shrub/gen/musk.hoon
2017-11-25 13:13:53 -08:00

367 lines
7.9 KiB
Plaintext

::
::::
::
:- %say
|= {^ {{typ/type gen/hoon $~} $~}}
=< :- %noun
=+ pro=(~(mint ut typ) %noun gen)
~_ (~(dunk ut typ) 'blow-subject')
=+ bus=(bran:musk typ)
~& [%subject-mask mask.bus]
=+ jon=(apex:musk bus q.pro)
?~ jon
~& %constant-stopped
!!
?. ?=($& -.u.jon)
~& %constant-blocked
!!
:: [p.pro [%1 p.u.jon]]
p.u.jon
|%
++ musk :: nock with block set
=> |%
++ block
:: identity of resource awaited
:: XX parameterize
noun
::
++ result
:: internal interpreter result
::
$@(~ seminoun)
::
++ seminoun
:: partial noun; blocked subtrees are ~
::
{mask/stencil data/noun}
::
++ stencil
:: noun knowledge map
::
$% :: no; noun has partial block substructure
::
{$| left/stencil rite/stencil}
:: yes; noun is either fully complete, or fully blocked
::
{$& blocks/(set block)}
==
::
++ output
:: nil; interpreter stopped
::
%- unit
:: yes, complete noun; no, list of blocks
::
(each noun (list block))
--
|%
++ bran
|= sut/type
=+ gil=*(set type)
|- ^- seminoun
?- sut
$noun [&+[~ ~ ~] ~]
$void [&+[~ ~ ~] ~]
{$atom *} ?~(q.sut [&+[~ ~ ~] ~] [&+~ u.q.sut])
{$cell *} (combine $(sut p.sut) $(sut q.sut))
{$core *} %+ combine:musk
?~ p.s.q.sut [&+[~ ~ ~] ~]
[&+~ p.s.q.sut]
$(sut p.sut)
{$face *} $(sut ~(repo ut sut))
{$fork *} [&+[~ ~ ~] ~]
{$help *} $(sut ~(repo ut sut))
{$hold *} ?: (~(has in gil) sut)
[&+[~ ~ ~] ~]
$(sut ~(repo ut sut), gil (~(put in gil) sut))
==
++ abet
:: simplify raw result
::
|= $: :: noy: raw result
::
noy/result
==
^- output
:: propagate stop
::
?~ noy ~
:- ~
:: merge all blocking sets
::
=/ blocks (squash mask.noy)
?: =(~ blocks)
:: no blocks, data is complete
::
&+data.noy
:: reduce block set to block list
::
|+~(tap in blocks)
::
++ apex
:: execute nock on partial subject
::
|= $: :: bus: subject, a partial noun
:: fol: formula, a complete noun
::
bus/seminoun
fol/noun
==
^- output
:: simplify result
::
%- abet
:: interpreter loop
::
|- ^- result
:: ~& [%apex-fol fol]
:: ~& [%apex-mac mask.bus]
:: =- ~& [%apex-pro-mac ?@(foo ~ ~!(foo mask.foo))]
:: foo
:: ^= foo
:: ^- result
?@ fol
:: bad formula, stop
::
~
?: ?=(^ -.fol)
:: hed: interpret head
::
=+ hed=$(fol -.fol)
:: propagate stop
::
?~ hed ~
:: tal: interpret tail
::
=+ tal=$(fol +.fol)
:: propagate stop
::
?~ tal ~
:: combine
::
(combine hed tal)
?+ fol
:: bad formula; stop
::
~
:: 0; fragment
::
{$0 b/@}
:: if bad axis, stop
::
?: =(0 b.fol) ~
:: reduce to fragment
::
(fragment b.fol bus)
::
:: 1; constant
::
{$1 b/*}
:: constant is complete
::
[&+~ b.fol]
::
:: 2; recursion
::
{$2 b/* c/*}
:: require complete formula
::
%+ require
:: compute formula with current subject
::
$(fol c.fol)
|= :: ryf: next formula
::
ryf/noun
:: lub: next subject
::
=+ lub=^$(fol b.fol)
:: propagate stop
::
?~ lub ~
:: recurse
::
^$(fol ryf, bus lub)
::
:: 3; probe
::
{$3 b/*}
%+ require
$(fol b.fol)
|= :: fig: probe input
::
fig/noun
:: yes if cell, no if atom
::
[&+~ .?(fig)]
::
:: 4; increment
::
{$4 b/*}
%+ require
$(fol b.fol)
|= :: fig: increment input
::
fig/noun
:: stop for cells, increment for atoms
::
?^(fig ~ [&+~ +(fig)])
::
:: 5; compare
::
{$5 b/*}
%+ require
$(fol b.fol)
|= :: fig: operator input
::
fig/noun
:: stop for atoms, compare cells
::
?@(fig ~ [&+~ =(-.fig +.fig)])
::
:: 6; if-then-else
::
{$6 b/* c/* d/*}
:: use standard macro expansion (slow)
::
$(fol =>(fol [2 [0 1] 2 [1 c d] [1 0] 2 [1 2 3] [1 0] 4 4 b]))
::
:: 7; composition
::
{$7 b/* c/*}
:: use standard macro expansion (slow)
::
$(fol =>(fol [2 b 1 c]))
::
:: 8; declaration
::
{$8 b/* c/*}
:: use standard macro expansion (slow)
::
$(fol =>(fol [7 [[7 [0 1] b] 0 1] c]))
::
:: 9; invocation
::
{$9 b/* c/*}
:: use standard macro expansion (slow)
::
$(fol =>(fol [7 c 2 [0 1] 0 b]))
::
:: 10; static hint
::
{$10 @ c/*}
:: ignore hint
::
$(fol c.fol)
::
:: 10; dynamic hint
::
{$10 {b/* c/*} d/*}
:: noy: dynamic hint
::
=+ noy=$(fol c.fol)
:: propagate stop
::
?~ noy ~
:: otherwise, ignore hint
::
$(fol d.fol)
==
::
++ combine
:: combine a pair of seminouns
::
|= $: :: hed: head of pair
:: tal: tail of pair
::
hed/seminoun
tal/seminoun
==
^- seminoun
?. ?& &(?=($& -.mask.hed) ?=($& -.mask.tal))
=(=(~ blocks.mask.hed) =(~ blocks.mask.tal))
==
:: default merge
::
[|+[mask.hed mask.tal] [data.hed data.tal]]
:: both sides total
::
?: =(~ blocks.mask.hed)
:: both sides are complete
::
[&+~ data.hed data.tal]
:: both sides are blocked
::
[&+(~(uni in blocks.mask.hed) blocks.mask.tal) ~]
::
++ fragment
:: seek to an axis in a seminoun
::
|= $: :: axe: tree address of subtree
:: bus: partial noun
::
axe/axis
bus/seminoun
==
|- ^- result
:: 1 is the root
::
?: =(1 axe) bus
:: now: 2 or 3, top of axis
:: lat: rest of axis
::
=+ [now=(cap axe) lat=(mas axe)]
?- -.mask.bus
:: subject is fully blocked or complete
::
$& :: if fully blocked, produce self
::
?^ blocks.mask.bus bus
:: descending into atom, stop
::
?@ data.bus ~
:: descend into complete cell
::
$(axe lat, bus [&+~ ?:(=(2 now) -.data.bus +.data.bus)])
:: subject is partly blocked
::
$| :: descend into partial cell
::
%= $
axe lat
bus ?: =(2 now)
[left.mask.bus -.data.bus]
[rite.mask.bus +.data.bus]
== ==
:: require complete intermediate step
::
++ require
|= $: noy/result
yen/$-(noun result)
==
^- result
:: propagate stop
::
?~ noy ~
:: if partial block, squash blocks and stop
::
?: ?=($| -.mask.noy) [&+(squash mask.noy) ~]
:: if full block, propagate block
::
?: ?=(^ blocks.mask.noy) [mask.noy ~]
:: otherwise use complete noun
::
(yen data.noy)
::
++ squash
:: convert stencil to block set
::
|= tyn/stencil
^- (set block)
?- -.tyn
$& blocks.tyn
$| (~(uni in $(tyn left.tyn)) $(tyn rite.tyn))
==
--
--