shrub/pkg/arvo/sys/vane/clay.hoon
2019-10-30 16:12:57 -04:00

4684 lines
148 KiB
Plaintext

:: clay (4c), revision control
!:
:: This is split in three top-level sections: structure definitions, main
:: logic, and arvo interface.
::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
::
:: Here are the structures. `++raft` is the formal arvo state. It's also
:: worth noting that many of the clay-related structures are defined in zuse.
::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
|= pit/vase
=, clay
=> |%
+$ aeon @ud :: version number
::
:: Recursive structure of a desk's data.
::
:: We keep an ankh only for the current version of local desks. Everywhere
:: else we store it as (map path lobe).
::
+$ ankh :: expanded node
$~ [~ ~]
$: fil/(unit {p/lobe q/cage}) :: file
dir/(map @ta ankh) :: folders
== ::
::
:: Part of ++mery, representing the set of changes between the mergebase and
:: one of the desks being merged.
::
:: -- `new` is the set of files in the new desk and not in the mergebase.
:: -- `cal` is the set of changes in the new desk from the mergebase except
:: for any that are also in the other new desk.
:: -- `can` is the set of changes in the new desk from the mergebase and that
:: are also in the other new desk (potential conflicts).
:: -- `old` is the set of files in the mergebase and not in the new desk.
::
+$ cane
$: new/(map path lobe)
cal/(map path lobe)
can/(map path cage)
old/(map path ~)
==
::
:: Type of request.
::
:: %d produces a set of desks, %p gets file permissions, %u checks for
:: existence, %v produces a ++dome of all desk data, %w gets @ud and @da
:: variants for the given case, %x gets file contents, %y gets a directory
:: listing, and %z gets a recursive hash of the file contents and children.
::
:: ++ care ?($d $p $u $v $w $x $y $z)
::
:: Keeps track of subscribers.
::
:: A map of requests to a set of all the subscribers who should be notified
:: when the request is filled/updated.
::
+$ cult (jug wove duct)
::
:: Domestic desk state.
::
:: Includes subscriber list, dome (desk content), possible commit state (for
:: local changes), possible merge state (for incoming merges), and permissions.
::
++ dojo
$: qyx/cult :: subscribers
dom/dome :: desk state
per/regs :: read perms per path
pew/regs :: write perms per path
==
::
:: Desk state.
::
:: Includes a checked-out ankh with current content, most recent version, map
:: of all version numbers to commit hashes (commits are in hut.rang), and map
:: of labels to version numbers.
::
:: `mim` is a cache of the content in the directories that are mounted
:: to unix. Often, we convert to/from mime without anything really
:: having changed; this lets us short-circuit that in some cases.
:: Whenever you give an `%ergo`, you must update this.
::
++ dome
$: ank/ankh :: state
let/aeon :: top id
hit/(map aeon tako) :: versions by id
lab/(map @tas aeon) :: labels
mim/(map path mime) :: mime cache
== ::
::
:: Commit state.
::
:: -- `del` is the paths we're deleting.
:: -- `ink` is the insertions of hoon files (short-circuited for
:: bootstrapping).
:: -- `ins` is all the other insertions.
:: -- `dif` is the diffs in `dig` applied to their files.
:: -- `mut` is the diffs between `muc` and the original files.
::
++ dork :: diff work
$: del/(list path) :: deletes
ink/(list (pair path cage)) :: hoon inserts
ins/(list (pair path cage)) :: inserts
dif/(list (trel path lobe cage)) :: changes
mut/(list (trel path lobe cage)) :: mutations
== ::
::
:: Hash of a blob, for lookup in the object store (lat.ran)
::
++ lobe @uvI :: blob ref
::
:: New desk data.
::
:: Sent to other ships to update them about a particular desk. Includes a map
:: of all new aeons to hashes of their commits, the most recent aeon, and sets
:: of all new commits and data.
::
++ nako :: subscription state
$: gar/(map aeon tako) :: new ids
let/aeon :: next id
lar/(set yaki) :: new commits
bar/(set plop) :: new content
== ::
::
:: Formal vane state.
::
:: -- `rom` is our domestic state.
:: -- `hoy` is a collection of foreign ships where we know something about
:: their clay.
:: -- `ran` is the object store.
:: -- `mon` is a collection of mount points (mount point name to urbit
:: location).
:: -- `hez` is the unix duct that %ergo's should be sent to.
:: -- `cez` is a collection of named permission groups.
:: -- `cue` is a queue of requests to perform in later events.
:: -- `tip` is the date of the last write; if now, enqueue incoming requests.
::
++ raft :: filesystem
$: rom=room :: domestic
hoy=(map ship rung) :: foreign
ran=rang :: hashes
mon=(map term beam) :: mount points
hez=(unit duct) :: sync duct
cez=(map @ta crew) :: permission groups
cue=(qeu [=duct =task:able]) :: queued requests
act=active-write :: active write
== ::
::
:: Currently active write
::
++ active-write
%- unit
$: hen=duct
req=task:able
$= eval-data
$% [%commit commit=eval-form:eval:commit-clad]
[%merge merge=eval-form:eval:merge-clad]
[%mount mount=eval-form:eval:mount-clad]
==
==
::
:: The clad monad for commits.
::
:: -- `dome` is the new dome -- each writer has a lock on the dome for
:: that desk
:: -- `rang` is a superset of the global rang, but we uni:by it into
:: the global rang because other things might add stuff to it.
:: Thus, writers do *not* have a lock on the global rang.
::
++ commit-clad (clad ,[dome rang])
::
:: The clad monad for merges.
::
:: Same as +commit-clad, except includes a set of paths documenting the
:: conflicts encountered in the merge.
::
++ merge-clad (clad ,[(set path) dome rang])
::
:: The clad monad for mounts.
::
:: Just a new mount point and mime cache.
::
++ mount-clad (clad ,[new-mon=(pair term beam) mim=(map path mime)])
::
:: Object store.
::
:: Maps of commit hashes to commits and content hashes to content.
::
++ rang ::
$: hut/(map tako yaki) ::
lat/(map lobe blob) ::
== ::
::
:: Unvalidated response to a request.
::
:: Like a ++rant, but with a page of data rather than a cage of it.
::
++ rand :: unvalidated rant
$: p/{p/care q/case r/@tas} :: clade release book
q/path :: spur
r/page :: data
== ::
::
:: Generic desk state.
::
:: -- `lim` is the most recent date we're confident we have all the
:: information for. For local desks, this is always `now`. For foreign
:: desks, this is the last time we got a full update from the foreign
:: urbit.
:: -- `ref` is a possible request manager. For local desks, this is null.
:: For foreign desks, this keeps track of all pending foreign requests
:: plus a cache of the responses to previous requests.
:: -- `qyx` is the set of subscriptions, with listening ducts. These
:: subscriptions exist only until they've been filled.
:: -- `dom` is the actual state of the filetree. Since this is used almost
:: exclusively in `++ze`, we describe it there.
::
++ rede :: universal project
$: lim/@da :: complete to
ref/(unit rind) :: outgoing requests
qyx/cult :: subscribers
dom/dome :: revision state
per/regs :: read perms per path
pew/regs :: write perms per path
== ::
::
:: Foreign request manager.
::
:: When we send a request to a foreign ship, we keep track of it in here. This
:: includes a request counter, a map of request numbers to requests, a reverse
:: map of requesters to request numbers, a simple cache of common %sing
:: requests, and a possible nako if we've received data from the other ship and
:: are in the process of validating it.
::
++ rind :: request manager
$: nix/@ud :: request index
bom/(map @ud {p/duct q/rave}) :: outstanding
fod/(map duct @ud) :: current requests
haw/(map mood (unit cage)) :: simple cache
pud/update-qeu :: active updates
pur/request-map :: active requests
== ::
::
:: Result of a subscription
::
++ sub-result
$% [%blab =mood data=(each cage lobe)]
[%bleb ins=@ud range=(unit (pair aeon aeon))]
[%balk cage=(unit (each cage lobe)) =mood]
[%blas moods=(set mood)]
[%blub ~]
==
::
:: The clad monad for foreign updates.
::
:: Same as +commit-clad, except includes `lim`, as in +rede. Null if
:: subscription ended.
::
++ update-clad (clad ,(unit [lim=@da dome rang]))
++ update-qeu
$: waiting=(qeu [inx=@ud rut=(unit rand)])
eval-data=(unit [inx=@ud rut=(unit rand) =eval-form:eval:update-clad])
==
::
:: The clad monad for foreign simple requests
::
++ request-clad (clad ,cage)
++ request-map ,(map inx=@ud [=rand =eval-form:eval:request-clad])
::
:: Domestic ship.
::
:: `hun` is the duct to dill, and `dos` is a collection of our desks.
::
++ room :: fs per ship
$: hun/duct :: terminal duct
dos/(map desk dojo) :: native desk
== ::
::
:: Stored request.
::
:: Like a ++rave but with caches of current versions for %next and %many.
:: Generally used when we store a request in our state somewhere.
::
++ cach (unit (unit (each cage lobe))) :: cached result
+$ wove [for=(unit ship) =rove] :: stored source + req
++ rove :: stored request
$% [%sing =mood] :: single request
[%next =mood aeon=(unit aeon) =cach] :: next version of one
$: %mult :: next version of any
=mool :: original request
aeon=(unit aeon) :: checking for change
old-cach=(map [=care =path] cach) :: old version
new-cach=(map [=care =path] cach) :: new version
== ::
[%many track=? =moat lobes=(map path lobe)] :: change range
== ::
::
:: Foreign desk data.
::
++ rung
$: rit=rift :: rift of 1st contact
rus=(map desk rede) :: neighbor desks
==
::
:: Hash of a commit, for lookup in the object store (hut.ran)
::
++ tako @ :: yaki ref
::
:: Commit.
::
:: List of parents, content, hash of self, and time commited.
::
++ yaki :: snapshot
$: p/(list tako) :: parents
q/(map path lobe) :: fileset
r/tako ::
:: :: XX s?
t/@da :: date
== ::
::
:: Unvalidated blob
::
++ plop blob :: unvalidated blob
::
:: The clay monad, for easier-to-follow state machines.
::
:: The best way to think about a clad is that it's a transaction that
:: may take multiple arvo events, and may send notes to other vanes to
:: get information.
::
+$ clad-input [now=@da new-rang=rang =sign]
::
:: notes: notes to send immediately. These will go out even if a
:: later stage of the process fails, so they shouldn't have any
:: semantic effect on the rest of the system. Path is
:: included exclusively for documentation and |verb.
:: effects: moves to send after the process ends.
:: wait: don't move on, stay here. The next sign should come back
:: to this same callback.
:: cont: continue process with new callback.
:: fail: abort process; don't send effects
:: done: finish process; send effects
::
++ clad-output-raw
|* a=mold
$~ [~ ~ %done *a]
$: notes=(list [path note])
effects=(list move)
$= next
$% [%wait ~]
[%cont self=(clad-form-raw a)]
[%fail err=(pair term tang)]
[%done value=a]
==
==
::
++ clad-form-raw
|* a=mold
$-(clad-input (clad-output-raw a))
::
++ clad-fail
|= err=(pair term tang)
|= clad-input
[~ ~ %fail err]
::
++ clad-init-sign `sign`[%y %init-clad ~]
::
++ clad
|* a=mold
|%
++ output (clad-output-raw a)
++ form (clad-form-raw a)
++ pure
|= arg=a
^- form
|= clad-input
[~ ~ %done arg]
::
++ bind
|* b=mold
|= [m-b=(clad-form-raw b) fun=$-(b form)]
^- form
|= input=clad-input
=/ b-res=(clad-output-raw b)
(m-b input)
^- output
:+ notes.b-res effects.b-res
?- -.next.b-res
%wait [%wait ~]
%cont [%cont ..$(m-b self.next.b-res)]
%fail [%fail err.next.b-res]
%done [%cont (fun value.next.b-res)]
==
::
:: The clad monad must be evaluted in a particular way to maintain
:: its monadic character. +take:eval implements this.
::
++ eval
|%
:: Indelible state of a clad
::
+$ eval-form
$: effects=(list move)
=form
==
::
:: Convert initial form to eval-form
::
++ from-form
|= =form
^- eval-form
[~ form]
::
:: The cases of results of +take
::
+$ eval-result
$% [%next ~]
[%fail err=(pair term tang)]
[%done value=a]
==
::
:: Take a new sign and run the clad against it
::
++ take
:: moves: accumulate throughout recursion the moves to be
:: produced now
=| moves=(list move)
|= [=eval-form =duct =our=wire =clad-input]
^- [[(list move) =eval-result] _eval-form]
:: run the clad callback
::
=/ =output (form.eval-form clad-input)
:: add notes to moves
::
=. moves
%+ welp
moves
%+ turn notes.output
|= [=path =note]
[duct %pass (weld our-wire path) note]
:: add effects to list to be produced when done
::
=. effects.eval-form
(weld effects.eval-form effects.output)
:: if done, produce effects
::
=? moves ?=(%done -.next.output)
%+ welp
moves
effects.eval-form
:: case-wise handle next steps
::
?- -.next.output
%wait [[moves %next ~] eval-form]
%fail [[moves %fail err.next.output] eval-form]
%done [[moves %done value.next.output] eval-form]
%cont
:: recurse to run continuation with initialization move
::
%_ $
form.eval-form self.next.output
sign.clad-input clad-init-sign
==
==
--
--
::
::
++ move {p/duct q/(wind note gift:able)} :: local move
++ note :: out request $->
$~ [%b %wait *@da] ::
$% $: %a :: to %ames
$>(%plea task:able:ames) ::
== ::
$: %b :: to %behn
$> $? %drip ::
%rest ::
%wait ::
== ::
task:able:behn ::
== ::
$: %c :: to %clay
$> $? %info :: internal edit
%merg :: merge desks
%warp ::
%werp ::
== ::
task:able ::
== ::
$: %d :: to %dill
$>(%flog task:able:dill) ::
== ::
$: %f :: to %ford
$> $? %build ::
%keep ::
%wipe ::
== ::
task:able:ford ::
== ::
$: %j :: by %jael
$>(%public-keys task:able:jael) ::
== == ::
++ riot (unit rant) :: response+complete
++ sign :: in result $<-
$~ [%b %wake ~] ::
$% $: %y ::
$% [%init-clad ~] ::
== == ::
$: %a :: by %ames
$> $? %boon :: response
%done :: (n)ack
%lost :: lost boon
== ::
gift:able:ames ::
== ::
$: %b :: by %behn
$% $>(%wake gift:able:behn) :: timer activate
$>(%writ gift:able) :: XX %slip
== == ::
$: %c :: by %clay
$> $? %mere ::
%note ::
%writ ::
== ::
gift:able ::
== ::
$: %f :: by %ford
$>(%made gift:able:ford) ::
== ::
$: %j :: by %jael
$>(%public-keys gift:able:jael) ::
== ::
$: @tas :: by any
$>(%crud vane-task) :: XX strange
== == ::
--
::
:: Old state types for ++load
::
=> |%
+$ raft-1 raft
-- =>
:: %utilities
::
|%
:: +sort-by-head: sorts alphabetically using the head of each element
::
++ sort-by-head
|=([a=(pair path *) b=(pair path *)] (aor p.a p.b))
::
:: Just send a note.
::
++ just-do
|= [=path =note]
=/ m (clad ,~)
^- form:m
|= clad-input
[[path note]~ ~ %done ~]
::
:: Wait for ford to respond
::
++ expect-ford
=/ m (clad ,made-result:ford)
^- form:m
|= clad-input
?: ?=(%init-clad +<.sign)
[~ ~ %wait ~]
?: ?=(%made +<.sign)
[~ ~ %done result.sign]
~| [%expected-made got=+<.sign]
!!
::
:: Wait for clay to respond
::
:: This setup where we take in a new-rang in +clad-input but only
:: apply it when calling +expect-clay is suspicious. I'm not sure
:: what's the best approach to reading in potentially new state that
:: we also may have changed but haven't committed.
::
++ expect-clay
|= ran=rang
=/ m (clad ,[riot rang])
^- form:m
|= clad-input
?: ?=(%init-clad +<.sign)
[~ ~ %wait ~]
?: ?=(%writ +<.sign)
=/ uni-rang=rang
:- (~(uni by hut.new-rang) hut.ran)
(~(uni by lat.new-rang) lat.ran)
[~ ~ %done p.sign uni-rang]
~| [%expected-writ got=+<.sign]
!!
-- =>
|%
:: Printable form of a wove; useful for debugging
::
++ print-wove
|= =wove
:- for.wove
?- -.rove.wove
%sing [%sing mood.rove.wove]
%next [%next [mood aeon]:rove.wove]
%mult [%mult [mool aeon]:rove.wove]
%many [%many [track moat]:rove.wove]
==
::
:: Printable form of a cult; useful for debugging
::
++ print-cult
|= =cult
%+ turn ~(tap by cult)
|= [=wove ducts=(set duct)]
[ducts (print-wove wove)]
::
::
:: Make a new commit with the given +nori of changes.
::
++ commit
:: Global constants. These do not change during a commit.
::
|= $: our=ship
syd=desk
wen=@da
mon=(map term beam)
hez=(unit duct)
hun=duct
==
|^
:: Initial arguments
::
|= [lem=nori original-dome=dome ran=rang]
=/ m commit-clad
^- form:m
?: ?=(%| -.lem)
:: If the change is just adding a label, handle it directly.
::
=. original-dome
(execute-label:(state:util original-dome original-dome ran) p.lem)
=/ e (cor original-dome ran)
;< ~ bind:m (print-changes:e %| p.lem)
(pure:m dom:e ran:e)
::
:: Else, collect the data, apply it, fill in our local cache, let
:: unix know, and print a notification to the screen.
::
=/ e (cor original-dome ran)
;< [=dork mim=(map path mime)] bind:m (fill-dork:e wen p.lem)
;< [=suba e=_*cor] bind:m (apply-dork:e wen dork)
;< e=_*cor bind:m checkout-new-state:e
;< mim=(map path mime) bind:m (ergo-changes:e suba mim)
;< ~ bind:m (print-changes:e %& suba)
=. mim.dom.e mim
(pure:m dom:e ran:e)
::
:: A stateful core, where the global state is a dome and a rang.
::
:: These are the global state variables that an edit may change.
::
++ cor
|= [dom=dome ran=rang]
=/ original-dome dom
|%
++ this-cor .
++ sutil (state:util original-dome dom ran)
::
:: Collect all the insertions, deletions, diffs, and mutations
:: which are requested.
::
:: Sends them through ford for casting, patching, and diffing so
:: that the produced dork has all the relevant cages filled in.
::
:: Also fills in the mime cache. Often we need to convert to mime
:: anyway to send (back) to unix, so we just keep it around rather
:: than recalculating it. This is less necessary than before
:: because of the ford cache.
::
++ fill-dork
|= [wen=@da =soba]
=/ m (clad ,[=dork mim=(map path mime)])
^- form:m
=| $= nuz
$: del=(list (pair path miso))
ins=(list (pair path miso))
dif=(list (pair path miso))
mut=(list (pair path miso))
ink=(list (pair path miso))
==
::
=. nuz
|- ^+ nuz
?~ soba nuz
::
?- -.q.i.soba
%del $(soba t.soba, del.nuz [i.soba del.nuz])
%dif $(soba t.soba, dif.nuz [i.soba dif.nuz])
%ins
=/ pax=path p.i.soba
=/ mar=mark p.p.q.i.soba
::
:: We store `%hoon` files directly to `ink` so that we add
:: them without requiring any mark definitions. `%hoon`
:: files have to be treated specially to make the
:: bootstrapping sequence work, since the mark definitions
:: are themselves `%hoon` files.
::
?: ?& ?=([%hoon *] (flop pax))
?=(%mime mar)
==
$(soba t.soba, ink.nuz [i.soba ink.nuz])
$(soba t.soba, ins.nuz [i.soba ins.nuz])
::
%mut
=/ pax=path p.i.soba
=/ mis=miso q.i.soba
?> ?=(%mut -.mis)
=/ cag=cage p.mis
:: if :mis has the %mime mark and it's the same as cached, no-op
::
?: ?. =(%mime p.cag)
%.n
?~ cached=(~(get by mim.dom) pax)
%.n
=(q:;;(mime q.q.cag) q.u.cached)
::
$(soba t.soba)
:: if the :mis mark is the target mark and the value is the same, no-op
::
?: =/ target-mark=mark =+(spur=(flop pax) ?~(spur !! i.spur))
?. =(target-mark p.cag)
%.n
::
=/ stored (need (need (read-x:sutil & let.dom pax)))
=/ stored-cage=cage ?>(?=(%& -.stored) p.stored)
::
=(q.q.stored-cage q.q.cag)
::
$(soba t.soba)
:: the value differs from what's stored, so register mutation
::
$(soba t.soba, mut.nuz [i.soba mut.nuz])
==
:: sort each section alphabetically for determinism
::
=. nuz :*
(sort del.nuz sort-by-head)
(sort ins.nuz sort-by-head)
(sort dif.nuz sort-by-head)
(sort mut.nuz sort-by-head)
(sort ink.nuz sort-by-head)
==
=/ ink
%+ turn ink.nuz
|= {pax/path mis/miso}
^- (pair path cage)
?> ?=($ins -.mis)
=+ =>((flop pax) ?~(. %$ i))
[pax - [%atom %t ~] ;;(@t +>.q.q.p.mis)]
::
=/ mim
:: add the new files to the new mime cache
::
%- malt
^- (list (pair path mime))
;: weld
^- (list (pair path mime))
%+ murn ins.nuz
|= {pax/path mis/miso}
^- (unit (pair path mime))
?> ?=($ins -.mis)
?. ?=($mime p.p.mis)
~
`[pax ;;(mime q.q.p.mis)]
::
^- (list (pair path mime))
%+ murn ink.nuz
|= {pax/path mis/miso}
^- (unit (pair path mime))
?> ?=($ins -.mis)
?> ?=($mime p.p.mis)
`[pax ;;(mime q.q.p.mis)]
::
^- (list (pair path mime))
%+ murn mut.nuz
|= {pax/path mis/miso}
^- (unit (pair path mime))
?> ?=($mut -.mis)
?. ?=($mime p.p.mis)
~
`[pax ;;(mime q.q.p.mis)]
==
::
;< ins=(list (pair path cage)) bind:m (calc-inserts wen ins.nuz)
;< dif=(list (trel path lobe cage)) bind:m (calc-diffs wen dif.nuz)
;< mut=(list (trel path lobe cage)) bind:m (calc-mutates wen mut.nuz)
%+ pure:m
^- dork
[del=(turn del.nuz head) ink ins dif mut]
mim
::
:: Build the list of insertions by casting to the correct mark.
::
++ calc-inserts
|= [wen=@da ins=(list (pair path miso))]
=/ m (clad (list (pair path cage)))
^- form:m
;< ~ bind:m
%+ just-do /inserts
:* %f %build live=%.n %pin wen %list
^- (list schematic:ford)
%+ turn ins
|= [pax=path mis=miso]
?> ?=($ins -.mis)
:- [%$ %path -:!>(*path) pax]
=+ =>((flop pax) ?~(. %$ i))
[%cast [our syd] - [%$ p.mis]]
==
;< res=made-result:ford bind:m expect-ford
^- form:m
|= clad-input
:^ ~ ~ %done
^- (list (pair path cage))
%+ turn (made-result-to-success-cages:util res)
|= {pax/cage cay/cage}
?. ?=($path p.pax)
~|(%clay-take-inserting-strange-path-mark !!)
[;;(path q.q.pax) cay]
::
:: Build the list of diffs by apply the given diffs to the existing
:: data.
::
++ calc-diffs
|= [wen=@da dif=(list (pair path miso))]
=/ m (clad (list (trel path lobe cage)))
^- form:m
;< ~ bind:m
%+ just-do /diffs
:* %f %build live=%.n %pin wen %list
^- (list schematic:ford)
%+ turn dif
|= {pax/path mis/miso}
?> ?=($dif -.mis)
=+ (need (need (read-x:sutil & let.dom pax)))
?> ?=(%& -<)
:- [%$ %path -:!>(*path) pax]
[%pact [our syd] [%$ p.-] [%$ p.mis]]
==
;< res=made-result:ford bind:m expect-ford
^- form:m
|= clad-input
:^ ~ ~ %done
^- (list (trel path lobe cage))
=/ dig=(map path cage)
%- malt
(turn dif |=({pax/path mis/miso} ?>(?=($dif -.mis) [pax p.mis])))
%+ turn (made-result-to-cages:util res)
|= {pax/cage cay/cage}
^- (pair path (pair lobe cage))
?. ?=($path p.pax)
~|(%clay-take-diffing-strange-path-mark !!)
=+ paf=;;(path q.q.pax)
[paf (page-to-lobe:sutil [p q.q]:cay) (~(got by dig) paf)]
::
:: Build the list of mutations by casting to the correct mark and
:: diffing against the existing data.
::
++ calc-mutates
|= [wen=@da mut=(list (pair path miso))]
=/ m (clad (list (trel path lobe cage)))
^- form:m
;< ~ bind:m
%+ just-do /casts
:* %f %build live=%.n %pin wen %list
::~ [her syd %da wen] %tabl
^- (list schematic:ford)
%+ turn mut
|= {pax/path mis/miso}
?> ?=($mut -.mis)
:- [%$ %path -:!>(*path) pax]
=/ mar
%- lobe-to-mark:sutil
(~(got by q:(aeon-to-yaki:sutil let.dom)) pax)
[%cast [our syd] mar [%$ p.mis]]
==
;< res=made-result:ford bind:m expect-ford
;< hashes=(map path lobe) bind:m
|= clad-input
=+ ^- cat/(list (pair path cage))
%+ turn (made-result-to-cages:util res)
|= {pax/cage cay/cage}
?. ?=($path p.pax)
~|(%castify-bad-path-mark !!)
[;;(path q.q.pax) cay]
:_ :+ ~ %done
^- (map path lobe)
%- malt
%+ turn cat
|= {pax/path cay/cage}
[pax (page-to-lobe:sutil [p q.q]:cay)]
^- (list [path note])
:_ ~
:* /mutates
%f %build live=%.n %pin wen %list
^- (list schematic:ford)
%+ turn cat
|= {pax/path cay/cage}
:- [%$ %path -:!>(*path) pax]
=/ scheme
%^ lobe-to-schematic:sutil [our syd] pax
(~(got by q:(aeon-to-yaki:sutil let.dom)) pax)
[%diff [our syd] scheme [%$ cay]]
==
;< res=made-result:ford bind:m expect-ford
%- pure:m
^- (list (trel path lobe cage))
%+ murn (made-result-to-cages:util res)
|= {pax/cage cay/cage}
^- (unit (pair path (pair lobe cage)))
?. ?=($path p.pax)
~|(%clay-take-mutating-strange-path-mark !!)
?: ?=($null p.cay)
~
=+ paf=;;(path q.q.pax)
`[paf (~(got by hashes) paf) cay]
::
:: Collect the relevant data from dok and run +execute-changes to
:: apply them to our state.
::
++ apply-dork
|= [wen=@da =dork]
=/ m (clad ,[=suba _this-cor])
^- form:m
=+ ^- sim=(list (pair path misu))
;: weld
^- (list (pair path misu))
(turn del.dork |=(pax/path [pax %del ~]))
::
^- (list (pair path misu))
(turn ink.dork |=({pax/path cay/cage} [pax %ins cay]))
::
^- (list (pair path misu))
(turn ins.dork |=({pax/path cay/cage} [pax %ins cay]))
::
^- (list (pair path misu))
(turn dif.dork |=({pax/path cal/{lobe cage}} [pax %dif cal]))
::
^- (list (pair path misu))
(turn mut.dork |=({pax/path cal/{lobe cage}} [pax %dif cal]))
==
=/ res=(unit [=dome =rang])
(execute-changes:sutil wen sim)
?~ res
(clad-fail %dork-fail ~)
=: dom dome.u.res
ran rang.u.res
==
(pure:m sim this-cor)
::
:: Take the map of paths to lobes, convert to blobs, and save the
:: resulting ankh to the dome.
::
++ checkout-new-state
=/ m (clad ,_this-cor)
^- form:m
;< ~ bind:m
%+ just-do /checkout
=/ new-yaki (aeon-to-yaki:sutil let.dom)
:* %f %build live=%.n %list
^- (list schematic:ford)
%+ turn (sort ~(tap by q.new-yaki) sort-by-head)
|= {a/path b/lobe}
^- schematic:ford
:- [%$ %path-hash !>([a b])]
(lobe-to-schematic:sutil [our syd] a b)
==
;< res=made-result:ford bind:m expect-ford
?. ?=([%complete %success *] res)
=/ message (made-result-as-error:ford res)
(clad-fail %checkout-fail leaf+"clay patch failed" message)
::
=+ ^- cat/(list (trel path lobe cage))
%+ turn (made-result-to-cages:util res)
|= {pax/cage cay/cage}
?. ?=($path-hash p.pax)
~|(%patch-bad-path-mark !!)
[-< -> +]:[;;({path lobe} q.q.pax) cay]
=. ank.dom (map-to-ankh:sutil (malt cat))
(pure:m this-cor)
::
:: Choose which changes must be synced to unix, and do so. We
:: convert to mime before dropping the ergo event to unix.
::
++ ergo-changes
|= [=suba mim=(map path mime)]
=/ m (clad ,mim=(map path mime))
^- form:m
?~ hez (pure:m mim)
=+ must=(must-ergo:util our syd mon (turn suba head))
?: =(~ must)
(pure:m mim)
=+ ^- all-paths/(set path)
%+ roll
(turn ~(tap by must) (corl tail tail))
|= {pak/(set path) acc/(set path)}
(~(uni in acc) pak)
=/ changes (malt suba)
;< ~ bind:m
%+ just-do /ergo
:* %f %build live=%.n %list
^- (list schematic:ford)
%+ turn ~(tap in all-paths)
|= a/path
^- schematic:ford
:- [%$ %path !>(a)]
=+ b=(~(got by changes) a)
?: ?=($del -.b)
[%$ %null !>(~)]
=+ (~(get by mim) a)
?^ - [%$ %mime !>(u.-)]
:^ %cast [our syd] %mime
=/ x (need (need (read-x:sutil & let.dom a)))
?: ?=(%& -<)
[%$ p.x]
(lobe-to-schematic:sutil [our syd] a p.x)
==
;< res=made-result:ford bind:m expect-ford
?: ?=([%incomplete *] res)
(clad-fail %ergo-fail-incomplete leaf+"clay ergo incomplete" tang.res)
?. ?=([%complete %success *] res)
(clad-fail %ergo-fail leaf+"clay ergo failed" message.build-result.res)
=/ changes=(map path (unit mime))
%- malt ^- mode
%+ turn (made-result-to-cages:util res)
|= [pax=cage mim=cage]
?. ?=($path p.pax)
~|(%ergo-bad-path-mark !!)
:- ;;(path q.q.pax)
?. ?=($mime p.mim)
~
`;;(mime q.q.mim)
=. mim (apply-changes-to-mim:util mim changes)
;< ~ bind:m (give-ergo:util u.hez our syd mon changes)
(pure:m mim)
::
:: Print a summary of changes to dill.
::
++ print-changes
|= lem=nuri
=/ m (clad ,~)
^- form:m
:: skip full change output for initial filesystem
::
?: ?& =(%base syd)
|(=(1 let.dom) =(2 let.dom))
?=([%& ^] lem)
==
=/ msg=tape
%+ weld
"clay: committed initial filesystem"
?:(=(1 let.dom) " (hoon)" " (all)")
|= clad-input
:- ~ :_ [%done ~]
[hun %pass / %d %flog %text msg]~
::
=+ pre=`path`~[(scot %p our) syd (scot %ud let.dom)]
?- -.lem
%| (print-to-dill '=' %leaf :(weld (trip p.lem) " " (spud pre)))
%&
|- ^- form:m
?~ p.lem (pure:m ~)
;< ~ bind:m
%+ print-to-dill
?-(-.q.i.p.lem $del '-', $ins '+', $dif ':')
:+ %rose ["/" "/" ~]
%+ turn (weld pre p.i.p.lem)
|= a/cord
?: ((sane %ta) a)
[%leaf (trip a)]
[%leaf (dash:us (trip a) '\'' ~)]
^$(p.lem t.p.lem)
==
::
:: Send a tank straight to dill for printing.
::
++ print-to-dill
|= {car/@tD tan/tank}
=/ m (clad ,~)
^- form:m
|= clad-input
:- ~ :_ [%done ~]
[hun %give %note car tan]~
--
--
::
:: This transaction respresents a currently running merge. We always
:: say we're merging from 'ali' to 'bob'. The basic steps, not all of
:: which are always needed, are:
::
:: -- fetch ali's desk
:: -- diff ali's desk against the mergebase
:: -- diff bob's desk against the mergebase
:: -- merge the diffs
:: -- build the new state
:: -- "checkout" (apply to actual `++dome`) the new state
:: -- "ergo" (tell unix about) any changes
::
++ merge
:: Global constants. These do not change during a merge.
::
|= $: our=ship
wen=@da
ali-disc=(pair ship desk)
bob-disc=(pair ship desk)
cas=case
mon=(map term beam)
hez=(unit duct)
==
:: Run ford operations on ali unless it's a foreign desk
::
=/ ford-disc=disc:ford
?: =(p.ali-disc p.bob-disc)
ali-disc
bob-disc
|^
:: Initial arguments
::
|= [gem=germ dom=dome ran=rang]
=/ m merge-clad
^- form:m
=/ e (cor dom ran)
;< [bob=(unit yaki) gem=germ] bind:m (get-bob:e gem)
;< [ali=yaki e=_*cor] bind:m fetch-ali:e
;< $= res
%- unit
$: conflicts=(set path)
bop=(map path cage)
new=yaki
erg=(map path ?)
e=_*cor
==
bind:m
(merge:e gem cas ali bob)
?~ res
:: if no changes, we're done
::
(pure:m ~ dom:e ran:e)
=. e e.u.res
;< e=_*cor bind:m (checkout:e gem cas bob new.u.res bop.u.res)
;< mim=(map path mime) bind:m (ergo:e gem cas mon erg.u.res new.u.res)
=. mim.dom.e mim
(pure:m conflicts.u.res dom:e ran:e)
::
:: A stateful core, where the global state is a dome and a rang.
::
:: These are the global state variables that a merge may change.
::
++ cor
|= [dom=dome ran=rang]
=/ original-dome dom
|%
++ this-cor .
++ sutil (state:util original-dome dom ran)
::
:: Fetch the local disk, if it's there.
::
++ get-bob
|= gem=germ
=/ m (clad ,[bob=(unit yaki) gem=germ])
^- form:m
?: &(=(0 let.dom) !?=(?(%init %that) gem))
(error:he cas %no-bob-disc ~)
?: =(0 let.dom)
(pure:m ~ %init)
=/ tak (~(get by hit.dom) let.dom)
?~ tak
(error:he cas %no-bob-version ~)
=/ bob (~(get by hut.ran) u.tak)
?~ bob
(error:he cas %no-bob-commit ~)
(pure:m `u.bob gem)
::
:: Tell clay to get the state at the requested case for ali's desk.
::
++ fetch-ali
=/ m (clad ,[ali=yaki e=_this-cor])
^- form:m
;< ~ bind:m
%+ just-do /fetch-ali
[%c %warp p.ali-disc q.ali-disc `[%sing %v cas /]]
;< [rot=riot r=rang] bind:m (expect-clay ran)
=. ran r
?~ rot
(error:he cas %bad-fetch-ali ~)
=/ ali-dome
;; $: ank=*
let=@ud
hit=(map @ud tako)
lab=(map @tas @ud)
==
q.q.r.u.rot
?: =(0 let.ali-dome)
(error:he cas %no-ali-disc ~)
=/ tak (~(get by hit.ali-dome) let.ali-dome)
?~ tak
(error:he cas %no-ali-version ~)
=/ ali (~(get by hut.ran) u.tak)
?~ ali
(error:he cas %no-ali-commit ~)
(pure:m u.ali this-cor)
::
:: Produce null if nothing to do; else perform merge
::
++ merge
|= [gem=germ cas=case ali=yaki bob=(unit yaki)]
=/ m
%- clad
%- unit
$: conflicts=(set path)
bop=(map path cage)
new=yaki
erg=(map path ?)
e=_this-cor
==
^- form:m
?- gem
::
:: If this is an %init merge, we set the ali's commit to be bob's, and
:: we checkout the new state.
::
$init
%^ pure:m ~ ~
:^ ~
ali
(~(run by q.ali) |=(lobe %&))
this-cor(hut.ran (~(put by hut.ran) r.ali ali))
::
:: If this is a %this merge, we check to see if ali's and bob's commits
:: are the same, in which case we're done. Otherwise, we check to see
:: if ali's commit is in the ancestry of bob's, in which case we're
:: done. Otherwise, we create a new commit with bob's data plus ali
:: and bob as parents.
::
$this
=/ bob (need bob)
?: =(r.ali r.bob)
(pure:m ~)
?: (~(has in (reachable-takos:sutil r.bob)) r.ali)
(pure:m ~)
=/ new (make-yaki:sutil [r.ali r.bob ~] q.bob wen)
%^ pure:m ~ ~
:^ ~
new
~
this-cor(hut.ran (~(put by hut.ran) r.new new))
::
:: If this is a %that merge, we check to see if ali's and bob's commits
:: are the same, in which case we're done. Otherwise, we create a new
:: commit with ali's data plus ali and bob as parents.
::
$that
=/ bob (need bob)
?: =(r.ali r.bob)
(pure:m ~)
=/ new (make-yaki:sutil [r.ali r.bob ~] q.ali wen)
%^ pure:m ~ ~
:^ ~
new
%- malt ^- (list {path ?})
%+ murn ~(tap by (~(uni by q.bob) q.ali))
|= {pax/path lob/lobe}
^- (unit {path ?})
=+ a=(~(get by q.ali) pax)
=+ b=(~(get by q.bob) pax)
?: =(a b)
~
`[pax !=(~ a)]
this-cor(hut.ran (~(put by hut.ran) r.new new))
::
:: If this is a %fine merge, we check to see if ali's and bob's commits
:: are the same, in which case we're done. Otherwise, we check to see
:: if ali's commit is in the ancestry of bob's, in which case we're
:: done. Otherwise, we check to see if bob's commit is in the ancestry
:: of ali's. If not, this is not a fast-forward merge, so we error
:: out. If it is, we add ali's commit to bob's desk and checkout.
::
$fine
=/ bob (need bob)
?: =(r.ali r.bob)
(pure:m ~)
?: (~(has in (reachable-takos:sutil r.bob)) r.ali)
(pure:m ~)
?. (~(has in (reachable-takos:sutil r.ali)) r.bob)
(error:he cas %bad-fine-merge ~)
%^ pure:m ~ ~
:^ ~
ali
%- malt ^- (list {path ?})
%+ murn ~(tap by (~(uni by q.bob) q.ali))
|= {pax/path lob/lobe}
^- (unit {path ?})
=+ a=(~(get by q.ali) pax)
=+ b=(~(get by q.bob) pax)
?: =(a b)
~
`[pax !=(~ a)]
this-cor
::
:: If this is a %meet, %mate, or %meld merge, we may need to
:: fetch more data. If this merge is either trivial or a
:: fast-forward, we short-circuit to either ++done or the %fine
:: case.
::
:: Otherwise, we find the best common ancestor(s) with
:: ++find-merge-points. If there's no common ancestor, we error
:: out. Additionally, if there's more than one common ancestor
:: (i.e. this is a criss-cross merge), we error out. Something
:: akin to git's recursive merge should probably be used here,
:: but it isn't.
::
:: Once we have our single best common ancestor (merge base), we
:: store it in bas. If this is a %mate or %meld merge, we diff
:: both against the mergebase, merge the conflicts, and build the
:: new commit.
::
:: Otherwise (i.e. this is a %meet merge), we create a list of
:: all the changes between the mergebase and ali's commit and
:: store it in ali-diffs, and we put a similar list for bob's
:: commit in bob-diffs. Then we create bof, which is the a set
:: of changes in both ali and bob's commits. If this has any
:: members, we have conflicts, which is an error in a %meet
:: merge, so we error out.
::
:: Otherwise, we merge the merge base data with ali's data and
:: bob's data, which produces the data for the new commit.
::
?($meet $mate $meld)
=/ bob (need bob)
?: =(r.ali r.bob)
(pure:m ~)
?. (~(has by hut.ran) r.bob)
(error:he cas %bad-bob-tako >r.bob< ~)
?: (~(has in (reachable-takos:sutil r.bob)) r.ali)
(pure:m ~)
?: (~(has in (reachable-takos:sutil r.ali)) r.bob)
$(gem %fine)
=+ r=(find-merge-points:he ali bob)
?~ r
(error:he cas %merge-no-merge-base ~)
?. ?=({* ~ ~} r)
=+ (lent ~(tap in `(set yaki)`r))
(error:he cas %merge-criss-cross >[-]< ~)
=/ bas n.r
?: ?=(?($mate $meld) gem)
;< ali-diffs=cane bind:m (diff-bas ali bob bas)
;< bob-diffs=cane bind:m (diff-bas bob ali bas)
;< bof=(map path (unit cage)) bind:m
(merge-conflicts can.ali-diffs can.bob-diffs)
;< $: conflicts=(set path)
bop=(map path cage)
new=yaki
erg=(map path ?)
e=_this-cor
==
bind:m
(build gem ali bob bas ali-diffs bob-diffs bof)
(pure:m `[conflicts bop new erg e])
=/ ali-diffs=cane (calc-diffs:he ali bas)
=/ bob-diffs=cane (calc-diffs:he bob bas)
=/ bof=(map path *)
%- %~ int by
%- ~(uni by `(map path *)`new.ali-diffs)
%- ~(uni by `(map path *)`cal.ali-diffs)
%- ~(uni by `(map path *)`can.ali-diffs)
`(map path *)`old.ali-diffs
%- ~(uni by `(map path *)`new.bob-diffs)
%- ~(uni by `(map path *)`cal.bob-diffs)
%- ~(uni by `(map path *)`can.bob-diffs)
`(map path *)`old.bob-diffs
?^ bof
(error:he cas %meet-conflict >(~(run by `(map path *)`bof) ,~)< ~)
=/ old=(map path lobe)
%+ roll ~(tap by (~(uni by old.ali-diffs) old.bob-diffs))
=< .(old q.bas)
|= {{pax/path ~} old/(map path lobe)}
(~(del by old) pax)
=/ hat=(map path lobe)
%- ~(uni by old)
%- ~(uni by new.ali-diffs)
%- ~(uni by new.bob-diffs)
%- ~(uni by cal.ali-diffs)
cal.bob-diffs
=/ del=(map path ?)
(~(run by (~(uni by old.ali-diffs) old.bob-diffs)) |=(~ %|))
=/ new (make-yaki:sutil [r.ali r.bob ~] hat wen)
%^ pure:m ~ ~
:^ ~
new
%- ~(uni by del)
^- (map path ?)
%. |=(lobe %&)
~(run by (~(uni by new.ali-diffs) cal.ali-diffs))
this-cor(hut.ran (~(put by hut.ran) r.new new))
==
::
:: Diff a commit against the mergebase.
::
++ diff-bas
|= [yak=yaki yuk=yaki bas=yaki]
=/ m (clad ,cane)
^- form:m
;< ~ bind:m
%+ just-do /diff-bas
:* %f %build live=%.n %pin wen
%list
^- (list schematic:ford)
%+ murn ~(tap by q.bas)
|= {pax/path lob/lobe}
^- (unit schematic:ford)
=+ a=(~(get by q.yak) pax)
?~ a
~
?: =(lob u.a)
~
=+ (~(get by q.yuk) pax)
?~ -
~
?: =(u.a u.-)
~
:- ~
=/ disc ford-disc
:- [%$ %path !>(pax)]
:^ %diff ford-disc
(lobe-to-schematic:sutil disc pax lob)
(lobe-to-schematic:sutil disc pax u.a)
==
;< res=made-result:ford bind:m expect-ford
=+ tay=(made-result-to-cages-or-error:util res)
?: ?=(%| -.tay)
(error:he cas %diff-ali-bad-made leaf+"merge diff ali failed" p.tay)
=+ can=(cages-to-map:util p.tay)
?: ?=(%| -.can)
(error:he cas %diff-ali p.can)
%- pure:m
:* %- molt
%+ skip ~(tap by q.yak)
|= {pax/path lob/lobe}
(~(has by q.bas) pax)
::
%- molt ^- (list (pair path lobe))
%+ murn ~(tap by q.bas)
|= {pax/path lob/lobe}
^- (unit (pair path lobe))
=+ a=(~(get by q.yak) pax)
=+ b=(~(get by q.yuk) pax)
?. ?& ?=(^ a)
!=([~ lob] a)
=([~ lob] b)
==
~
`[pax +.a]
::
p.can
::
%- malt ^- (list {path ~})
%+ murn ~(tap by q.bas)
|= {pax/path lob/lobe}
?. =(~ (~(get by q.yak) pax))
~
(some pax ~)
==
::
:: Merge diffs that are on the same file.
::
++ merge-conflicts
|= [conflicts-ali=(map path cage) conflicts-bob=(map path cage)]
=/ m (clad ,bof=(map path (unit cage)))
^- form:m
;< ~ bind:m
%+ just-do /merge-conflicts
:* %f %build live=%.n %list
^- (list schematic:ford)
%+ turn
~(tap by (~(int by conflicts-ali) conflicts-bob))
|= {pax/path *}
^- schematic:ford
=+ cal=(~(got by conflicts-ali) pax)
=+ cob=(~(got by conflicts-bob) pax)
=/ her
=+ (slag (dec (lent pax)) pax)
?~(- %$ i.-)
:- [%$ %path !>(pax)]
[%join [p.bob-disc q.bob-disc] her [%$ cal] [%$ cob]]
==
;< res=made-result:ford bind:m expect-ford
=+ tay=(made-result-to-cages-or-error:util res)
?: ?=(%| -.tay)
(error:he cas %merge-bad-made leaf+"merging failed" p.tay)
=+ can=(cages-to-map:util p.tay)
?: ?=(%| -.can)
(error:he cas %merge p.can)
%- pure:m
(~(run by p.can) (flit |=({a/mark ^} !?=($null a))))
::
:: Apply the patches in bof to get the new merged content.
::
:: Gather all the changes between ali's and bob's commits and the
:: mergebase. This is similar to the %meet of ++merge, except
:: where they touch the same file, we use the merged versions.
::
++ build
|= $: gem=germ
ali=yaki
bob=yaki
bas=yaki
dal=cane
dob=cane
bof=(map path (unit cage))
==
=/ m
%- clad
$: conflicts=(set path)
bop=(map path cage)
new=yaki
erg=(map path ?)
e=_this-cor
==
^- form:m
;< ~ bind:m
%+ just-do /build
:* %f %build live=%.n %list
^- (list schematic:ford)
%+ murn ~(tap by bof)
|= {pax/path cay/(unit cage)}
^- (unit schematic:ford)
?~ cay
~
:- ~
:- [%$ %path !>(pax)]
=+ (~(get by q.bas) pax)
?~ -
~| %mate-strange-diff-no-base
!!
:* %pact
[p.bob-disc q.bob-disc]
(lobe-to-schematic:sutil ford-disc pax u.-)
[%$ u.cay]
==
==
;< res=made-result:ford bind:m expect-ford
=+ tay=(made-result-to-cages-or-error:util res)
?: ?=(%| -.tay)
(error:he cas %build-bad-made leaf+"delta building failed" p.tay)
=/ bop (cages-to-map:util p.tay)
?: ?=(%| -.bop)
(error:he cas %built p.bop)
=/ both-patched p.bop
=/ con=(map path *) :: 2-change conflict
%- molt
%+ skim ~(tap by bof)
|=({pax/path cay/(unit cage)} ?=(~ cay))
=/ cab=(map path lobe) :: conflict base
%- ~(urn by con)
|= {pax/path *}
(~(got by q.bas) pax)
=. con :: change+del conflict
%- ~(uni by con)
%- malt ^- (list {path *})
%+ skim ~(tap by old.dal)
|= {pax/path ~}
?: (~(has by new.dob) pax)
~| %strange-add-and-del
!!
(~(has by can.dob) pax)
=. con :: change+del conflict
%- ~(uni by con)
%- malt ^- (list {path *})
%+ skim ~(tap by old.dob)
|= {pax/path ~}
?: (~(has by new.dal) pax)
~| %strange-del-and-add
!!
(~(has by can.dal) pax)
=. con :: add+add conflict
%- ~(uni by con)
%- malt ^- (list {path *})
%+ skip ~(tap by (~(int by new.dal) new.dob))
|= {pax/path *}
=((~(got by new.dal) pax) (~(got by new.dob) pax))
?: &(?=($mate gem) ?=(^ con))
=+ (turn ~(tap by `(map path *)`con) |=({path *} >[+<-]<))
(error:he cas %mate-conflict -)
=/ old=(map path lobe) :: oldies but goodies
%+ roll ~(tap by (~(uni by old.dal) old.dob))
=< .(old q.bas)
|= {{pax/path ~} old/(map path lobe)}
(~(del by old) pax)
=/ can=(map path cage) :: content changes
%- molt
^- (list (pair path cage))
%+ murn ~(tap by bof)
|= {pax/path cay/(unit cage)}
^- (unit (pair path cage))
?~ cay
~
`[pax u.cay]
=^ hot lat.ran :: new content
^- {(map path lobe) (map lobe blob)}
%+ roll ~(tap by can)
=< .(lat lat.ran)
|= {{pax/path cay/cage} hat/(map path lobe) lat/(map lobe blob)}
=+ ^= bol
=+ (~(get by q.bas) pax)
?~ -
~| %mate-strange-diff-no-base
!!
%^ make-delta-blob:sutil
(page-to-lobe:sutil [p q.q]:(~(got by both-patched) pax))
[(lobe-to-mark:sutil u.-) u.-]
[p q.q]:cay
:- (~(put by hat) pax p.bol)
?: (~(has by lat) p.bol)
lat
(~(put by lat) p.bol bol)
:: ~& old=(~(run by old) mug)
:: ~& newdal=(~(run by new.dal) mug)
:: ~& newdob=(~(run by new.dob) mug)
:: ~& caldal=(~(run by cal.dal) mug)
:: ~& caldob=(~(run by cal.dob) mug)
:: ~& hot=(~(run by hot) mug)
:: ~& cas=(~(run by cas) mug)
=/ hat=(map path lobe) :: all the content
%- ~(uni by old)
%- ~(uni by new.dal)
%- ~(uni by new.dob)
%- ~(uni by cal.dal)
%- ~(uni by cal.dob)
%- ~(uni by hot)
cab
=/ del=(map path ?)
(~(run by (~(uni by old.dal) old.dob)) |=(~ %|))
=/ new (make-yaki:sutil [r.ali r.bob ~] hat wen)
%- pure:m
:* (silt (turn ~(tap by con) head))
both-patched
new
::
%- ~(uni by del)
^- (map path ?)
%. |=(lobe %&)
%~ run by
%- ~(uni by new.dal)
%- ~(uni by cal.dal)
%- ~(uni by cab)
hot
::
this-cor(hut.ran (~(put by hut.ran) r.new new))
==
::
:: Convert new commit into actual data (i.e. blobs rather than
:: lobes). Apply the new commit to our state
::
++ checkout
|= [gem=germ cas=case bob=(unit yaki) new=yaki bop=(map path cage)]
=/ m (clad ,_this-cor)
^- form:m
;< ~ bind:m
=/ val=beak
?: ?=($init gem)
[p.ali-disc q.ali-disc cas]
[p.bob-disc q.bob-disc da+wen]
%+ just-do /checkout
:* %f %build live=%.n %pin wen %list
^- (list schematic:ford)
%+ murn ~(tap by q.new)
|= {pax/path lob/lobe}
^- (unit schematic:ford)
?: (~(has by bop) pax)
~
:+ ~
[%$ %path !>(pax)]
(merge-lobe-to-schematic:he (fall bob *yaki) ford-disc pax lob)
==
;< res=made-result:ford bind:m expect-ford
=+ tay=(made-result-to-cages-or-error:util res)
?: ?=(%| -.tay)
(error:he cas %checkout-bad-made leaf+"merge checkout failed" p.tay)
=+ can=(cages-to-map:util p.tay)
?: ?=(%| -.can)
(error:he cas %checkout p.can)
=. let.dom +(let.dom)
=. hit.dom (~(put by hit.dom) let.dom r.new)
=. ank.dom
%- map-to-ankh:sutil
%- ~(run by (~(uni by bop) p.can))
|=(cage [(page-to-lobe:sutil p q.q) +<])
(pure:m this-cor)
::
:: Cast all the content that we're going to tell unix about to
:: %mime, then tell unix.
::
++ ergo
|= [gem=germ cas=case mon=(map term beam) erg=(map path ?) new=yaki]
=/ m (clad ,mim=(map path mime))
^- form:m
=+ must=(must-ergo:util our q.bob-disc mon (turn ~(tap by erg) head))
?: =(~ must)
(pure:m mim.dom)
=/ sum=(set path)
=+ (turn ~(tap by must) (corl tail tail))
%+ roll -
|= {pak/(set path) acc/(set path)}
(~(uni in acc) pak)
=/ val=beak
?: ?=($init gem)
[p.ali-disc q.ali-disc cas]
[p.bob-disc q.bob-disc da+wen]
;< ~ bind:m
%+ just-do /ergo
:* %f %build live=%.n %pin wen %list
^- (list schematic:ford)
%+ turn ~(tap in sum)
|= a/path
^- schematic:ford
:- [%$ %path !>(a)]
=+ b=(~(got by erg) a)
?. b
[%$ %null !>(~)]
=/ disc ford-disc :: [p q]:val
:^ %cast ford-disc %mime
(lobe-to-schematic:sutil disc a (~(got by q.new) a))
==
;< res=made-result:ford bind:m expect-ford
=+ tay=(made-result-to-cages-or-error:util res)
?: ?=(%| -.tay)
(error:he cas %ergo-bad-made leaf+"merge ergo failed" p.tay)
=+ =| nac=mode
|- ^- tan=$^(mode {p/term q/tang})
?~ p.tay nac
=* pax p.i.p.tay
?. ?=($path p.pax)
[%ergo >[%expected-path got=p.pax]< ~]
=* mim q.i.p.tay
=+ mit=?.(?=($mime p.mim) ~ `;;(mime q.q.mim))
$(p.tay t.p.tay, nac :_(nac [;;(path q.q.pax) mit]))
?: ?=([@ *] tan) (error:he cas tan)
=/ changes=(map path (unit mime)) (malt tan)
=/ mim (apply-changes-to-mim:util mim.dom changes)
?~ hez
(error:he cas %ergo-no-hez ~)
;< ~ bind:m (give-ergo:util u.hez our q.bob-disc mon changes)
(pure:m mim)
::
:: A small set of helper functions to assist in merging.
::
++ he
|%
::
:: Cancel the merge gracefully and produce an error.
::
++ error
|= [cas=case err=term tan=(list tank)]
(clad-fail err >ali-disc< >bob-disc< >cas< tan)
::
++ calc-diffs
|= [hed=yaki bas=yaki]
^- cane
:* %- molt
%+ skip ~(tap by q.hed)
|= {pax/path lob/lobe}
(~(has by q.bas) pax)
::
%- molt
%+ skip ~(tap by q.hed)
|= {pax/path lob/lobe}
=+ (~(get by q.bas) pax)
|(=(~ -) =([~ lob] -))
::
~
::
%- malt ^- (list {path ~})
%+ murn ~(tap by q.bas)
|= {pax/path lob/lobe}
^- (unit (pair path ~))
?. =(~ (~(get by q.hed) pax))
~
`[pax ~]
==
::
:: Create a schematic to turn a lobe into a blob.
::
:: We short-circuit if we already have the content somewhere.
::
++ merge-lobe-to-schematic
|= [bob=yaki disc=disc:ford pax=path lob=lobe]
^- schematic:ford
=+ lol=(~(get by q.bob) pax)
|- ^- schematic:ford
?: =([~ lob] lol)
=+ (need (need (read-x:sutil & let.dom pax)))
?> ?=(%& -<)
[%$ p.-]
:: ?: =([~ lob] lal)
:: [%$ +:(need fil.ank:(descend-path:(zu:sutil ank:(need alh)) pax))]
=+ bol=(~(got by lat.ran) lob)
?- -.bol
$direct (page-to-schematic:sutil disc q.bol)
$delta
[%pact disc $(lob q.q.bol) (page-to-schematic:sutil disc r.bol)]
==
::
:: Find the most recent common ancestor(s).
::
++ find-merge-points
|= {p/yaki q/yaki} :: maybe need jet
^- (set yaki)
%- reduce-merge-points
=+ r=(reachable-takos:sutil r.p)
|- ^- (set yaki)
?: (~(has in r) r.q) (~(put in *(set yaki)) q)
%+ roll p.q
|= {t/tako s/(set yaki)}
?: (~(has in r) t)
(~(put in s) (tako-to-yaki:sutil t)) :: found
(~(uni in s) ^$(q (tako-to-yaki:sutil t))) :: traverse
::
:: Helper for ++find-merge-points.
::
++ reduce-merge-points
|= unk/(set yaki) :: maybe need jet
=| gud/(set yaki)
=+ ^= zar
^- (map tako (set tako))
%+ roll ~(tap in unk)
|= {yak/yaki qar/(map tako (set tako))}
(~(put by qar) r.yak (reachable-takos:sutil r.yak))
|-
^- (set yaki)
?~ unk gud
=+ bun=(~(del in `(set yaki)`unk) n.unk)
?: %+ levy ~(tap by (~(uni in gud) bun))
|= yak/yaki
!(~(has in (~(got by zar) r.yak)) r.n.unk)
$(gud (~(put in gud) n.unk), unk bun)
$(unk bun)
--
--
--
::
:: Mount a beam to unix
::
++ mount
|= $: our=ship
syd=desk
wen=@da
hez=duct
dom=dome
ran=rang
==
|^
|= [pot=term bem=beam mon=(map term beam)]
=/ m mount-clad
^- form:m
=/ old-mon (~(get by mon) pot)
?^ old-mon
(clad-fail %already-mounted >u.old-mon< ~)
=. mon (~(put by mon) pot bem)
;< changes=(map path (unit mime)) bind:m (cast-to-mime bem)
;< ~ bind:m (ergo changes mon)
=/ mim (apply-changes-to-mim:util mim.dom changes)
(pure:m [pot bem] mim)
::
++ sutil (state:util dom dom ran)
:: Initializes a new mount point.
::
++ cast-to-mime
|= bem=beam
=/ m (clad ,(map path (unit mime)))
^- form:m
=* pax s.bem
=/ =aeon (need (case-to-aeon-before:sutil wen r.bem))
=/ must
=/ all (turn ~(tap by q:(aeon-to-yaki:sutil aeon)) head)
(skim all |=(paf/path =(pax (scag (lent pax) paf))))
?~ must
(pure:m ~)
;< ~ bind:m
%+ just-do /ergoing
:* %f %build live=%.n %list
^- (list schematic:ford)
%+ turn `(list path)`must
|= a/path
:- [%$ %path !>(a)]
:^ %cast [our %home] %mime
=+ (need (need (read-x:sutil & aeon a)))
?: ?=(%& -<)
[%$ p.-]
(lobe-to-schematic:sutil [our %home] a p.-)
==
;< res=made-result:ford bind:m expect-ford
?: ?=([%incomplete *] res)
(clad-fail %ergo-fail-incomplete leaf+"clay ergo incomplete" tang.res)
?. ?=([%complete %success *] res)
(clad-fail %ergo-fail leaf+"clay ergo failed" message.build-result.res)
%- pure:m
%- malt ^- mode
%+ turn (made-result-to-cages:util res)
|= [pax=cage mim=cage]
?. ?=($path p.pax)
~|(%ergo-bad-path-mark !!)
:- ;;(path q.q.pax)
?. ?=($mime p.mim)
~
`;;(mime q.q.mim)
::
:: Send changes to unix
::
++ ergo
|= [changes=(map path (unit mime)) mon=(map term beam)]
(give-ergo:util hez our syd mon changes)
--
::
:: A simple foreign request.
::
++ foreign-request
|= $: our=ship
her=ship
syd=desk
wen=@da
==
|^
|= [=rave =rand]
=/ m request-clad
^- form:m
?- p.p.rand
$d ~| %totally-temporary-error-please-replace-me !!
$p ~| %requesting-foreign-permissions-is-invalid !!
$t ~| %requesting-foreign-directory-is-vaporware !!
$u ~| %prolly-poor-idea-to-get-rang-over-network !!
$v ~| %weird-shouldnt-get-v-request-from-network !!
$z ~| %its-prolly-not-reasonable-to-request-ankh !!
$x (validate-x [p.p q.p q r]:rand)
::
$y
(pure:m [p.r.rand !>(;;(arch q.r.rand))])
::
$w
%- pure:m
:- p.r.rand
?+ p.r.rand ~| %strange-w-over-nextwork !!
$cass !>(;;(cass q.r.rand))
$null [[%atom %n ~] ~]
$nako !>(~|([%molding [&1 &2 &3]:q.r.rand] ;;(nako q.r.rand)))
==
==
::
:: Make sure that incoming data is of the mark it claims to be.
::
++ validate-x
|= [car=care cas=case pax=path peg=page]
=/ m (clad ,cage)
;< ~ bind:m
%+ just-do /foreign-x
[%f %build live=%.n %pin wen (vale-page:util [our %home] peg)]
;< res=made-result:ford bind:m expect-ford
^- form:m
?. ?=([%complete %success *] res)
=/ message (made-result-as-error:ford res)
(clad-fail %validate-foreign-x-failed message)
(pure:m (result-to-cage:ford build-result.res))
--
::
:: A full foreign update. Validate and apply to our local cache of
:: their state.
::
++ foreign-update
|= $: our=ship
her=ship
syd=desk
wen=@da
==
|^
|= [=moat rand=(unit rand) lim=@da dom=dome ran=rang]
=/ m update-clad
^- form:m
?~ rand
(pure:m ~)
=/ lem ?.(?=(%da -.to.moat) lim p.to.moat)
?> ?=(%nako p.r.u.rand)
=/ nako ;;(nako q.r.u.rand)
?: =(0 let.dom)
;< [dom=dome ran=rang] bind:m (apply-foreign-update nako dom ran)
(pure:m ~ lem dom ran)
;< blobs=(set blob) bind:m (validate-plops bar.nako)
;< [dom=dome ran=rang] bind:m
(apply-foreign-update nako(bar blobs) dom ran)
(pure:m ~ lem dom ran)
::
:: Make sure that incoming data is of the mark it claims to be.
::
++ validate-plops
|= plops=(set plop)
=/ m (clad ,(set blob))
^- form:m
;< ~ bind:m
%+ just-do /validate-plops
:* %f %build live=%.n %pin wen
%list
^- (list schematic:ford)
%+ turn ~(tap in plops)
|= a/plop
?- -.a
$direct
:- [%$ %blob !>([%direct p.a *page])]
(vale-page:util [our %home] p.q.a q.q.a)
::
$delta
:- [%$ %blob !>([%delta p.a q.a *page])]
(vale-page:util [our %home] p.r.a q.r.a)
==
==
;< res=made-result:ford bind:m expect-ford
=/ cages (made-result-to-cages-or-error:util res)
?: ?=(%| -.cages)
(clad-fail %validate-plops-failed p.cages)
=| blobs=(list blob)
|- ^- form:m
?~ p.cages
(pure:m (silt blobs))
=* bob p.i.p.cages
=* cay q.i.p.cages
?. ?=(%blob p.bob)
(clad-fail %validate-plops-not-blob >p.bob< ~)
=/ new-blob=blob
=/ blob ;;(blob q.q.bob)
?- -.blob
%delta [-.blob p.blob q.blob p.cay q.q.cay]
%direct [-.blob p.blob p.cay q.q.cay]
==
$(p.cages t.p.cages, blobs [new-blob blobs])
::
:: When we get a %w foreign update, store this in our state.
::
:: We get the commits and blobs from the nako and add them to our object
:: store, then we update the map of aeons to commits and the latest aeon.
::
++ apply-foreign-update
|= [=nako dom=dome ran=rang]
=/ m (clad ,[dome rang])
^- form:m
:: hit: updated commit-hashes by @ud case
::
=/ hit (~(uni by hit.dom) gar.nako)
:: nut: new commit-hash/commit pairs
::
=/ nut
(turn ~(tap in lar.nako) |=(=yaki [r.yaki yaki]))
:: hut: updated commits by hash
::
=/ hut (~(uni by (malt nut)) hut.ran)
:: nat: new blob-hash/blob pairs
::
=/ nat
(turn ~(tap in bar.nako) |=(=blob [p.blob blob]))
:: lat: updated blobs by hash
::
=/ lat (~(uni by (malt nat)) lat.ran)
:: traverse updated state and sanity check
::
=+ ~| :* %bad-foreign-update
[gar=gar let=let.nako nut=(turn nut head) nat=(turn nat head)]
[hitdom=hit.dom letdom=let.dom]
==
?: =(0 let.nako)
~
=/ =aeon 1
|- ^- ~
=/ =tako
~| [%missing-aeon aeon] (~(got by hit) aeon)
=/ =yaki
~| [%missing-tako tako] (~(got by hut) tako)
=+ %+ turn
~(tap by q.yaki)
|= [=path =lobe]
~| [%missing-blob path lobe]
?> (~(has by lat) lobe)
~
?: =(let.nako aeon)
~
$(aeon +(aeon))
:: produce updated state
::
=: let.dom (max let.nako let.dom)
hit.dom hit
hut.ran hut
lat.ran lat
==
(pure:m dom ran)
--
::
:: An assortment of useful functions, used in +commit, +merge, and +de
::
++ util
|%
:: Takes a list of changed paths and finds those paths that are inside a
:: mount point (listed in `mon`).
::
:: Output is a map of mount points to {length-of-mounted-path set-of-paths}.
::
++ must-ergo
|= [our=ship syd=desk mon=(map term beam) can/(list path)]
^- (map term (pair @ud (set path)))
%- malt ^- (list (trel term @ud (set path)))
%+ murn ~(tap by mon)
|= {nam/term bem/beam}
^- (unit (trel term @ud (set path)))
=- ?~(- ~ `[nam (lent s.bem) (silt `(list path)`-)])
%+ skim can
|= pax/path
&(=(p.bem our) =(q.bem syd) =((flop s.bem) (scag (lent s.bem) pax)))
::
:: Send changes to unix
::
++ give-ergo
|= $: hez=duct
our=ship
syd=desk
mon=(map term beam)
changes=(map path (unit mime))
==
=/ m (clad ,~)
^- form:m
=/ must (must-ergo our syd mon (turn ~(tap by changes) head))
|= clad-input
:- ~ :_ [%done ~]
%+ turn ~(tap by must)
|= [pot=term len=@ud pak=(set path)]
:* hez %give %ergo pot
%+ turn ~(tap in pak)
|= pax=path
[(slag len pax) (~(got by changes) pax)]
==
::
:: Add or remove entries to the mime cache
::
++ apply-changes-to-mim
|= [mim=(map path mime) changes=(map path (unit mime))]
^- (map path mime)
=/ changes-l=(list [pax=path change=(unit mime)])
~(tap by changes)
|- ^- (map path mime)
?~ changes-l
mim
?~ change.i.changes-l
$(changes-l t.changes-l, mim (~(del by mim) pax.i.changes-l))
$(changes-l t.changes-l, mim (~(put by mim) [pax u.change]:i.changes-l))
::
:: Create a schematic to validate a page.
::
:: If the mark is %hoon, we short-circuit the validation for bootstrapping
:: purposes.
::
++ vale-page
|= [=disc:ford a=page]
^- schematic:ford
?. ?=($hoon p.a) [%vale disc a]
?. ?=(@t q.a) [%dude >%weird-hoon< %ride [%zpzp ~] %$ *cage]
[%$ p.a [%atom %t ~] q.a]
::
:: Crashes on ford failure
::
++ ford-fail |=(tan/tang ~|(%ford-fail (mean tan)))
::
:: Takes either a result or a stack trace. If it's a stack trace, we crash;
:: else, we produce the result.
::
++ unwrap-tang
|* res/(each * tang)
?:(?=(%& -.res) p.res (mean p.res))
::
:: Parse a gage to a list of pairs of cages, crashing on error.
::
:: Composition of ++gage-to-cages-or-error and ++unwrap-tang. Maybe same as
:: ++gage-to-success-cages?
::
++ made-result-to-cages
|= result=made-result:ford
^- (list (pair cage cage))
(unwrap-tang (made-result-to-cages-or-error result))
::
:: Same as ++gage-to-cages-or-error except crashes on error. Maybe same as
:: ++gage-to-cages?
::
++ made-result-to-success-cages
|= result=made-result:ford
^- (list (pair cage cage))
?. ?=([%complete %success %list *] result)
(ford-fail >%strange-ford-result< ~)
:: process each row in the list, filtering out errors
::
%+ murn results.build-result.result
|= row=build-result:ford
^- (unit [cage cage])
::
?: ?=([%error *] row)
~& [%clay-whole-build-failed message.row]
~
?: ?=([%success [%error *] *] row)
~& [%clay-first-failure message.head.row]
~
?: ?=([%success [%success *] [%error *]] row)
~& %clay-second-failure
%- (slog message.tail.row)
~
?. ?=([%success [%success *] [%success *]] row)
~
`[(result-to-cage:ford head.row) (result-to-cage:ford tail.row)]
::
:: Expects a single-level gage (i.e. a list of pairs of cages). If the
:: result is of a different form, or if some of the computations in the gage
:: failed, we produce a stack trace. Otherwise, we produce the list of pairs
:: of cages.
::
++ made-result-to-cages-or-error
|= result=made-result:ford
^- (each (list (pair cage cage)) tang)
::
?: ?=([%incomplete *] result)
(mule |.(`~`(ford-fail tang.result)))
?. ?=([%complete %success %list *] result)
(mule |.(`~`(ford-fail >%strange-ford-result -.build-result.result< ~)))
=/ results=(list build-result:ford)
results.build-result.result
=< ?+(. [%& .] {@ *} .)
|-
^- ?((list [cage cage]) (each ~ tang))
?~ results ~
::
?. ?=([%success ^ *] i.results)
(mule |.(`~`(ford-fail >%strange-ford-result< ~)))
?: ?=([%error *] head.i.results)
(mule |.(`~`(ford-fail message.head.i.results)))
?: ?=([%error *] tail.i.results)
(mule |.(`~`(ford-fail message.tail.i.results)))
::
=+ $(results t.results)
?: ?=([@ *] -) -
:_ -
[(result-to-cage:ford head.i.results) (result-to-cage:ford tail.i.results)]
::
:: Assumes the list of pairs of cages is actually a listified map of paths
:: to cages, and converts it to (map path cage) or a stack trace on error.
::
++ cages-to-map
|= tay/(list (pair cage cage))
=| can/(map path cage)
|- ^- (each (map path cage) tang)
?~ tay [%& can]
=* pax p.i.tay
?. ?=($path p.pax)
(mule |.(`~`~|([%expected-path got=p.pax] !!)))
$(tay t.tay, can (~(put by can) ;;(path q.q.pax) q.i.tay))
::
:: Useful functions which operate on a dome and a rang.
::
:: `original-dome` is the dome which we had when the transaction
:: started. This is used as a lobe-to-blob cache in
:: +lobe-to-schematic so we don't have to recalculate the blobs for
:: files which haven't changed.
::
++ state
|= [original-dome=dome dom=dome ran=rang]
|%
:: These convert between aeon (version number), tako (commit hash), yaki
:: (commit data structure), lobe (content hash), and blob (content).
++ aeon-to-tako ~(got by hit.dom)
++ aeon-to-yaki |=(=aeon (tako-to-yaki (aeon-to-tako aeon)))
++ lobe-to-blob ~(got by lat.ran)
++ tako-to-yaki ~(got by hut.ran)
++ lobe-to-mark
|= a/lobe
=> (lobe-to-blob a)
?- -
$delta p.q
$direct p.q
==
::
:: Create a schematic out of a page (which is a [mark noun]).
::
++ page-to-schematic
|= [disc=disc:ford a=page]
^- schematic:ford
?. ?=($hoon p.a) [%volt disc a]
:: %hoon bootstrapping
[%$ p.a [%atom %t ~] q.a]
::
:: Create a schematic out of a lobe (content hash).
::
++ lobe-to-schematic (cury lobe-to-schematic-p &)
++ lobe-to-schematic-p
=. dom original-dome
|= [local=? disc=disc:ford pax=path lob=lobe]
^- schematic:ford
::
=+ ^- hat/(map path lobe)
?: =(let.dom 0)
~
q:(aeon-to-yaki let.dom)
=+ lol=`(unit lobe)`?.(local `0vsen.tinel (~(get by hat) pax))
|- ^- schematic:ford
?: =([~ lob] lol)
=+ (need (need (read-x & let.dom pax)))
?> ?=(%& -<)
[%$ p.-]
=+ bol=(~(got by lat.ran) lob)
?- -.bol
$direct (page-to-schematic disc q.bol)
$delta ~| delta+q.q.bol
[%pact disc $(lob q.q.bol) (page-to-schematic disc r.bol)]
==
::
:: Hash a page to get a lobe.
::
++ page-to-lobe |=(page (shax (jam +<)))
::
:: Make a direct blob out of a page.
::
++ make-direct-blob
|= p/page
^- blob
[%direct (page-to-lobe p) p]
::
:: Make a delta blob out of a lobe, mark, lobe of parent, and page of diff.
::
++ make-delta-blob
|= {p/lobe q/{p/mark q/lobe} r/page}
^- blob
[%delta p q r]
::
:: Make a commit out of a list of parents, content, and date.
::
++ make-yaki
|= {p/(list tako) q/(map path lobe) t/@da}
^- yaki
=+ ^= has
%^ cat 7 (sham [%yaki (roll p add) q t])
(sham [%tako (roll p add) q t])
[p q has t]
::
++ case-to-date
|= [now=@da =case]
^- @da
:: if the case is already a date, use it.
::
?: ?=([%da *] case)
p.case
:: translate other cases to dates
::
=/ aey (case-to-aeon-before now case)
?~ aey `@da`0
?: =(0 u.aey) `@da`0
t:(aeon-to-yaki u.aey)
::
:: Reduce a case to an aeon (version number)
::
:: We produce null if we can't yet reduce the case for whatever
:: resaon (usually either the time or aeon hasn't happened yet or
:: the label hasn't been created).
::
++ case-to-aeon-before
|= [lim=@da lok=case]
^- (unit aeon)
?- -.lok
$da
?: (gth p.lok lim) ~
|- ^- (unit aeon)
?: =(0 let.dom) [~ 0] :: avoid underflow
?: %+ gte p.lok
=< t
~| [%letdom let=let.dom hit=hit.dom hut=(~(run by hut.ran) ,~)]
~| [%getdom (~(get by hit.dom) let.dom)]
%- aeon-to-yaki
let.dom
[~ let.dom]
$(let.dom (dec let.dom))
::
$tas (~(get by lab.dom) p.lok)
$ud ?:((gth p.lok let.dom) ~ [~ p.lok])
==
::
:: Convert a map of paths to data into an ankh.
::
++ map-to-ankh
|= hat/(map path (pair lobe cage))
^- ankh
%+ roll ~(tap by hat)
|= {{pat/path lob/lobe zar/cage} ank/ankh}
^- ankh
?~ pat
ank(fil [~ lob zar])
=+ nak=(~(get by dir.ank) i.pat)
%= ank
dir %+ ~(put by dir.ank) i.pat
$(pat t.pat, ank (fall nak *ankh))
==
::
:: Update the object store with new blobs.
::
:: Must uni the old-lat into the new-lat so that if we recreate
:: the same blob hash, we use the old blob not the new one. Else
:: you get mutually recurring %delta blobs.
++ add-blobs
|= [new-blobs=(map path blob) old-lat=(map lobe blob)]
^- (map lobe blob)
=/ new-lat=(map lobe blob)
%- malt
%+ turn
~(tap by new-blobs)
|= [=path =blob]
[p.blob blob]
(~(uni by new-lat) old-lat)
::
:: Apply a change list, creating the commit and applying it to
:: the current state.
::
++ execute-changes
|= [wen=@da lem=suba]
^- (unit [dome rang])
=/ parent
?: =(0 let.dom)
~
[(aeon-to-tako let.dom)]~
=/ new-blobs (apply-changes lem)
=. lat.ran (add-blobs new-blobs lat.ran)
=/ new-lobes (~(run by new-blobs) |=(=blob p.blob))
=/ new-yaki (make-yaki parent new-lobes wen)
:: if no changes and not first commit or merge, abort
?. ?| =(0 let.dom)
!=((lent p.new-yaki) 1)
!=(q.new-yaki q:(aeon-to-yaki let.dom))
==
~
=: let.dom +(let.dom)
hit.dom (~(put by hit.dom) +(let.dom) r.new-yaki)
hut.ran (~(put by hut.ran) r.new-yaki new-yaki)
==
`[dom ran]
::
:: Apply label to current revision
::
++ execute-label
|= lab=@tas
?< (~(has by lab.dom) lab)
dom(lab (~(put by lab.dom) lab let.dom))
::
:: Apply a list of changes against the current state and produce
:: the new state.
::
++ apply-changes :: apply-changes
|= [change-files=(list [p=path q=misu])]
^- (map path blob)
=+ ^= old-files :: current state
?: =(let.dom 0) :: initial commit
~ :: has nothing
=< q
%- aeon-to-yaki
let.dom
=; new-files=(map path blob)
=+ sar=(silt (turn change-files head)) :: changed paths
%+ roll ~(tap by old-files) :: find unchanged
=< .(bat new-files)
|= [[pax=path gar=lobe] bat=(map path blob)]
?: (~(has in sar) pax) :: has update
bat
%+ ~(put by bat) pax
~| [pax gar (lent ~(tap by lat.ran))]
(lobe-to-blob gar) :: use original
%+ roll change-files
|= {{pax/path mys/misu} new-files/(map path blob)}
^+ new-files
?- -.mys
$ins :: insert if not exist
?: (~(has by new-files) pax)
~|([%ins-new-files pax] !!)
?: (~(has by old-files) pax)
~|([%ins-old-files pax] !!)
%+ ~(put by new-files) pax
%- make-direct-blob
?: &(?=($mime -.p.mys) =([%hoon ~] (slag (dec (lent pax)) pax)))
`page`[%hoon +.+.q.q.p.mys]
[p q.q]:p.mys
::
$del :: delete if exists
?> |((~(has by old-files) pax) (~(has by new-files) pax))
(~(del by new-files) pax)
::
$dif :: mutate, must exist
=+ ber=(~(get by new-files) pax) :: XX typed
=+ her==>((flop pax) ?~(. %$ i))
?~ ber
=+ har=(~(get by old-files) pax)
?~ har !!
%+ ~(put by new-files) pax
(make-delta-blob p.mys [(lobe-to-mark u.har) u.har] [p q.q]:q.mys)
:: XX check vase !evil
:: XX of course that's a problem, p.u.ber isn't in rang since it
:: was just created. We shouldn't be sending multiple
:: diffs
:: %+ ~(put by bar) pax
:: %^ make-delta-blob p.mys
:: [(lobe-to-mark p.u.ber) p.u.ber]
:: [p q.q]:q.mys
:: :: XX check vase !evil
~|([%two-diffs-for-same-file pax] !!)
==
::
:: Traverse parentage and find all ancestor hashes
::
++ reachable-takos :: reachable
|= p/tako
^- (set tako)
=+ y=(tako-to-yaki p)
%+ roll p.y
=< .(s (~(put in *(set tako)) p))
|= {q/tako s/(set tako)}
?: (~(has in s) q) :: already done
s :: hence skip
(~(uni in s) ^$(p q)) :: otherwise traverse
::
:: Get the data at a node.
::
:: If it's in our ankh (current state cache), we can just produce
:: the result. Otherwise, we've got to look up the node at the
:: aeon to get the content hash, use that to find the blob, and use
:: the blob to get the data. We also special-case the hoon mark
:: for bootstrapping purposes.
::
++ read-x
|= [local=? yon=aeon pax=path]
^- (unit (unit (each cage lobe)))
?: =(0 yon)
[~ ~]
=+ tak=(~(get by hit.dom) yon)
?~ tak
~
?: &(local =(yon let.dom))
:- ~
%+ bind
fil.ank:(descend-path:(zu ank.dom) pax)
|=(a/{p/lobe q/cage} [%& q.a])
=+ yak=(tako-to-yaki u.tak)
=+ lob=(~(get by q.yak) pax)
?~ lob
[~ ~]
=+ mar=(lobe-to-mark u.lob)
?. ?=($hoon mar)
[~ ~ %| u.lob]
:^ ~ ~ %&
:+ mar [%atom %t ~]
|- ^- @t :: (urge cord) would be faster
=+ bol=(lobe-to-blob u.lob)
?: ?=($direct -.bol)
;;(@t q.q.bol)
?> ?=($delta -.bol)
=+ txt=$(u.lob q.q.bol)
?> ?=($txt-diff p.r.bol)
=+ dif=;;((urge cord) q.r.bol)
=, format
=+ pac=(of-wain (lurk:differ (to-wain (cat 3 txt '\0a')) dif))
(end 3 (dec (met 3 pac)) pac)
::
:: Traverse an ankh.
::
++ zu :: filesystem
|= ank/ankh :: filesystem state
=| ram/path :: reverse path into
|%
++ descend :: descend
|= lol/@ta
^+ +>
=+ you=(~(get by dir.ank) lol)
+>.$(ram [lol ram], ank ?~(you [~ ~] u.you))
::
++ descend-path :: descend recursively
|= way/path
^+ +>
?~(way +> $(way t.way, +> (descend i.way)))
--
--
--
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: section 4cA, filesystem logic
::
:: This core contains the main logic of clay. Besides `++ze`, this directly
:: contains the logic for commiting new revisions (local urbits), managing
:: and notifying subscribers (reactivity), and pulling and validating content
:: (remote urbits).
::
:: The state includes:
::
:: -- local urbit `our`
:: -- current time `now`
:: -- current duct `hen`
:: -- scry handler `ski`
:: -- all vane state `++raft` (rarely used, except for the object store)
:: -- target urbit `her`
:: -- target desk `syd`
::
:: For local desks, `our` == `her` is one of the urbits on our pier. For
:: foreign desks, `her` is the urbit the desk is on and `our` is the local
:: urbit that's managing the relationship with the foreign urbit. Don't mix
:: up those two, or there will be wailing and gnashing of teeth.
::
:: While setting up `++de`, we check if `our` == `her`. If so, we get
:: the desk information from `dos.rom`. Otherwise, we get the rung from
:: `hoy` and get the desk information from `rus` in there. In either case,
:: we normalize the desk information to a `++rede`, which is all the
:: desk-specific data that we utilize in `++de`. Because it's effectively
:: a part of the `++de` state, let's look at what we've got:
::
:: -- `lim` is the most recent date we're confident we have all the
:: information for. For local desks, this is always `now`. For foreign
:: desks, this is the last time we got a full update from the foreign
:: urbit.
:: -- `ref` is a possible request manager. For local desks, this is null.
:: For foreign desks, this keeps track of all pending foreign requests
:: plus a cache of the responses to previous requests.
:: -- `qyx` is the set of subscriptions, with listening ducts. These
:: subscriptions exist only until they've been filled.
:: -- `dom` is the actual state of the filetree. Since this is used almost
:: exclusively in `++ze`, we describe it there.
::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
++ de :: per desk
|= [our=ship now=@da ski=sley hen=duct raft]
|= [her=ship syd=desk]
:: XX ruf=raft crashes in the compiler
::
=* ruf |4.+6.^$
::
=+ ^- [mow=(list move) hun=(unit duct) rede]
?. =(our her)
:: no duct, foreign +rede or default
::
:+ ?: (~(has by hoy.ruf) her)
~
[hun.rom.ruf %pass /sinks %j %public-keys (silt her ~)]~
~
=/ rus rus:(~(gut by hoy.ruf) her *rung)
%+ ~(gut by rus) syd
[lim=~2000.1.1 ref=`*rind qyx=~ dom=*dome per=~ pew=~]
:: administrative duct, domestic +rede
::
:+ ~ `hun.rom.ruf
=/ jod (~(gut by dos.rom.ruf) syd *dojo)
[lim=now ref=~ [qyx dom per pew]:jod]
::
=* red=rede ->+
|%
++ abet :: resolve
^- [(list move) raft]
:- (flop mow)
?. =(our her)
:: save foreign +rede
::
=/ run (~(gut by hoy.ruf) her *rung)
=? rit.run =(0 rit.run)
(fall (rift-scry her) *rift)
=/ rug (~(put by rus.run) syd red)
ruf(hoy (~(put by hoy.ruf) her run(rus rug)))
:: save domestic +room
::
%= ruf
hun.rom (need hun)
dos.rom (~(put by dos.rom.ruf) syd [qyx dom per pew]:red)
==
::
:: +rift-scry: for a +rift
::
++ rift-scry
|= who=ship
^- (unit rift)
=; rit
?~(rit ~ u.rit)
;; (unit (unit rift))
%- (sloy-light ski)
=/ pur=spur
/(scot %p who)
[[151 %noun] %k our %rift da+now pur]
::
:: Handle `%sing` requests
::
++ aver
|= {for/(unit ship) mun/mood}
^- (unit (unit (each cage lobe)))
=+ ezy=?~(ref ~ (~(get by haw.u.ref) mun))
?^ ezy
`(bind u.ezy |=(a/cage [%& a]))
=+ nao=(case-to-aeon case.mun)
:: ~& [%aver-mun nao [%from syd lim case.mun]]
?~(nao ~ (read-at-aeon:ze for u.nao mun))
::
:: Queue a move.
::
++ emit
|= mof/move
%_(+> mow [mof mow])
::
:: Queue a list of moves
::
++ emil
|= mof/(list move)
%_(+> mow (weld (flop mof) mow))
::
:: Produce either null or a result along a subscription.
::
:: Producing null means subscription has been completed or cancelled.
::
++ balk
|= {hen/duct cay/(unit (each cage lobe)) mun/mood}
^+ +>
?~ cay (blub hen)
(blab hen mun u.cay)
::
:: Set timer.
::
++ bait
|= {hen/duct tym/@da}
(emit hen %pass /tyme/(scot %p her)/[syd] %b %wait tym)
::
:: Cancel timer.
::
++ best
|= {hen/duct tym/@da}
(emit hen %pass /tyme/(scot %p her)/[syd] %b %rest tym)
::
:: Give subscription result.
::
:: Result can be either a direct result (cage) or a lobe of a result. In
:: the latter case we fetch the data at the lobe and produce that.
::
++ blab
|= {hen/duct mun/mood dat/(each cage lobe)}
^+ +>
?: ?=(%& -.dat)
%- emit
:* hen %slip %b %drip
!>([%writ ~ [care.mun case.mun syd] path.mun p.dat])
==
%- emit
:* hen %pass [%blab care.mun (scot case.mun) syd path.mun]
%f %build live=%.n %pin
(case-to-date case.mun)
(lobe-to-schematic [her syd] path.mun p.dat)
==
::
++ case-to-date (cury case-to-date:util lim)
++ case-to-aeon (cury case-to-aeon-before:util lim)
++ lobe-to-schematic (cury lobe-to-schematic-p:util ?=(~ ref))
::
++ blas
|= {hen/duct das/(set mood)}
^+ +>
?> ?=(^ das)
:: translate the case to a date
::
=/ cas [%da (case-to-date case.n.das)]
=- (emit hen %slip %b %drip !>([%wris cas -]))
(~(run in `(set mood)`das) |=(m/mood [care.m path.m]))
::
:: Give next step in a subscription.
::
++ bleb
|= {hen/duct ins/@ud hip/(unit (pair aeon aeon))}
^+ +>
%^ blab hen [%w [%ud ins] ~]
:- %&
?~ hip
[%null [%atom %n ~] ~]
[%nako !>((make-nako:ze u.hip))]
::
:: Tell subscriber that subscription is done.
::
++ blub
|= hen/duct
(emit hen %slip %b %drip !>([%writ ~]))
::
:: Lifts a function so that a single result can be fanned out over a set of
:: subscriber ducts.
::
:: Thus, `((duct-lift func) subs arg)` runs `(func sub arg)` for each `sub`
:: in `subs`.
::
++ duct-lift
|* send/_|=({duct *} ..duct-lift)
|= {a/(set duct) arg/_+<+.send} ^+ ..duct-lift
=+ all=~(tap by a)
|- ^+ ..duct-lift
?~ all ..duct-lift
=. +>.send ..duct-lift
$(all t.all, duct-lift (send i.all arg))
::
++ blub-all (duct-lift |=([a=duct ~] (blub a)))
++ blab-all (duct-lift blab)
++ blas-all (duct-lift blas)
++ balk-all (duct-lift balk)
++ bleb-all (duct-lift bleb)
::
:: Transfer a request to another ship's clay.
::
++ send-over-ames
|= [=duct =ship index=@ud =riff]
^+ +>
::
=/ =desk p.riff
=/ =wire /warp-index/(scot %p ship)/(scot %tas desk)/(scot %ud index)
=/ =path [%question desk (scot %ud index) ~]
(emit duct %pass wire %a %plea ship %c path riff)
::
:: Create a request that cannot be filled immediately.
::
:: If it's a local request, we just put in in `qyx`, setting a timer if it's
:: waiting for a particular time. If it's a foreign request, we add it to
:: our request manager (ref, which is a ++rind) and make the request to the
:: foreign ship.
::
++ duce :: produce request
|= wov=wove
^+ +>
=. wov (dedupe wov)
=. qyx (~(put ju qyx) wov hen)
?~ ref
(run-if-future rove.wov |=(@da (bait hen +<)))
|- ^+ +>+.$
=/ =rave (rove-to-rave rove.wov)
=. rave
?. ?=([%sing %v *] rave) rave
[%many %| [%ud let.dom] case.mood.rave path.mood.rave]
=+ inx=nix.u.ref
=. +>+.$
=< ?>(?=(^ ref) .)
(send-over-ames hen her inx syd `rave)
%= +>+.$
nix.u.ref +(nix.u.ref)
bom.u.ref (~(put by bom.u.ref) inx [hen rave])
fod.u.ref (~(put by fod.u.ref) hen inx)
==
::
:: If a similar request exists, switch to the existing request.
::
:: "Similar" requests are those %next and %many requests which are the same
:: up to starting case, but we're already after the starting case. This
:: stacks later requests for something onto the same request so that they
:: all get filled at once.
::
++ dedupe :: find existing alias
|= wov/wove
^- wove
=; won/(unit wove) (fall won wov)
=* rov rove.wov
?- -.rov
$sing ~
$next
=+ aey=(case-to-aeon case.mood.rov)
?~ aey ~
%- ~(rep in ~(key by qyx))
|= {haw/wove res/(unit wove)}
?^ res res
?. =(for.wov for.haw) ~
=* hav rove.haw
=- ?:(- `haw ~)
?& ?=($next -.hav)
=(mood.hav mood.rov(case case.mood.hav))
::
:: only a match if this request is before
:: or at our starting case.
=+ hay=(case-to-aeon case.mood.hav)
?~(hay | (lte u.hay u.aey))
==
::
$mult
=+ aey=(case-to-aeon case.mool.rov)
?~ aey ~
%- ~(rep in ~(key by qyx))
|= {haw/wove res/(unit wove)}
?^ res res
?. =(for.wov for.haw) ~
=* hav rove.haw
=- ?:(- `haw ~)
?& ?=($mult -.hav)
=(mool.hav mool.rov(case case.mool.hav))
::
:: only a match if this request is before
:: or at our starting case, and it has been
:: tested at least that far.
=+ hay=(case-to-aeon case.mool.hav)
?& ?=(^ hay)
(lte u.hay u.aey)
?=(^ aeon.hav)
(gte u.aeon.hav u.aey)
==
==
::
$many
=+ aey=(case-to-aeon from.moat.rov)
?~ aey ~
%- ~(rep in ~(key by qyx))
|= {haw/wove res/(unit wove)}
?^ res res
?. =(for.wov for.haw) ~
=* hav rove.haw
=- ?:(- `haw ~)
?& ?=($many -.hav)
=(hav rov(from.moat from.moat.hav))
::
:: only a match if this request is before
:: or at our starting case.
=+ hay=(case-to-aeon from.moat.hav)
?~(hay | (lte u.hay u.aey))
==
==
::
:: Set permissions for a node.
::
++ perm
|= {pax/path rit/rite}
^+ +>
=/ mis/(set @ta)
%+ roll
=- ~(tap in -)
?- -.rit
$r who:(fall red.rit *rule)
$w who:(fall wit.rit *rule)
$rw (~(uni in who:(fall red.rit *rule)) who:(fall wit.rit *rule))
==
|= {w/whom s/(set @ta)}
?: |(?=(%& -.w) (~(has by cez) p.w)) s
(~(put in s) p.w)
?^ mis
:: TODO remove this nasty hack
::
?. ?=([[%a *] *] hen)
+>.$
=- (emit hen %give %done `[%perm-fail [%leaf "No such group(s): {-}"]~])
%+ roll ~(tap in `(set @ta)`mis)
|= {g/@ta t/tape}
?~ t (trip g)
:(weld t ", " (trip g))
:: TODO remove this nasty hack
::
=< ?. ?=([[%a *] *] hen)
.
(emit hen %give %done ~)
::
?- -.rit
$r wake(per (put-perm per pax red.rit))
$w wake(pew (put-perm pew pax wit.rit))
$rw wake(per (put-perm per pax red.rit), pew (put-perm pew pax wit.rit))
==
::
++ put-perm
|= {pes/regs pax/path new/(unit rule)}
?~ new (~(del by pes) pax)
(~(put by pes) pax u.new)
::
:: Remove a group from all rules.
::
++ forget-crew
|= nom/@ta
%= +>
per (forget-crew-in nom per)
pew (forget-crew-in nom pew)
==
::
++ forget-crew-in
|= {nom/@ta pes/regs}
%- ~(run by pes)
|= r/rule
r(who (~(del in who.r) |+nom))
::
:: Cancel a request.
::
:: For local requests, we just remove it from `qyx`. For foreign requests,
:: we remove it from `ref` and tell the foreign ship to cancel as well.
::
++ cancel-request :: release request
^+ .
=^ wos/(list wove) qyx
:_ (~(run by qyx) |=(a/(set duct) (~(del in a) hen)))
%- ~(rep by qyx)
|= {{a/wove b/(set duct)} c/(list wove)}
?.((~(has in b) hen) c [a c])
?~ ref
=> .(ref `(unit rind)`ref) :: XX TMI
?: =(~ wos) + :: XX handle?
|- ^+ +>
?~ wos +>
$(wos t.wos, +> (run-if-future rove.i.wos |=(@da (best hen +<))))
^+ ..cancel-request
=+ nux=(~(get by fod.u.ref) hen)
?~ nux ..cancel-request
=: fod.u.ref (~(del by fod.u.ref) hen)
bom.u.ref (~(del by bom.u.ref) u.nux)
==
(send-over-ames hen her u.nux syd ~)
::
:: Handles a request.
::
:: `%sing` requests are handled by ++aver. `%next` requests are handled by
:: running ++aver at the given case, and then subsequent cases until we find
:: a case where the two results aren't equivalent. If it hasn't happened
:: yet, we wait. `%many` requests are handled by producing as much as we can
:: and then waiting if the subscription range extends into the future.
::
++ start-request
|= [for=(unit ship) rav=rave]
^+ ..start-request
=+ ^- [new-sub=(unit rove) sub-results=(list sub-result)]
(try-fill-sub for (rave-to-rove rav))
=. ..start-request (send-sub-results sub-results [hen ~ ~])
?~ new-sub
..start-request
(duce for u.new-sub)
::
:: Continue committing
::
++ take-commit
|= =sign
^+ +>
=/ m commit-clad
?~ act
~|(%no-active-write !!)
?. ?=(%commit -.eval-data.u.act)
~|(%active-not-commit !!)
=^ r=[moves=(list move) =eval-result:eval:m] commit.eval-data.u.act
(take:eval:m commit.eval-data.u.act hen /commit/[syd] now ran sign)
=> .(+>.$ (emil moves.r)) :: TMI
?- -.eval-result.r
%next +>.$
%fail (fail-commit err.eval-result.r)
%done (done-commit value.eval-result.r)
==
::
:: Don't release effects or apply state changes; print error
::
++ fail-commit
|= err=(pair term tang)
^+ +>
=? +>.$ ?=(^ q.err)
%- emit
:* (need hun) %give %note
'!' %rose [" " "" ""]
leaf+"clay commit error"
leaf+(trip p.err)
q.err
==
finish-write
::
:: Release effects and apply state changes
::
++ done-commit
|= [=dome =rang]
^+ +>
=: dom dome
hut.ran (~(uni by hut.rang) hut.ran)
lat.ran (~(uni by lat.rang) lat.ran)
==
=. +>.$ wake
finish-write
::
:: Continue merging
::
++ take-merge
|= =sign
^+ +>
=/ m merge-clad
?~ act
~|(%no-active-write !!)
?. ?=(%merge -.eval-data.u.act)
~|(%active-not-merge !!)
=^ r=[moves=(list move) =eval-result:eval:m] merge.eval-data.u.act
(take:eval:m merge.eval-data.u.act hen /merge/[syd] now ran sign)
=> .(+>.$ (emil moves.r)) :: TMI
?- -.eval-result.r
%next +>.$
%fail (fail-merge err.eval-result.r)
%done (done-merge value.eval-result.r)
==
::
:: Don't release effects or apply state changes; print error
::
++ fail-merge
|= err=(pair term tang)
^+ +>
=. +>.$
(emit [hen %give %mere %| err])
finish-write
::
:: Release effects and apply state changes
::
++ done-merge
|= [conflicts=(set path) =dome =rang]
^+ +>
=. +>.$ (emit [hen %give %mere %& conflicts])
=: dom dome
hut.ran (~(uni by hut.rang) hut.ran)
lat.ran (~(uni by lat.rang) lat.ran)
==
=. +>.$ wake
finish-write
::
:: Continue mounting
::
++ take-mount
|= =sign
^+ +>
=/ m mount-clad
?~ act
~|(%no-active-write !!)
?. ?=(%mount -.eval-data.u.act)
~|(%active-not-mount !!)
=^ r=[moves=(list move) =eval-result:eval:m] mount.eval-data.u.act
(take:eval:m mount.eval-data.u.act hen /mount/[syd] now ran sign)
=> .(+>.$ (emil moves.r)) :: TMI
?- -.eval-result.r
%next +>.$
%fail (fail-mount err.eval-result.r)
%done (done-mount value.eval-result.r)
==
::
:: Don't release effects or apply state changes; print error
::
++ fail-mount
|= err=(pair term tang)
^+ +>
%- (slog leaf+"mount failed" leaf+(trip p.err) q.err)
finish-write
::
:: Release effects and apply state changes
::
++ done-mount
|= [new-mon=(pair term beam) mim=(map path mime)]
^+ +>
=: mon (~(put by mon) new-mon)
mim.dom mim
==
finish-write
::
:: Start next item in write queue
::
++ finish-write
^+ .
=. act ~
?~ cue
.
=/ =duct duct:(need ~(top to cue))
(emit [duct %pass /queued-request %b %wait now])
::
:: Continue foreign request
::
++ take-foreign-request
|= [inx=@ud =sign]
^+ +>
=/ m request-clad
?> ?=(^ ref)
?~ request=(~(get by pur.u.ref) inx)
~|(%no-active-foreign-request !!)
=^ r=[moves=(list move) =eval-result:eval:m] eval-form.u.request
%- take:eval:m
:* eval-form.u.request
hen
/foreign-request/(scot %p her)/[syd]/(scot %ud inx)
now
ran
sign
==
=> .(+>.$ (emil moves.r)) :: TMI
?- -.eval-result.r
%next +>.$
%fail (fail-foreign-request inx rand.u.request err.eval-result.r)
%done (done-foreign-request inx rand.u.request value.eval-result.r)
==
::
:: Fail foreign request
::
++ fail-foreign-request
|= [inx=@ud =rand err=(pair term tang)]
^+ +>
%- (slog leaf+"foreign request failed" leaf+(trip p.err) q.err)
?> ?=(^ ref)
=/ =mood [p.p q.p q]:rand
=: haw.u.ref (~(put by haw.u.ref) mood ~)
bom.u.ref (~(del by bom.u.ref) inx)
fod.u.ref (~(del by fod.u.ref) hen)
==
wake
::
:: Finish foreign request
::
++ done-foreign-request
|= [inx=@ud =rand =cage]
^+ +>
?> ?=(^ ref)
=/ =mood [p.p q.p q]:rand
=: haw.u.ref (~(put by haw.u.ref) mood `cage)
bom.u.ref (~(del by bom.u.ref) inx)
fod.u.ref (~(del by fod.u.ref) hen)
==
wake
::
:: Called when a foreign ship answers one of our requests.
::
:: If it's a `%many` request, start a `+foreign-update`. Else start
:: a `+foreign-request`.
::
:: After updating ref (our request manager), we handle %x, %w, and %y
:: responses. For %x, we call ++validate-x to validate the type of
:: the response. For %y, we coerce the result to an arch.
::
++ take-foreign-answer :: external change
|= [inx=@ud rut=(unit rand)]
^+ +>
?> ?=(^ ref)
=+ ruv=(~(get by bom.u.ref) inx)
?~ ruv +>.$
=/ rav=rave q.u.ruv
?: ?=(%many -.rav)
:: add to update queue
::
=. waiting.pud.u.ref
(~(put to waiting.pud.u.ref) inx rut)
:: start update if nothing active
::
start-next-foreign-update
?~ rut
:: nothing here, so cache that
::
%_ wake
haw.u.ref
?. ?=($sing -.rav) haw.u.ref
(~(put by haw.u.ref) mood.rav ~)
==
:: something here, so kick off a validator
::
=. pur.u.ref
%+ ~(put by pur.u.ref)
inx
:- u.rut
%- from-form:eval:request-clad
((foreign-request our her syd now) rav u.rut)
(take-foreign-request inx clad-init-sign)
::
:: Continue foreign update
::
++ take-foreign-update
|= =sign
^+ +>
=/ m update-clad
?> ?=(^ ref)
?~ eval-data.pud.u.ref
~|(%no-active-foreign-update !!)
=* ed u.eval-data.pud.u.ref
=/ inx inx.ed
=^ r=[moves=(list move) =eval-result:eval:m]
eval-form.u.eval-data.pud.u.ref
%- take:eval:m
:* eval-form.ed
hen
/foreign-update/(scot %p her)/[syd]
now
ran
sign
==
=> .(+>.$ (emil moves.r)) :: TMI
?- -.eval-result.r
%next +>.$
%fail (fail-foreign-update inx err.eval-result.r)
%done (done-foreign-update inx value.eval-result.r)
==
::
:: Fail foreign update
::
++ fail-foreign-update
|= [inx=@ud err=(pair term tang)]
^+ +>
%- (slog leaf+"foreign update failed" leaf+(trip p.err) q.err)
?> ?=(^ ref)
=: bom.u.ref (~(del by bom.u.ref) inx)
fod.u.ref (~(del by fod.u.ref) hen)
==
=. +>.$ =<(?>(?=(^ ref) .) wake)
=. eval-data.pud.u.ref ~
start-next-foreign-update
::
:: Finish foreign update
::
++ done-foreign-update
|= [inx=@ud res=(unit [new-lim=@da =new=dome =new=rang])]
^+ +>
?> ?=(^ ref)
=: bom.u.ref (~(del by bom.u.ref) inx)
fod.u.ref (~(del by fod.u.ref) hen)
==
?~ res
wake
=: lim new-lim.u.res
dom new-dome.u.res
ran new-rang.u.res
==
=. +>.$ =<(?>(?=(^ ref) .) wake)
=. eval-data.pud.u.ref ~
start-next-foreign-update
::
:: Kick off the the next foreign update in the queue
::
++ start-next-foreign-update
^+ .
?> ?=(^ ref)
?. =(~ eval-data.pud.u.ref)
.
?: =(~ waiting.pud.u.ref)
.
=^ next=[inx=@ud rut=(unit rand)] waiting.pud.u.ref
~(get to waiting.pud.u.ref)
=/ ruv (~(get by bom.u.ref) inx.next)
?~ ruv
~& [%clay-foreign-update-lost her syd inx.next]
start-next-foreign-update
=. hen p.u.ruv
=/ =rave q.u.ruv
?> ?=(%many -.rave)
=. eval-data.pud.u.ref
:- ~
:+ inx.next
rut.next
%- from-form:eval:update-clad
((foreign-update our her syd now) moat.rave rut.next lim dom ran)
(take-foreign-update clad-init-sign)
::
:: fire function if request is in future
::
++ run-if-future
|= [rov=rove fun=$-(@da _.)]
^+ +>.$
%+ fall
%+ bind
^- (unit @da)
?- -.rov
%sing
?. ?=(%da -.case.mood.rov) ~
`p.case.mood.rov
::
%next ~
%mult ~
%many
%^ hunt lth
?. ?=(%da -.from.moat.rov) ~
?. (lth now p.from.moat.rov) ~
[~ p.from.moat.rov]
?. ?=(%da -.to.moat.rov) ~
`(max now p.to.moat.rov)
==
fun
+>.$
::
++ rave-to-rove
|= rav/rave
^- rove
?- -.rav
%sing rav
%next [- mood ~ ~]:rav
%mult [- mool ~ ~ ~]:rav
%many [- track moat ~]:rav
==
::
++ rove-to-rave
|= rov/rove
^- rave
?- -.rov
%sing rov
%next [- mood]:rov
%mult [- mool]:rov
%many [- track moat]:rov
==
::
++ send-sub-results
|= [sub-results=(list sub-result) ducts=(set duct)]
^+ ..wake
?~ sub-results
..wake
=. ..wake
?- -.i.sub-results
%blab (blab-all ducts +.i.sub-results)
%bleb (bleb-all ducts +.i.sub-results)
%balk (balk-all ducts +.i.sub-results)
%blas (blas-all ducts +.i.sub-results)
%blub (blub-all ducts +.i.sub-results)
==
$(sub-results t.sub-results)
::
:: Loop through open subscriptions and check if we can fill any of
:: them.
::
++ wake
^+ .
=/ old-subs=(list [=wove ducts=(set duct)]) ~(tap by qyx)
=| new-subs=(list [=wove ducts=(set duct)])
|- ^+ ..wake
?~ old-subs
:: install new subs
::
..wake(qyx (~(gas by *cult) new-subs))
?: =(~ ducts.i.old-subs)
:: drop forgotten roves
::
$(old-subs t.old-subs)
=+ ^- [new-sub=(unit rove) sub-results=(list sub-result)]
(try-fill-sub wove.i.old-subs)
=. ..wake (send-sub-results sub-results ducts.i.old-subs)
=. new-subs
?~ new-sub
new-subs
[[[for.wove.i.old-subs u.new-sub] ducts.i.old-subs] new-subs]
$(old-subs t.old-subs)
::
:: Try to fill a subscription
::
++ try-fill-sub
|= [for=(unit ship) rov=rove]
^- [new-sub=(unit rove) (list sub-result)]
?- -.rov
%sing
=/ cache-value=(unit (unit cage))
?~(ref ~ (~(get by haw.u.ref) mood.rov))
?^ cache-value
:: if we have a result in our cache, produce it
::
:- ~
?~ u.cache-value
[%blub ~]~
[%blab mood.rov %& u.u.cache-value]~
:: else, check to see if rove is for an aeon we know
::
=/ aeon=(unit aeon) (case-to-aeon case.mood.rov)
?~ aeon
[`rov ~]
:: we have the appropriate aeon, so read in the data
::
=/ value=(unit (unit (each cage lobe)))
(read-at-aeon:ze for u.aeon mood.rov)
?~ value
:: We don't have the data directly, which is potentially
:: problematical. How can we fetch the data?
::
?: =(0 u.aeon)
~& [%clay-sing-indirect-data-0 `path`[syd '0' path.mood.rov]]
[~ ~]
~& [%clay-sing-indirect-data desk=syd mood=mood.rov aeon=u.aeon]
[`rov ~]
:: we have the data, so we produce the results
::
[~ [%balk u.value mood.rov]~]
::
:: %next is just %mult with one path, so we pretend %next = %mult here.
::
?(%next %mult)
:: because %mult requests need to wait on multiple files for each
:: revision that needs to be checked for changes, we keep two
:: cache maps. {old} is the revision at {(dec aeon)}, {new} is
:: the revision at {aeon}. if we have no {aeon} yet, that means
:: it was still unknown last time we checked.
::
=* vor rov
|^
=/ rov=rove
?: ?=(%mult -.vor) vor
:* %mult
[case [[care path] ~ ~]]:mood.vor
aeon.vor
[[[care.mood.vor path.mood.vor] cach.vor] ~ ~]
~
==
?> ?=(%mult -.rov)
:: we will either respond or store the maybe updated request.
::
=; res=(each (map mood (unit (each cage lobe))) rove)
?: ?=(%& -.res)
(respond p.res)
(store p.res)
:: recurse here on next aeon if possible/needed.
::
|- ^- (each (map mood (unit (each cage lobe))) rove)
:: if we don't have an aeon yet, see if we have one now.
::
?~ aeon.rov
=/ aeon=(unit aeon) (case-to-aeon case.mool.rov)
:: if we still don't, wait.
::
?~ aeon |+rov
:: if we do, update the request and retry.
::
$(aeon.rov `+(u.aeon), old-cach.rov ~, new-cach.rov ~)
:: if old isn't complete, try filling in the gaps.
::
=? old-cach.rov !(complete old-cach.rov)
(read-unknown mool.rov(case [%ud (dec u.aeon.rov)]) old-cach.rov)
:: if the next aeon we want to compare is in the future, wait again.
::
=/ next-aeon=(unit aeon) (case-to-aeon [%ud u.aeon.rov])
?~ next-aeon |+rov
:: if new isn't complete, try filling in the gaps.
::
=? new-cach.rov !(complete new-cach.rov)
(read-unknown mool.rov(case [%ud u.aeon.rov]) new-cach.rov)
:: if they're still not both complete, wait again.
::
?. ?& (complete old-cach.rov)
(complete new-cach.rov)
==
|+rov
:: both complete, so check if anything has changed
::
=/ changes=(map mood (unit (each cage lobe)))
%+ roll ~(tap by old-cach.rov)
|= $: [[car=care pax=path] old-cach-value=cach]
changes=(map mood (unit (each cage lobe)))
==
=/ new-cach-value=cach (~(got by new-cach.rov) car pax)
?< |(?=(~ old-cach-value) ?=(~ new-cach-value))
=/ new-entry=(unit (pair mood (unit (each cage lobe))))
=/ =mood [car [%ud u.aeon.rov] pax]
?~ u.old-cach-value
?~ u.new-cach-value
:: not added
::
~
:: added
::
`[mood `u.u.new-cach-value]
?~ u.new-cach-value
:: deleted
::
`[mood ~]
?: (equivalent-data:ze u.u.new-cach-value u.u.old-cach-value)
:: unchanged
::
~
:: changed
::
`[mood `u.u.new-cach-value]
:: if changed, save the change
::
?~ new-entry
changes
(~(put by changes) u.new-entry)
:: if there are any changes, send response. if none, move on to
:: next aeon.
::
?^ changes &+changes
$(u.aeon.rov +(u.aeon.rov), new-cach.rov ~)
::
:: check again later
::
++ store
|= rov=rove
^- [new-sub=(unit rove) (list sub-result)]
=/ new-rove=rove
?> ?=(%mult -.rov)
?: ?=(%mult -.vor) rov
?> ?=([* ~ ~] old-cach.rov)
=* one n.old-cach.rov
[%next [care.p.one case.mool.rov path.p.one] aeon.rov q.one]
[`new-rove ~]
::
:: send changes
::
++ respond
|= res=(map mood (unit (each cage lobe)))
^- [new-sub=(unit rove) (list sub-result)]
:- ~
?: ?=(%mult -.vor)
[%blas ~(key by res)]~
?> ?=([* ~ ~] res)
?~ q.n.res
[%blub ~]~
[%blab [p u.q]:n.res]~
::
:: no unknowns
::
++ complete
|= hav=(map (pair care path) cach)
?& ?=(^ hav)
(levy ~(tap by `(map (pair care path) cach)`hav) know)
==
::
:: know about file in cach
::
++ know |=({(pair care path) c/cach} ?=(^ c))
::
:: fill in the blanks
::
++ read-unknown
|= [=mool hav=(map (pair care path) cach)]
=? hav ?=(~ hav)
%- malt ^- (list (pair (pair care path) cach))
%+ turn
~(tap in paths.mool)
|= [c=care p=path]
^- [[care path] cach]
[[c p] ~]
%- ~(urn by hav)
|= [[c=care p=path] o=cach]
?^(o o (aver for c case.mool p))
--
::
%many
=/ from-aeon (case-to-aeon from.moat.rov)
?~ from-aeon
:: haven't entered the relevant range, so do nothing
::
[`rov ~]
=/ to-aeon (case-to-aeon to.moat.rov)
?~ to-aeon
:: we're in the middle of the range, so produce what we can,
:: but don't end the subscription
::
:: update "from" case to the aeon after now
::
=. from.moat.rov
[%ud +(let.dom)]
:- `rov
=/ new-lobes=(map path lobe)
(lobes-at-path:ze for let.dom path.moat.rov)
?: =(lobes.rov new-lobes)
:: if no changes, don't produce results
::
~
:: else changes, so produce them
::
[%bleb let.dom ?:(track.rov ~ `[u.from-aeon let.dom])]~
:: we're past the end of the range, so end subscription
::
:- ~
=/ new-lobes=(map path lobe)
(lobes-at-path:ze for u.to-aeon path.moat.rov)
:: if changed, give subscription result
::
=/ bleb=(list sub-result)
?: =(lobes.rov new-lobes)
~
[%bleb +(u.from-aeon) ?:(track.rov ~ `[u.from-aeon u.to-aeon])]~
:: end subscription
::
=/ blub=(list sub-result)
[%blub ~]~
(weld bleb blub)
==
::
++ drop-me
^+ .
~| %clay-drop-me-not-implemented
!!
:: ?~ mer
:: .
:: %- emit(mer ~) ^- move :*
:: hen.u.mer %give %mere %| %user-interrupt
:: >sor.u.mer< >our< >cas.u.mer< >gem.u.mer< ~
:: ==
::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
::
:: This core has no additional state, and the distinction exists purely for
:: documentation. The overarching theme is that `++de` directly contains
:: logic for metadata about the desk, while `++ze` is composed primarily
:: of helper functions for manipulating the desk state (`++dome`) itself.
:: Functions include:
::
:: -- converting between cases, commit hashes, commits, content hashes,
:: and content
:: -- creating commits and content and adding them to the tree
:: -- finding which data needs to be sent over the network to keep the
:: other urbit up-to-date
:: -- reading from the file tree through different `++care` options
:: -- the `++me` core for merging.
::
:: The dome is composed of the following:
::
:: -- `ank` is the ankh, which is the file data itself. An ankh is both
:: a possible file and a possible directory. An ankh has both:
:: -- `fil`, a possible file, stored as both a cage and its hash
:: -- `dir`, a map of @ta to more ankhs.
:: -- `let` is the number of the most recent revision.
:: -- `hit` is a map of revision numbers to commit hashes.
:: -- `lab` is a map of labels to revision numbers.
::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
::
:: The useful utility functions that are common to several cores
::
++ util (state:[^util] dom dom ran)
::
:: Other utility functions
::
++ ze
|%
:: These convert between aeon (version number), tako (commit hash), yaki
:: (commit data structure), lobe (content hash), and blob (content).
::
:: XX the following are duplicated from the +state core
::
++ aeon-to-tako ~(got by hit.dom)
++ aeon-to-yaki |=(=aeon (tako-to-yaki (aeon-to-tako aeon)))
++ lobe-to-blob ~(got by lat.ran)
++ tako-to-yaki ~(got by hut.ran)
++ page-to-lobe page-to-lobe:util
::
:: Checks whether two pieces of data (either cages or lobes) are the same.
::
++ equivalent-data
|= {one/(each cage lobe) two/(each cage lobe)}
^- ?
?: ?=(%& -.one)
?: ?=(%& -.two)
=([p q.q]:p.one [p q.q]:p.two)
=(p.two (page-to-lobe [p q.q]:p.one))
?: ?=(%& -.two)
=(p.one (page-to-lobe [p q.q]:p.two))
=(p.one p.two)
::
:: Gets a map of the data at the given path and all children of it.
::
++ lobes-at-path
|= {for/(unit ship) yon/aeon pax/path}
^- (map path lobe)
?: =(0 yon) ~
:: we use %z for the check because it looks at all child paths.
?. |(?=(~ for) (may-read u.for %z yon pax)) ~
%- malt
%+ skim
%~ tap by
=< q
%- aeon-to-yaki
yon
|= {p/path q/lobe}
?| ?=(~ pax)
?& !?=(~ p)
=(-.pax -.p)
$(p +.p, pax +.pax)
== ==
::
:: Creates a nako of all the changes between a and b.
::
++ make-nako
|= {a/aeon b/aeon}
^- nako
:+ ?> (lte b let.dom)
|-
?: =(b let.dom)
hit.dom
$(hit.dom (~(del by hit.dom) let.dom), let.dom (dec let.dom))
b
?: =(0 b)
[~ ~]
(data-twixt-takos (~(get by hit.dom) a) (aeon-to-tako b))
::
:: Gets the data between two commit hashes, assuming the first is an
:: ancestor of the second.
::
:: Get all the takos before `a`, then get all takos before `b` except the
:: ones we found before `a`. Then convert the takos to yakis and also get
:: all the data in all the yakis.
::
++ data-twixt-takos
|= {a/(unit tako) b/tako}
^- {(set yaki) (set plop)}
=+ old=?~(a ~ (reachable-takos:util u.a))
=+ ^- yal/(set tako)
%- silt
%+ skip
~(tap in (reachable-takos:util b))
|=(tak/tako (~(has in old) tak))
:- (silt (turn ~(tap in yal) tako-to-yaki))
(silt (turn ~(tap in (new-lobes (new-lobes ~ old) yal)) lobe-to-blob))
::
:: Get all the lobes that are referenced in `a` except those that are
:: already in `b`.
::
++ new-lobes :: object hash set
|= {b/(set lobe) a/(set tako)} :: that aren't in b
^- (set lobe)
%+ roll ~(tap in a)
|= {tak/tako bar/(set lobe)}
^- (set lobe)
=+ yak=(tako-to-yaki tak)
%+ roll ~(tap by q.yak)
=< .(far bar)
|= {{path lob/lobe} far/(set lobe)}
^- (set lobe)
?~ (~(has in b) lob) :: don't need
far
=+ gar=(lobe-to-blob lob)
?- -.gar
$direct (~(put in far) lob)
$delta (~(put in $(lob q.q.gar)) lob)
==
::
:: Gets the permissions that apply to a particular node.
::
:: If the node has no permissions of its own, we use its parent's.
:: If no permissions have been set for the entire tree above the node,
:: we default to fully private (empty whitelist).
::
++ read-p
|= pax/path
^- (unit (unit (each cage lobe)))
=- [~ ~ %& %noun !>(-)]
:- (read-p-in pax per.red)
(read-p-in pax pew.red)
::
++ read-p-in
|= {pax/path pes/regs}
^- dict
=/ rul/(unit rule) (~(get by pes) pax)
?^ rul
:+ pax mod.u.rul
%- ~(rep in who.u.rul)
|= {w/whom out/(pair (set ship) (map @ta crew))}
?: ?=({%& @p} w)
[(~(put in p.out) +.w) q.out]
=/ cru/(unit crew) (~(get by cez.ruf) +.w)
?~ cru out
[p.out (~(put by q.out) +.w u.cru)]
?~ pax [/ %white ~ ~]
$(pax (scag (dec (lent pax)) `path`pax))
::
++ may-read
|= {who/ship car/care yon/aeon pax/path}
^- ?
?+ car
(allowed-by who pax per.red)
::
$p
=(who our)
::
?($y $z)
=+ tak=(~(get by hit.dom) yon)
?~ tak |
=+ yak=(tako-to-yaki u.tak)
=+ len=(lent pax)
=- (levy ~(tap in -) |=(p/path (allowed-by who p per.red)))
%+ roll ~(tap in (~(del in ~(key by q.yak)) pax))
|= {p/path s/(set path)}
?. =(pax (scag len p)) s
%- ~(put in s)
?: ?=($z car) p
(scag +(len) p)
==
::
++ may-write
|= {w/ship p/path}
(allowed-by w p pew.red)
::
++ allowed-by
|= {who/ship pax/path pes/regs}
^- ?
=/ rul/real rul:(read-p-in pax pes)
=/ in-list/?
?| (~(has in p.who.rul) who)
::
%- ~(rep by q.who.rul)
|= {{@ta cru/crew} out/_|}
?: out &
(~(has in cru) who)
==
?: =(%black mod.rul)
!in-list
in-list
:: +read-t: produce the list of paths within a yaki with :pax as prefix
::
++ read-t
|= [yon=aeon pax=path]
^- (unit (unit [%file-list (hypo (list path))]))
:: if asked for version 0, produce an empty list of files
::
?: =(0 yon)
``[%file-list -:!>(*(list path)) *(list path)]
:: if asked for a future version, we don't have an answer
::
?~ tak=(~(get by hit.dom) yon)
~
:: look up the yaki snapshot based on the version
::
=/ yak=yaki (tako-to-yaki u.tak)
:: calculate the path length once outside the loop
::
=/ path-length (lent pax)
::
:^ ~ ~ %file-list
:- -:!>(*(list path))
^- (list path)
:: sort the matching paths alphabetically
::
=- (sort - aor)
:: traverse the filesystem, filtering for paths with :pax as prefix
::
%+ skim ~(tap in ~(key by q.yak))
|=(paf=path =(pax (scag path-length paf)))
::
:: Checks for existence of a node at an aeon.
::
:: This checks for existence of content at the node, and does *not* look
:: at any of its children.
::
++ read-u
|= {yon/aeon pax/path}
^- (unit (unit (each {$null (hypo ~)} lobe)))
=+ tak=(~(get by hit.dom) yon)
?~ tak
~
``[%& %null [%atom %n ~] ~]
::
:: Gets the dome (desk state) at a particular aeon.
::
:: For past aeons, we don't give an actual ankh in the dome, but the rest
:: of the data is legit. We also never send the mime cache over the wire.
::
++ read-v
|= {yon/aeon pax/path}
^- (unit (unit {$dome (hypo dome:clay)}))
?: (lth yon let.dom)
:* ~ ~ %dome -:!>(%dome)
^- dome:clay
:* ank=`[[%ank-in-old-v-not-implemented *ankh] ~ ~]
let=yon
hit=(molt (skim ~(tap by hit.dom) |=({p/@ud *} (lte p yon))))
lab=(molt (skim ~(tap by lab.dom) |=({* p/@ud} (lte p yon))))
== ==
?: (gth yon let.dom)
~
``[%dome -:!>(*dome:clay) [ank let hit lab]:dom]
::
:: Gets all cases refering to the same revision as the given case.
::
:: For the %da case, we give just the canonical timestamp of the revision.
::
++ read-w
|= cas/case
^- (unit (unit (each cage lobe)))
=+ aey=(case-to-aeon cas)
?~ aey ~
=- [~ ~ %& %cass !>(-)]
^- cass
:- u.aey
?: =(0 u.aey) `@da`0
t:(aeon-to-yaki u.aey)
::
:: Gets the data at a node.
::
++ read-x (cury read-x:util ?=(~ ref))
::
:: Gets an arch (directory listing) at a node.
::
++ read-y
|= {yon/aeon pax/path}
^- (unit (unit {$arch (hypo arch)}))
?: =(0 yon)
``[%arch -:!>(*arch) *arch]
=+ tak=(~(get by hit.dom) yon)
?~ tak
~
=+ yak=(tako-to-yaki u.tak)
=+ len=(lent pax)
:^ ~ ~ %arch
:: ~& cy+pax
:- -:!>(*arch)
^- arch
:- (~(get by q.yak) pax)
^- (map knot ~)
%- molt ^- (list (pair knot ~))
%+ turn
^- (list (pair path lobe))
%+ skim ~(tap by (~(del by q.yak) pax))
|= {paf/path lob/lobe}
=(pax (scag len paf))
|= {paf/path lob/lobe}
=+ pat=(slag len paf)
[?>(?=(^ pat) i.pat) ~]
::
:: Gets a recursive hash of a node and all its children.
::
++ read-z
|= {yon/aeon pax/path}
^- (unit (unit {$uvi (hypo @uvI)}))
?: =(0 yon)
``uvi+[-:!>(*@uvI) *@uvI]
=+ tak=(~(get by hit.dom) yon)
?~ tak
~
=+ yak=(tako-to-yaki u.tak)
=+ len=(lent pax)
:: ~& read-z+[yon=yon qyt=~(wyt by q.yak) pax=pax]
=+ ^- descendants/(list (pair path lobe))
:: ~& %turning
:: =- ~& %turned -
%+ turn
:: ~& %skimming
:: =- ~& %skimmed -
%+ skim ~(tap by (~(del by q.yak) pax))
|= {paf/path lob/lobe}
=(pax (scag len paf))
|= {paf/path lob/lobe}
[(slag len paf) lob]
=+ us=(~(get by q.yak) pax)
^- (unit (unit {$uvi (hypo @uvI)}))
:^ ~ ~ %uvi
:- -:!>(*@uvI)
?: &(?=(~ descendants) ?=(~ us))
*@uvI
%+ roll
^- (list (pair path lobe))
[[~ ?~(us *lobe u.us)] descendants]
|=({{path lobe} @uvI} (shax (jam +<)))
::
:: Get a value at an aeon.
::
:: Value can be either null, meaning we don't have it yet, [null null],
:: meaning we know it doesn't exist, or [null null (each cage lobe)],
:: meaning we either have the value directly or a content hash of the
:: value.
::
++ read-at-aeon :: read-at-aeon:ze
|= [for=(unit ship) yon=aeon mun=mood] :: seek and read
^- (unit (unit (each cage lobe)))
?. |(?=(~ for) (may-read u.for care.mun yon path.mun))
~
?- care.mun
%d
:: XX this should only allow reads at the current date
::
?: !=(our her)
[~ ~]
?^ path.mun
~&(%no-cd-path [~ ~])
[~ ~ %& %noun !>(~(key by dos.rom.ruf))]
::
%p (read-p path.mun)
%t (bind (read-t yon path.mun) (lift |=(a=cage [%& a])))
%u (read-u yon path.mun)
%v (bind (read-v yon path.mun) (lift |=(a/cage [%& a])))
%w (read-w case.mun)
%x (read-x yon path.mun)
%y (bind (read-y yon path.mun) (lift |=(a/cage [%& a])))
%z (bind (read-z yon path.mun) (lift |=(a/cage [%& a])))
==
++ zu zu:util
--
--
--
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:: section 4cA, filesystem vane
::
:: This is the arvo interface vane. Our formal state is a `++raft`, which
:: has five components:
::
:: -- `rom` is the state for all local desks.
:: -- `hoy` is the state for all foreign desks.
:: -- `ran` is the global, hash-addressed object store.
:: -- `mon` is the set of mount points in unix.
:: -- `hez` is the duct to the unix sync.
::
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
=| :: instrument state
$: ver=%1 :: vane version
ruf=raft :: revision tree
== ::
|= [our=ship now=@da eny=@uvJ ski=sley] :: current invocation
^? :: opaque core
|% ::
++ call :: handle request
|= $: hen=duct
type=*
wrapped-task=(hobo task:able)
==
^- [(list move) _..^$]
::
=/ req=task:able
?. ?=(%soft -.wrapped-task)
wrapped-task
;;(task:able p.wrapped-task)
::
:: only one of these should be going at once, so queue
::
?: ?=(?(%info %merg %mont) -.req)
:: If there's an active write or a queue, enqueue
::
:: We only want one active write so each can be a clean
:: transaction. We don't intercept `%into` because it
:: immediately translates itself into one or two `%info` calls.
::
?: |(!=(~ act.ruf) !=(~ cue.ruf))
=. cue.ruf (~(put to cue.ruf) [hen req])
:: ~& :* %clall-enqueing
:: cue=(turn ~(tap to cue.ruf) |=([=duct =task:able] [duct -.task]))
:: ^= act
:: ?~ act.ruf
:: ~
:: [hen req -.eval-data]:u.act.ruf
:: ==
[~ ..^$]
:: If the last commit happened in this event, enqueue
::
:: Without this, two commits could have the same date, which
:: would make clay violate referential transparency.
::
=/ =desk des.req
=/ =dojo (~(gut by dos.rom.ruf) desk *dojo)
?: =(0 let.dom.dojo)
(handle-task hen req)
=/ sutil (state:util dom.dojo dom.dojo ran.ruf)
=/ last-write=@da t:(aeon-to-yaki:sutil let.dom.dojo)
?: !=(last-write now)
(handle-task hen req)
=. cue.ruf (~(put to cue.ruf) [hen req])
=/ wait-behn [hen %pass /queued-request %b %wait now]
[[wait-behn ~] ..^$]
(handle-task hen req)
::
:: Handle a task, without worrying about write queueing
::
++ handle-task
|= [hen=duct req=task:able]
^- [(list move) _..^$]
?- -.req
%boat
:_ ..^$
[hen %give %hill (turn ~(tap by mon.ruf) head)]~
::
%cred
=. cez.ruf
?~ cew.req (~(del by cez.ruf) nom.req)
(~(put by cez.ruf) nom.req cew.req)
:: wake all desks, a request may have been affected.
=| mos/(list move)
=/ des ~(tap in ~(key by dos.rom.ruf))
|-
?~ des [[[hen %give %done ~] mos] ..^^$]
=/ den ((de our now ski hen ruf) our i.des)
=^ mor ruf
=< abet:wake
?: ?=(^ cew.req) den
(forget-crew:den nom.req)
$(des t.des, mos (weld mos mor))
::
%crew
[[hen %give %cruz cez.ruf]~ ..^$]
::
%crow
=/ des ~(tap by dos.rom.ruf)
=| rus/(map desk {r/regs w/regs})
|^
?~ des [[hen %give %croz rus]~ ..^^$]
=+ per=(filter-rules per.q.i.des)
=+ pew=(filter-rules pew.q.i.des)
=? rus |(?=(^ per) ?=(^ pew))
(~(put by rus) p.i.des per pew)
$(des t.des)
::
++ filter-rules
|= pes/regs
^+ pes
=- (~(gas in *regs) -)
%+ skim ~(tap by pes)
|= {p/path r/rule}
(~(has in who.r) |+nom.req)
--
::
%crud
[[[hen %slip %d %flog req] ~] ..^$]
::
%drop
~? =(~ act.ruf)
[%clay-idle cue-length=~(wyt in cue.ruf)]
~? ?=(^ act.ruf)
[%clay-cancelling hen -.req -.eval-data]:u.act.ruf
=. act.ruf ~
?~ cue.ruf
[~ ..^$]
=/ =duct duct:(need ~(top to cue.ruf))
[[duct %pass /queued-request %b %wait now]~ ..^$]
::
%info
?: =(%$ des.req)
~|(%info-no-desk !!)
=. act.ruf
=/ =dojo (~(gut by dos.rom.ruf) des.req *dojo)
=/ writer=form:commit-clad
%- %- commit
:* our
des.req
now
mon.ruf
hez.ruf
hun.rom.ruf
==
:* dit.req
dom.dojo
ran.ruf
==
`[hen req %commit (from-form:eval:commit-clad writer)]
=^ mos ruf
=/ den ((de our now ski hen ruf) our des.req)
abet:(take-commit:den clad-init-sign)
[mos ..^$]
::
%init
[~ ..^$(hun.rom.ruf hen)]
::
%into
=. hez.ruf `hen
:_ ..^$
=+ bem=(~(get by mon.ruf) des.req)
?: &(?=(~ bem) !=(%$ des.req))
~|([%bad-mount-point-from-unix des.req] !!)
=+ ^- bem/beam
?^ bem
u.bem
[[our %base %ud 1] ~]
=/ dos (~(get by dos.rom.ruf) q.bem)
?~ dos
!! :: fire next in queue
?: =(0 let.dom.u.dos)
=+ cos=(mode-to-soba ~ s.bem all.req fis.req)
=+ ^- [one=soba two=soba]
%+ skid cos
|= [a=path b=miso]
?& ?=(%ins -.b)
?=(%mime p.p.b)
?=([%hoon ~] (slag (dec (lent a)) a))
==
:~ [hen %pass /one %c %info q.bem %& one]
[hen %pass /two %c %info q.bem %& two]
==
=+ yak=(~(got by hut.ran.ruf) (~(got by hit.dom.u.dos) let.dom.u.dos))
=+ cos=(mode-to-soba q.yak (flop s.bem) all.req fis.req)
[hen %pass /both %c %info q.bem %& cos]~
::
%merg :: direct state up
?: =(%$ des.req)
~&(%merg-no-desk !!)
=. act.ruf
=/ =dojo (~(gut by dos.rom.ruf) des.req *dojo)
=/ writer=form:merge-clad
%- %- merge
:* our
now
[her dem]:req
[our des.req]
cas.req
mon.ruf
hez.ruf
==
:* how.req
dom.dojo
ran.ruf
==
`[hen req %merge (from-form:eval:merge-clad writer)]
=^ mos ruf
=/ den ((de our now ski hen ruf) our des.req)
abet:(take-merge:den clad-init-sign)
[mos ..^$]
::
%mont
=. hez.ruf ?^(hez.ruf hez.ruf `[[%$ %sync ~] ~])
=. act.ruf
=/ =dojo (~(gut by dos.rom.ruf) q.bem.req *dojo)
=/ writer=form:mount-clad
%- %- mount
:* our
q.bem.req
now
(need hez.ruf)
dom.dojo
ran.ruf
==
:* des.req
bem.req
mon.ruf
==
`[hen req %mount (from-form:eval:mount-clad writer)]
=^ mos ruf
=/ den ((de our now ski hen ruf) p.bem.req q.bem.req)
abet:(take-mount:den clad-init-sign)
[mos ..^$]
::
%dirk
?~ hez.ruf
~& %no-sync-duct
[~ ..^$]
?. (~(has by mon.ruf) des.req)
~& [%not-mounted des.req]
[~ ..^$]
:- ~[[u.hez.ruf %give %dirk des.req]]
..^$
::
%ogre
?~ hez.ruf
~& %no-sync-duct
[~ ..^$]
=* pot pot.req
?@ pot
?. (~(has by mon.ruf) pot)
~& [%not-mounted pot]
[~ ..^$]
:_ ..^$(mon.ruf (~(del by mon.ruf) pot))
[u.hez.ruf %give %ogre pot]~
:_ %_ ..^$
mon.ruf
%- molt
%+ skip ~(tap by mon.ruf)
(corl (cury test pot) tail)
==
%+ turn
(skim ~(tap by mon.ruf) (corl (cury test pot) tail))
|= {pon/term bem/beam}
[u.hez.ruf %give %ogre pon]
::
%perm
=^ mos ruf
=/ den ((de our now ski hen ruf) our des.req)
abet:(perm:den pax.req rit.req)
[mos ..^$]
::
%trim [~ ..^$]
::
%vega [~ ..^$]
::
?(%warp %werp)
:: capture whether this read is on behalf of another ship
:: for permissions enforcement
::
=^ for req
?: ?=(%warp -.req)
[~ req]
:- ?:(=(our who.req) ~ `who.req)
[%warp wer.req rif.req]
::
?> ?=(%warp -.req)
=* rif rif.req
=^ mos ruf
=/ den ((de our now ski hen ruf) wer.req p.rif)
=< abet
?~ q.rif
cancel-request:den
(start-request:den for u.q.rif)
[mos ..^$]
::
%plea
=* her ship.req
=* pax path.plea.req
=* res payload.plea.req
::
?> ?=({%question *} pax)
=+ ryf=;;(riff res)
:_ ..^$
:~ [hen %give %done ~]
=/ =wire
[%foreign-warp (scot %p her) t.pax]
[hen %pass wire %c %werp her our ryf]
==
::
%wegh
:_ ..^$ :_ ~
:^ hen %give %mass
:+ %clay %|
:~ domestic+&+rom.ruf
foreign+&+hoy.ruf
:+ %object-store %|
:~ commits+&+hut.ran.ruf
blobs+&+lat.ran.ruf
==
dot+&+ruf
==
==
::
++ load
=> |%
+$ axle [%1 ruf-1=raft]
--
:: |= *
:: ..^$
:: XX switch back
|= old=axle
^+ ..^$
?> ?=(%1 -.old)
%_(..^$ ruf ruf-1.old)
::
++ scry :: inspect
|= {fur/(unit (set monk)) ren/@tas why/shop syd/desk lot/coin tyl/path}
^- (unit (unit cage))
?. ?=(%& -.why) ~
=* his p.why
:: ~& scry+[ren `path`[(scot %p his) syd ~(rent co lot) tyl]]
:: =- ~& %scry-done -
=+ luk=?.(?=(%$ -.lot) ~ ((soft case) p.lot))
?~ luk [~ ~]
?: =(%$ ren)
[~ ~]
=+ run=((soft care) ren)
?~ run [~ ~]
::TODO if it ever gets filled properly, pass in the full fur.
=/ for/(unit ship)
%- ~(rep in (fall fur ~))
|= {m/monk s/(unit ship)}
?^ s s
?: ?=(%| -.m) ~
?: =(p.m his) ~
`p.m
=/ den ((de our now ski [/scryduct ~] ruf) his syd)
=+ (aver:den for u.run u.luk tyl)
?~ - -
?~ u.- -
?: ?=(%& -.u.u.-) ``p.u.u.-
~
::
++ stay [%1 ruf]
++ take :: accept response
|= [tea=wire hen=duct hin=(hypo sign)]
^+ [*(list move) ..^$]
?: ?=([%commit @ *] tea)
=* syd i.t.tea
=^ mos ruf
=/ den ((de our now ski hen ruf) our syd)
abet:(take-commit:den q.hin)
[mos ..^$]
::
?: ?=([%merge @ *] tea)
=* syd i.t.tea
=^ mos ruf
=/ den ((de our now ski hen ruf) our syd)
abet:(take-merge:den q.hin)
[mos ..^$]
::
?: ?=([%mount @ *] tea)
=* syd i.t.tea
=^ mos ruf
=/ den ((de our now ski hen ruf) our syd)
abet:(take-mount:den q.hin)
[mos ..^$]
::
?: ?=([%foreign-warp *] tea)
?> ?=(%writ +<.q.hin)
:_ ..^$
[hen %give %boon `(unit rand)`(bind `riot`p.q.hin rant-to-rand)]~
::
?: ?=([%foreign-request @ @ @ *] tea)
=/ her (slav %p i.t.tea)
=/ syd (slav %tas i.t.t.tea)
=/ inx (slav %ud i.t.t.t.tea)
=^ mos ruf
=/ den ((de our now ski hen ruf) her syd)
abet:(take-foreign-request:den inx q.hin)
[mos ..^$]
::
?: ?=([%foreign-update @ @ *] tea)
=/ her (slav %p i.t.tea)
=/ syd (slav %tas i.t.t.tea)
=^ mos ruf
=/ den ((de our now ski hen ruf) her syd)
abet:(take-foreign-update:den q.hin)
[mos ..^$]
::
?: ?=([%blab care @ @ *] tea)
?> ?=(%made +<.q.hin)
?. ?=([%complete %success *] result.q.hin)
~| %blab-fail
~> %mean.|.((made-result-as-error:ford result.q.hin))
!! :: interpolate ford fail into stack trace
:_ ..^$ :_ ~
:* hen %slip %b %drip !>
:* %writ ~
^- [care case @tas]
[i.t.tea ;;(case +>:(slay i.t.t.tea)) i.t.t.t.tea]
::
`path`t.t.t.t.tea
`cage`(result-to-cage:ford build-result.result.q.hin)
== ==
::
?: ?=([%warp-index @ @ @ ~] tea)
?+ +<.q.hin ~| %clay-warp-index-strange !!
%done
?~ error.q.hin
[~ ..^$]
:: TODO better error handling
::
~& %clay-take-warp-index-error^our^tea^tag.u.error.q.hin
%- (slog tang.u.error.q.hin)
[~ ..^$]
::
%lost
~| %clay-take-lost^our
:: TODO better error handling
!!
::
%boon
=+ ;; res=(unit rand) payload.q.hin
::
=/ her=ship (slav %p i.t.tea)
=/ =desk (slav %tas i.t.t.tea)
=/ index=@ud (slav %ud i.t.t.t.tea)
::
=^ mos ruf
=/ den ((de our now ski hen ruf) her desk)
abet:(take-foreign-answer:den index res)
[mos ..^$]
==
::
?: ?=([%sinks ~] tea)
?> ?=(%public-keys +<.q.hin)
?: ?=(%full -.public-keys-result.q.hin)
[~ ..^$]
?. ?=(%rift -.diff.public-keys-result.q.hin)
[~ ..^$]
=/ who who.public-keys-result.q.hin
=/ to-rift to.diff.public-keys-result.q.hin
::
?: =(our who)
[~ ..^$]
:: Cancel subscriptions
::
=/ foreign-desk=(unit rung)
(~(get by hoy.ruf) who)
?~ foreign-desk
[~ ..^$]
?: (gte rit.u.foreign-desk to-rift)
[~ ..^$]
=/ cancel-ducts=(list duct)
%- zing ^- (list (list duct))
%+ turn ~(tap by rus.u.foreign-desk)
|= [=desk =rede]
^- (list duct) %- zing ^- (list (list duct))
%+ turn ~(tap by qyx.rede)
|= [=wove ducts=(set duct)]
:: ~& [%sunk-wove desk (print-wove wove) ducts]
~(tap in ducts)
=/ cancel-moves=(list move)
%+ turn cancel-ducts
|= =duct
[duct %slip %b %drip !>([%writ ~])]
:: Clear ford cache
::
=/ clear-ford-cache-moves=(list move)
:~ [hen %pass /clear/keep %f %keep 0 1]
[hen %pass /clear/wipe %f %wipe 100]
[hen %pass /clear/kep %f %keep 2.048 64]
==
:: delete local state of foreign desk
::
=. hoy.ruf (~(del by hoy.ruf) who)
[(weld clear-ford-cache-moves cancel-moves) ..^$]
::
?- -.+.q.hin
%public-keys ~|([%public-keys-raw tea] !!)
%init-clad
~|(%clad-not-real !!)
::
%crud
[[[hen %slip %d %flog +.q.hin] ~] ..^$]
::
%made ~|(%clay-raw-ford !!)
%mere
?: ?=(%& -.p.+.q.hin)
~& 'initial merge succeeded'
[~ ..^$]
~> %slog.
:^ 0 %rose [" " "[" "]"]
:^ leaf+"initial merge failed"
leaf+"my most sincere apologies"
>p.p.p.+.q.hin<
q.p.p.+.q.hin
[~ ..^$]
::
%note [[hen %give +.q.hin]~ ..^$]
%wake
:: TODO: handle behn errors
::
?^ error.q.hin
[[hen %slip %d %flog %crud %wake u.error.q.hin]~ ..^$]
::
?: ?=([%tyme @ @ ~] tea)
=/ her (slav %p i.t.tea)
=/ syd (slav %tas i.t.t.tea)
=^ mos ruf
=/ den ((de our now ski hen ruf) her syd)
abet:wake:den
[mos ..^$]
::
=^ queued cue.ruf ~(get to cue.ruf)
::
=/ queued-duct=duct -.queued
=/ queued-task=task:able +.queued
::
:: ~& :* %clay-waking
:: queued-duct
:: hen
:: ?~(cue.ruf /empty -:(need ~(top to cue.ruf)))
:: ==
~| [%mismatched-ducts %queued queued-duct %timer hen]
?> =(hen queued-duct)
::
(handle-task hen queued-task)
::
:: handled in the wire dispatcher
::
%boon !!
%lost !!
%writ !!
::
%done
?~ error=error.q.hin
[~ ..^$]
~& [%clay-lost u.error tea]
%- (slog >tag.u.error< tang.u.error)
[~ ..^$]
==
::
++ rant-to-rand
|= rant
^- rand
[p q [p q.q]:r]
::
++ mode-to-soba
|= {hat/(map path lobe) pax/path all/? mod/mode}
^- soba
%+ weld
^- (list (pair path miso))
?. all
~
=+ mad=(malt mod)
=+ len=(lent pax)
=+ ^- descendants/(list path)
%+ turn
%+ skim ~(tap by hat)
|= {paf/path lob/lobe}
=(pax (scag len paf))
|= {paf/path lob/lobe}
(slag len paf)
%+ murn
descendants
|= pat/path
^- (unit (pair path {$del ~}))
?: (~(has by mad) pat)
~
`[(weld pax pat) %del ~]
^- (list (pair path miso))
%+ murn mod
|= {pat/path mim/(unit mime)}
^- (unit (pair path miso))
=+ paf=(weld pax pat)
?~ mim
=+ (~(get by hat) paf)
?~ -
~& [%deleting-already-gone pax pat]
~
`[paf %del ~]
=+ (~(get by hat) paf)
?~ -
`[paf %ins %mime -:!>(*mime) u.mim]
`[paf %mut %mime -:!>(*mime) u.mim]
::
:: +rift-scry: for a +rift
::
++ rift-scry
~% %rift-scry ..is ~
|= who=ship
^- (unit rift)
=; lyf
?~(lyf ~ u.lyf)
;; (unit (unit rift))
%- (sloy-light ski)
=/ pur=spur
/(scot %p who)
[[151 %noun] %k our %rift da+now pur]
--