((de now hen ruf) [. .]:our.req des.req)
abet:abet:(start:(me:ze:den [her.req dem.req] ~ &) cas.req how.req)
[mos ..^$]
::
$mont
=. hez.ruf ?^(hez.ruf hez.ruf `[[%$ %sync ~] ~])
=+ pot=(~(get by mon.ruf) des.req)
?^ pot
~& [%already-mounted pot]
[~ ..^$]
=* bem bem.req
=. mon.ruf
(~(put by mon.ruf) des.req [p.bem q.bem r.bem] s.bem)
=+ yar=(~(get by fat.ruf) p.bem)
?~ yar
[~ ..^$]
=+ dos=(~(get by dos.u.yar) q.bem)
?~ dos
[~ ..^$]
=^ mos ruf
=+ den=((de now hen ruf) [. .]:p.bem q.bem)
abet:(mont:den des.req bem)
[mos ..^$]
::
$dirk
?~ hez.ruf
~& %no-sync-duct
[~ ..^$]
?. (~(has by mon.ruf) des.req)
~& [%not-mounted des.req]
[~ ..^$]
:- ~[[u.hez.ruf %give %dirk des.req]]
..^$
::
$ogre
?~ hez.ruf
~& %no-sync-duct
[~ ..^$]
=* pot pot.req
?@ pot
?. (~(has by mon.ruf) pot)
~& [%not-mounted pot]
[~ ..^$]
:_ ..^$(mon.ruf (~(del by mon.ruf) pot))
[u.hez.ruf %give %ogre pot]~
:_ %_ ..^$
mon.ruf
%- molt
%+ skip ~(tap by mon.ruf)
(corl (cury test pot) tail)
==
%+ turn
(skim ~(tap by mon.ruf) (corl (cury test pot) tail))
|= {pon/term bem/beam}
[u.hez.ruf %give %ogre pon]
::
$perm
=^ mos ruf
::TODO after new boot system, just use our from global.
=+ den=((de now hen ruf) [. .]:our.req des.req)
abet:(perm:den pax.req rit.req)
[mos ..^$]
::
?($warp $werp)
=^ for req
?: ?=($warp -.req)
[~ req]
:_ [%warp wer.req rif.req]
?: =(who.req p.wer.req) ~
`who.req
?> ?=($warp -.req)
=* rif rif.req
=^ mos ruf
=+ den=((de now hen ruf) wer.req p.rif)
=< abet
?~ q.rif
cancel-request:den
(start-request:den for u.q.rif)
[mos ..^$]
::
$went
:: this won't happen until we send responses.
!!
::
$west
=* wer wer.req
=* pax pax.req
?: ?=({$question *} pax)
=+ ryf=((hard riff) res.req)
:_ ..^$
:~ [hen %give %mack ~]
:- hen
:^ %pass [(scot %p p.wer) (scot %p q.wer) t.pax]
%c
[%werp q.wer [p.wer p.wer] ryf]
==
?> ?=({$answer @ @ ~} pax)
=+ syd=(slav %tas i.t.pax)
=+ inx=(slav %ud i.t.t.pax)
=^ mos ruf
=+ den=((de now hen ruf) wer syd)
abet:(take-foreign-update:den inx ((hard (unit rand)) res.req))
[[[hen %give %mack ~] mos] ..^$]
::
$wegh
:_ ..^$ :_ ~
:^ hen %give %mass
:- %clay
:- %|
:~ domestic+[%& fat.ruf]
foreign+[%& hoy.ruf]
:- %object-store :- %|
:~ commits+[%& hut.ran.ruf]
blobs+[%& lat.ran.ruf]
==
==
==
::
:: All timers are handled by `%behn` nowadays.
++ doze
|= {now/@da hen/duct}
^- (unit @da)
~
::
++ load
=> |%
++ rove-0
$% {$sing p/mood}
{$next p/mood q/cach}
$: $mult
p/mool
q/(unit aeon)
r/(map (pair care path) cach)
s/(map (pair care path) cach)
==
{$many p/? q/moat r/(map path lobe)}
==
++ wove-0 (cork wove |=(a/wove a(q (rove-0 q.a))))
++ cult-0 (jug wove-0 duct)
++ dojo-0 (cork dojo |=(a/dojo a(qyx *cult-0)))
++ rede-0 (cork rede |=(a/rede a(qyx *cult-0)))
++ room-0 (cork room |=(a/room a(dos (~(run by dos.a) dojo-0))))
++ rung-0 (cork rung |=(a/rung a(rus (~(run by rus.a) rede-0))))
++ raft-0
%+ cork raft
|= a/raft
%= a
fat (~(run by fat.a) room-0)
hoy (~(run by hoy.a) rung-0)
==
::
++ axle $%({$1 ruf/raft} {$0 ruf/raft-0})
--
|= old/axle
^+ ..^$
?- -.old
$1
..^$(ruf ruf.old)
::
$0
|^
=- ^$(old [%1 -])
=+ ruf.old
:* (~(run by fat) rom)
(~(run by hoy) run)
ran mon hez ~
==
::
++ wov
|= a/wove-0
^- wove
:- p.a
?. ?=($next -.q.a) q.a
[%next p.q.a ~ q.q.a]
::
++ cul
|= a/cult-0
^- cult
%- ~(gas by *cult)
%+ turn ~(tap by a)
|= {p/wove-0 q/(set duct)}
[(wov p) q]
::
++ rom
|= room-0
^- room
:- hun
%- ~(run by dos)
|= d/dojo-0
^- dojo
d(qyx (cul qyx.d))
::
++ run
|= a/rung-0
=- a(rus (~(run by rus.a) -))
|= r/rede-0
^- rede
r(qyx (cul qyx.r))
--
==
::
++ scry :: inspect
|= {fur/(unit (set monk)) ren/@tas why/shop syd/desk lot/coin tyl/path}
^- (unit (unit cage))
?. ?=(%& -.why) ~
=* his p.why
:: ~& scry+[ren `path`[(scot %p his) syd ~(rent co lot) tyl]]
:: =- ~& %scry-done -
=+ got=(~(has by fat.ruf) his)
=+ luk=?.(?=(%$ -.lot) ~ ((soft case) p.lot))
?~ luk [~ ~]
?: =(%$ ren)
[~ ~]
=+ run=((soft care) ren)
?~ run [~ ~]
::TODO if it ever gets filled properly, pass in the full fur.
=/ for/(unit ship)
%- ~(rep in (fall fur ~))
|= {m/monk s/(unit ship)}
?^ s s
?: ?=(%| -.m) ~
?: =(p.m his) ~
`p.m
=+ den=((de now [/scryduct ~] ruf) [. .]:his syd)
=+ (aver:den for u.run u.luk tyl)
?~ - -
?~ u.- -
?: ?=(%& -.u.u.-) ``p.u.u.-
~
::
++ stay [%1 ruf]
++ take :: accept response
|= {tea/wire hen/duct hin/(hypo sign)}
^+ [p=*(list move) q=..^$]
?: ?=({$merge @ @ @ @ @ ~} tea)
?> ?=(?($writ $made) +<.q.hin)
=+ our=(slav %p i.t.tea)
=* syd i.t.t.tea
=+ her=(slav %p i.t.t.t.tea)
=* sud i.t.t.t.t.tea
=* sat i.t.t.t.t.t.tea
=+ dat=?-(+<.q.hin $writ [%& p.q.hin], $made [%| result.q.hin])
=+ ^- kan/(unit dome)
%+ biff (~(get by fat.ruf) her)
|= room
%+ bind (~(get by dos) sud)
|= dojo
dom
=^ mos ruf
=+ den=((de now hen ruf) [. .]:our syd)
abet:abet:(route:(me:ze:den [her sud] kan |) sat dat)
[mos ..^$]
?: ?=({$blab care @ @ *} tea)
?> ?=($made +<.q.hin)
?. ?=([%complete %success *] result.q.hin)
~| %blab-fail
~> %mean.|.((made-result-as-error:ford result.q.hin))
!! :: interpolate ford fail into stack trace
:_ ..^$ :_ ~
:* hen %give %writ ~
^- {care case @tas}
[i.t.tea ((hard case) +>:(slay i.t.t.tea)) i.t.t.t.tea]
::
`path`t.t.t.t.tea
`cage`(result-to-cage:ford build-result.result.q.hin)
==
?- -.+.q.hin
::
$crud
[[[hen %slip %d %flog +.q.hin] ~] ..^$]
::
$made
?~ tea !!
?+ -.tea !!
$inserting
?> ?=({@ @ @ ~} t.tea)
=+ our=(slav %p i.t.tea)
=+ syd=(slav %tas i.t.t.tea)
=+ wen=(slav %da i.t.t.t.tea)
=^ mos ruf
=+ den=((de now hen ruf) [. .]:our syd)
abet:(take-inserting:den wen result.q.hin)
[mos ..^$]
::
$diffing
?> ?=({@ @ @ ~} t.tea)
=+ our=(slav %p i.t.tea)
=+ syd=(slav %tas i.t.t.tea)
=+ wen=(slav %da i.t.t.t.tea)
=^ mos ruf
=+ den=((de now hen ruf) [. .]:our syd)
abet:(take-diffing:den wen result.q.hin)
[mos ..^$]
::
$castifying
?> ?=({@ @ @ ~} t.tea)
=+ our=(slav %p i.t.tea)
=+ syd=(slav %tas i.t.t.tea)
=+ wen=(slav %da i.t.t.t.tea)
=^ mos ruf
=+ den=((de now hen ruf) [. .]:our syd)
abet:(take-castify:den wen result.q.hin)
[mos ..^$]
::
$mutating
?> ?=({@ @ @ ~} t.tea)
=+ our=(slav %p i.t.tea)
=+ syd=(slav %tas i.t.t.tea)
=+ wen=(slav %da i.t.t.t.tea)
=^ mos ruf
=+ den=((de now hen ruf) [. .]:our syd)
abet:(take-mutating:den wen result.q.hin)
[mos ..^$]
::
$patching
?> ?=({@ @ ~} t.tea)
=+ our=(slav %p i.t.tea)
=+ syd=(slav %tas i.t.t.tea)
=^ mos ruf
=+ den=((de now hen ruf) [. .]:our syd)
abet:(take-patch:den result.q.hin)
[mos ..^$]
::
$ergoing
?> ?=({@ @ ~} t.tea)
=+ our=(slav %p i.t.tea)
=+ syd=(slav %tas i.t.t.tea)
=^ mos ruf
=+ den=((de now hen ruf) [. .]:our syd)
abet:(take-ergo:den result.q.hin)
[mos ..^$]
::
$foreign-plops
?> ?=({@ @ @ @ ~} t.tea)
=+ our=(slav %p i.t.tea)
=+ her=(slav %p i.t.t.tea)
=* syd i.t.t.t.tea
=+ lem=(slav %da i.t.t.t.t.tea)
=^ mos ruf
=+ den=((de now hen ruf) [our her] syd)
abet:(take-foreign-plops:den ?~(lem ~ `lem) result.q.hin)
[mos ..^$]
::
$foreign-x
?> ?=({@ @ @ @ @ *} t.tea)
=+ our=(slav %p i.t.tea)
=+ her=(slav %p i.t.t.tea)
=+ syd=(slav %tas i.t.t.t.tea)
=+ car=((hard care) i.t.t.t.t.tea)
=+ ^- cas/case
=+ (slay i.t.t.t.t.t.tea)
?> ?=({~ %$ case} -)
->+
=* pax t.t.t.t.t.t.tea
=^ mos ruf
=+ den=((de now hen ruf) [our her] syd)
abet:(take-foreign-x:den car cas pax result.q.hin)
[mos ..^$]
==
::
$mere
?: ?=(%& -.p.+.q.hin)
~& 'initial merge succeeded'
[~ ..^$]
~> %slog.
:^ 0 %rose [" " "[" "]"]
:^ leaf+"initial merge failed"
leaf+"my most sincere apologies"
>p.p.p.+.q.hin<
q.p.p.+.q.hin
[~ ..^$]
::
$note [[hen %give +.q.hin]~ ..^$]
$wake
~| %why-wakey !!
:: =+ dal=(turn ~(tap by fat.ruf) |=([a=@p b=room] a))
:: =| mos=(list move)
:: |- ^- [p=(list move) q=_..^^$]
:: ?~ dal [mos ..^^$]
:: =+ une=(un i.dal now hen ruf)
:: =^ som une wake:une
:: $(dal t.dal, ruf abet:une, mos (weld som mos))
::
$writ
?> ?=({@ @ *} tea)
~| i=i.tea
~| it=i.t.tea
=+ our=(slav %p i.tea)
=+ him=(slav %p i.t.tea)
:_ ..^$
:~ :* hen %pass /writ-want %a
%want [our him] [%c %answer t.t.tea]
(bind p.+.q.hin rant-to-rand)
==
==
::
$send
[[[hen %give +.q.hin] ~] ..^$]
::
$woot
[~ ..^$]
:: ?~ r.q.hin [~ ..^$]
:: ~& [%clay-lost p.q.hin r.q.hin tea]
:: [~ ..^$]
==
::
++ rant-to-rand
|= rant
^- rand
[p q [p q.q]:r]
::
++ mode-to-soba
|= {hat/(map path lobe) pax/path all/? mod/mode}
^- soba
%+ weld
^- (list (pair path miso))
?. all
~
=+ mad=(malt mod)
=+ len=(lent pax)
=+ ^- descendants/(list path)
%+ turn
%+ skim ~(tap by hat)
|= {paf/path lob/lobe}
=(pax (scag len paf))
|= {paf/path lob/lobe}
(slag len paf)
%+ murn
descendants
|= pat/path
^- (unit (pair path {$del ~}))
?: (~(has by mad) pat)
~
`[(weld pax pat) %del ~]
^- (list (pair path miso))
%+ murn mod
|= {pat/path mim/(unit mime)}
^- (unit (pair path miso))
=+ paf=(weld pax pat)
?~ mim
=+ (~(get by hat) paf)
?~ -
~& [%deleting-already-gone pax pat]
~
`[paf %del ~]
=+ (~(get by hat) paf)
?~ -
`[paf %ins %mime -:!>(*mime) u.mim]
`[paf %mut %mime -:!>(*mime) u.mim]
--