shrub/sys/vane/alef.hoon

1345 lines
36 KiB
Plaintext

:: protocol-version: current version of the ames wire protocol
::
=/ protocol-version=?(%0 %1 %2 %3 %4 %5 %6 %7) %0
::
|%
+| %generics
:: $mk-item: constructor for +ordered-map item type
::
+* mk-item [key val] [key=key val=val]
:: +ordered-map: treap with user-specified horizontal order
::
:: Conceptually smaller items go on the left, so the item with the
:: smallest key can be popped off the head. If $key is `@` and
:: .compare is +lte, then the numerically smallest item is the head.
::
++ ordered-map
|* [key=mold val=mold]
=> |%
+$ item (mk-item key val)
--
:: +compare: item comparator for horizontal order
::
|= compare=$-([key key] ?)
|%
:: +check-balance: verify horizontal and vertical orderings
::
++ check-balance
=| [l=(unit key) r=(unit key)]
|= a=(tree item)
^- ?
:: empty tree is valid
::
?~ a %.y
:: nonempty trees must maintain several criteria
::
?& :: if .n.a is left of .u.l, assert horizontal comparator
::
?~(l %.y (compare key.n.a u.l))
:: if .n.a is right of .u.r, assert horizontal comparator
::
?~(r %.y (compare u.r key.n.a))
:: if .a is not leftmost element, assert vertical order between
:: .l.a and .n.a and recurse to the left with .n.a as right
:: neighbor
::
?~(l.a %.y &((mor key.n.a key.n.l.a) $(a l.a, l `key.n.a)))
:: if .a is not rightmost element, assert vertical order
:: between .r.a and .n.a and recurse to the right with .n.a as
:: left neighbor
::
?~(r.a %.y &((mor key.n.a key.n.r.a) $(a r.a, r `key.n.a)))
==
:: +put: ordered item insert
::
++ put
|= [a=(tree item) =key =val]
^- (tree item)
:: base case: replace null with single-item tree
::
?~ a [n=[key val] l=~ r=~]
:: base case: overwrite existing .key with new .val
::
?: =(key.n.a key) a(val.n val)
:: if item goes on left, recurse left then rebalance vertical order
::
?: (compare key key.n.a)
=/ l $(a l.a)
?> ?=(^ l)
?: (mor key.n.a key.n.l)
a(l l)
l(r a(l r.l))
:: item goes on right; recurse right then rebalance vertical order
::
=/ r $(a r.a)
?> ?=(^ r)
?: (mor key.n.a key.n.r)
a(r r)
r(l a(r l.r))
:: +peek: produce head (smallest item) or null
::
++ peek
|= a=(tree item)
^- (unit item)
::
?~ a ~
?~ l.a `n.a
$(a l.a)
:: +pop: produce .head (smallest item) and .rest or crash if empty
::
++ pop
|= a=(tree item)
^- [head=item rest=(tree item)]
::
?~ a !!
?~ l.a [n.a r.a]
::
=/ l $(a l.a)
:- head.l
:: load .rest.l back into .a and rebalance
::
?: |(?=(~ rest.l) (mor key.n.a key.n.rest.l))
a(l rest.l)
rest.l(r a(r r.rest.l))
:: +nip: remove root; for internal use
::
++ nip
|= a=(tree item)
^- (tree item)
::
?> ?=(^ a)
:: delete .n.a; merge and balance .l.a and .r.a
::
|- ^- (tree item)
?~ l.a r.a
?~ r.a l.a
?: (mor key.n.l.a key.n.r.a)
l.a(r $(l.a r.l.a))
r.a(l $(r.a l.r.a))
:: +traverse: stateful partial inorder traversal
::
:: Mutates .state on each run of .f. Starts at .start key, or if
:: .start is ~, starts at the head (item with smallest key). Stops
:: when .f produces .stop=%.y. Traverses from smaller to larger
:: keys. Each run of .f can replace an item's value or delete the
:: item.
::
++ traverse
|* state=mold
|= $: a=(tree item)
start=(unit key)
=state
f=$-([state item] [(unit val) ? state])
==
^+ [state a]
:: acc: accumulator
::
:: .stop: set to %.y by .f when done traversing
:: .state: threaded through each run of .f and produced by +abet
::
=/ acc [stop=`?`%.n state=state]
=< abet =< main
|%
++ abet [state.acc a]
++ self .
:: +main: main recursive loop; performs a partial inorder traversal
::
++ main
^+ .
:: stop if empty or we've been told to stop
::
?~ a .
?: stop.acc .
:: if nonempty .start, while we're left of .start, move right
::
?: ?& ?=(^ start)
!(compare u.start key.n.a)
==
right
:: inorder traversal: left -> node -> right, recursively
::
=> left
:: only continue rightward if we weren't told to stop
=< ?. stop.acc
right
self
:: if left told us to stop, don't mutate node
::
?: stop.acc self
:: run .f on node, updating .stop.acc and .state.acc
::
?> ?=(^ a)
=^ res acc (f state.acc n.a)
:: TMI
::
=> .(a `(tree item)`a)
=. a
:: if .f requested node deletion, merge and balance .l.a and .r.a
::
?~ res (nip a)
:: we kept the node; replace its .val; order is unchanged
::
?> ?=(^ a)
a(val.n u.res)
::
self
:: +left: recurse on the left subtree, copying mutant back into .a
::
++ left
^+ .
?~ a .
=/ lef main(a l.a)
lef(a a(l a.lef))
:: +right: recurse on the right subtree, copying mutant back into .a
::
++ right
^+ .
?~ a .
=/ rig main(a r.a)
rig(a a(r a.rig))
--
:: +sift: remove and produce all items matching .reject predicate
::
:: Unrolls to a list, extracts items, then rolls back into a tree.
:: Removed items are produced smallest to largest.
::
++ sift
|= [a=(tree item) reject=$-(item ?)]
^- [lost=(list item) kept=(tree item)]
::
=+ [l k]=(skid (tap a) reject) [l (gas ~ k)]
:: +tap: convert to list, smallest to largest
::
++ tap
|= a=(tree item)
^- (list item)
::
=| b=(list item)
|- ^+ b
?~ a b
::
$(a l.a, b [n.a $(a r.a)])
:: +gas: put a list of items
::
++ gas
|= [a=(tree item) b=(list item)]
^- (tree item)
::
?~ b a
$(b t.b, a (put a i.b))
--
:: +ordered-set: treap with user-specified horizontal order
::
:: Conceptually smaller items go on the left, so the smallest item
:: can be popped off the head. If $item is `@` and .compare is +lte,
:: then the numerically smallest item is the head.
::
++ ordered-set
|* item=mold
:: +compare: item comparator for horizontal order
::
|= compare=$-([item item] ?)
|%
:: +check-balance: verify horizontal and vertical orderings
::
++ check-balance
=| [l=(unit item) r=(unit item)]
|= a=(tree item)
^- ?
:: empty tree is valid
::
?~ a %.y
:: nonempty trees must maintain several criteria
::
?& :: if .n.a is left of .u.l, assert horizontal comparator
::
?~(l %.y (compare n.a u.l))
:: if .n.a is right of .u.r, assert horizontal comparator
::
?~(r %.y (compare u.r n.a))
:: if .a is not leftmost element, assert vertical order between
:: .l.a and .n.a and recurse to the left with .n.a as right
:: neighbor
::
?~(l.a %.y &((mor n.a n.l.a) $(a l.a, l `n.a)))
:: if .a is not rightmost element, assert vertical order
:: between .r.a and .n.a and recurse to the right with .n.a as
:: left neighbor
::
?~(r.a %.y &((mor n.a n.r.a) $(a r.a, r `n.a)))
==
:: +put: ordered item insert
::
++ put
|= [a=(tree item) =item]
^- (tree ^item)
:: base case: replace null with single-item tree
::
?~ a [n=item l=~ r=~]
:: base case: ignore duplicate
::
?: =(n.a item) a
:: if item goes on left, recurse left then rebalance vertical order
::
?: (compare item n.a)
=/ l $(a l.a)
?> ?=(^ l)
?: (mor n.a n.l)
a(l l)
l(r a(l r.l))
:: item goes on right; recurse right then rebalance vertical order
::
=/ r $(a r.a)
?> ?=(^ r)
?: (mor n.a n.r)
a(r r)
r(l a(r l.r))
:: +peek: produce head (smallest item) or null
::
++ peek
|= a=(tree item)
^- (unit item)
::
?~ a ~
?~ l.a `n.a
$(a l.a)
:: +pop: produce .head (smallest item) and .rest or crash if empty
::
++ pop
|= a=(tree item)
^- [head=item rest=(tree item)]
::
?~ a !!
?~ l.a [n.a r.a]
::
=/ l $(a l.a)
:- head.l
:: load .rest.l back into .a and rebalance
::
?: |(?=(~ rest.l) (mor n.a n.rest.l))
a(l rest.l)
rest.l(r a(r r.rest.l))
:: +sift: remove and produce all items matching .reject predicate
::
:: Unrolls to a list, extracts items, then rolls back into a tree.
:: Removed items are produced smallest to largest.
::
++ sift
|= [a=(tree item) reject=$-(item ?)]
^- [lost=(list item) kept=(tree item)]
::
=+ [l k]=(skid (tap a) reject) [l (gas ~ k)]
:: +tap: convert to list, smallest to largest
::
++ tap
|= a=(tree item)
^- (list item)
::
=| b=(list item)
|- ^+ b
?~ a b
::
$(a l.a, b [n.a $(a r.a)])
:: +gas: put a list of items
::
++ gas
|= [a=(tree item) b=(list item)]
^- (tree item)
::
?~ b a
$(b t.b, a (put a i.b))
--
::
+| %atomics
::
+$ blob @uxblob
+$ bone @udbone
+$ fragment @uwfragment
+$ fragment-num @udfragmentnum
+$ lane @uxlane
+$ message-num @udmessagenum
+$ public-key @uwpublickey
+$ signature @uwsignature
+$ symmetric-key @uwsymmetrickey
:: $rank: which kind of ship address, by length
::
:: 0: galaxy or star -- 2 bytes
:: 1: planet -- 4 bytes
:: 2: moon -- 8 bytes
:: 3: comet -- 16 bytes
::
+$ rank ?(%0 %1 %2 %3)
::
+| %kinetics
::
:: $channel: combined sender and receiver identifying data
::
+$ channel
$: [our=ship her=ship]
now=@da
:: our data, common to all dyads
::
$: =our=life
crypto-core=acru:ames
==
:: her data, specific to this dyad
::
$: =symmetric-key
=her=life
=her=public-key
her-sponsors=(list ship)
== ==
:: $dyad: pair of sender and receiver ships
::
+$ dyad [sndr=ship rcvr=ship]
::
+$ error [tag=@tas =tang]
:: $message: application-level message
::
:: path: internal route on the receiving ship
:: payload: semantic message contents
::
+$ message [=path payload=*]
:: $packet: noun representation of an ames datagram packet
::
:: Roundtrips losslessly through atom encoding and decoding.
::
:: .origin is ~ unless the packet is being forwarded. If present,
:: it's an atom that encodes a route to another ship, such as an IPv4
:: address. Routes are opaque to Arvo and only have meaning in the
:: interpreter. This enforces that Ames is transport-agnostic.
::
+$ packet [dyad encrypted=? origin=(unit lane) content=*]
:: $open-packet: unencrypted packet payload, for comet self-attestation
::
+$ open-packet
$: =signature
=sndr=life
=rcvr=life
rcvr=ship
==
:: $shut-packet: encrypted packet payload
::
+$ shut-packet
$: =sndr=life
=rcvr=life
=bone
=message-num
meat=(each fragment-meat ack-meat)
==
:: $fragment-meat: contents of a message-fragment packet
::
+$ fragment-meat
$: num-fragments=fragment-num
=fragment-num
=fragment
==
:: $ack-meat: contents of an acknowledgment packet; fragment or message
::
:: Fragment acks reference the $fragment-num of the target packet.
::
:: Message acks contain a success flag .ok, which is %.n in case of
:: negative acknowledgment (nack), along with .lag that describes the
:: time it took to process the message. .lag is zero if the message
:: was processed during a single Arvo event. At the moment, .lag is
:: always zero.
::
+$ ack-meat (each fragment-num [ok=? lag=@dr])
::
+| %statics
::
:: $ames-state: state for entire vane
::
+$ ames-state
$: peers=(map ship ship-state)
=life
crypto-core=acru:ames
==
:: $ship-state: all we know about a peer
::
:: %alien: no PKI data, so enqueue actions to perform once we learn it
:: %known: we know their life and public keys, so we have a channel
::
+$ ship-state
$% [%alien pending-requests]
[%known peer-state]
==
:: $pending-requests: what to do when we learn a peer's life and keys
::
:: rcv-packets: packets we've received from unix
:: snd-messages: messages local vanes have asked us to send
::
+$ pending-requests
$: rcv-packets=(list [=lane =packet])
snd-messages=(list [=duct =message])
==
:: $peer-state: state for a peer with known life and keys
::
:: route: transport-layer destination for packets to peer
:: ossuary: bone<->duct mapper
:: snd: per-bone message pumps to send messages as fragments
:: rcv: per-bone message stills to assemble messages from fragments
:: nax: unprocessed nacks (negative acknowledgments)
:: Each value is ~ when we've received the ack packet but not a
:: naxplanation, or an error when we've received a naxplanation
:: but not the ack packet.
::
:: When we hear a nack packet or an explanation, if there's no
:: entry in .nax, we make a new entry. Otherwise, if this new
:: information completes the packet+naxplanation, we remove the
:: entry and emit a nack to the local vane that asked us to send
:: the message.
::
+$ peer-state
$: $: =symmetric-key
=life
=public-key
sponsors=(list ship)
==
route=(unit [direct=? =lane])
=ossuary
snd=(map bone message-pump-state)
rcv=(map bone message-still-state)
nax=(map [=bone =message-num] (unit error))
==
:: $ossuary: bone<->duct bijection and .next-bone to map to a duct
::
+$ ossuary
$: =next=bone
by-duct=(map duct bone)
by-bone=(map bone duct)
==
:: $message-pump-state: persistent state for |message-pump
::
:: Messages queue up in |message-pump's .unsent-messages until they
:: can be packetized and fed into |packet-pump for sending. When we
:: pop a message off .unsent-messages, we push as many fragments as
:: we can into |packet-pump, then place the remaining in
:: .unsent-fragments. We also insert an entry in .unacked-fragments
:: initialized with the total number of fragments in the message.
::
:: When we hear a packet ack, we send it to |packet-pump. If we
:: haven't seen it before, |packet-pump reports the fresh ack. We
:: then decrement that message's entry in .unacked-fragments.
::
:: When we hear a message ack (positive or negative), we treat that
:: as though all fragments have been acked. If this message is not
:: .current, then it's a future message and .current has not yet been
:: acked, so we place the message in .queued-message-acks.
::
:: If we hear a message ack before we've sent all the
:: fragments for that message, clear .unsent-fragments. If the
:: message ack was positive, print it out because it indicates the
:: peer is not behaving properly.
::
:: If the ack is for the current message, emit the message ack,
:: increment .current, and check if this next message is in
:: .queued-message-acks. If it is, emit the message (n)ack,
:: increment .current, and check the next message. Repeat until
:: .current is not fully acked.
::
:: When we hear a message nack, we send it to |packet-pump, which
:: deletes all packets from that message. If .current gets nacked,
:: clear .unsent-fragments and go into the same flow as when we hear
:: the last packet ack on a message.
::
:: The following equation is always true:
:: .next - .current == number of messages in flight
::
:: At the end of a task, |message-pump sends a %flush task to
:: |packet-pump, which can trigger a timer to be set or cleared based
:: on congestion control calculations. When it fires, the timer will
:: generally cause one or more packets to be resent.
::
:: current: sequence number of message being sent
:: next: sequence number of next message to send
:: unsent-messages: messages to be sent after current message
:: unsent-fragments: fragments of current message waiting for sending
:: unacked-fragments: number of fragments waiting on ack
:: queued-message-acks: future message acks to be applied after current
:: packet-pump-state: state of corresponding |packet-pump
::
+$ message-pump-state
$: current=message-num
next=message-num
unsent-messages=(qeu message)
unsent-fragments=(list static-fragment)
queued-message-acks=(map message-num ok=?)
=packet-pump-state
==
:: $packet-pump-state: persistent state for |packet-pump
::
:: next-wake: last timer we've set, or null
:: live: packets in flight; sent but not yet acked
:: lost: packets to retry, since they timed out with no ack
:: pump-metrics: congestion control information
::
+$ packet-pump-state
$: next-wake=(unit @da)
live=(tree live-fragment)
lost=(tree static-fragment)
=pump-metrics
==
+$ pump-metrics
$: num-live=@ud
num-lost=@ud
last-sent-at=@da
last-dead-at=@da
rtt=@dr
max-live=@ud
==
+$ live-fragment
$: sent-at=@da
dead-at=@da
retried=?
static-fragment
==
+$ static-fragment
$: =message-num
num-fragments=fragment-num
=fragment-num
=fragment
==
:: $message-still-state: state of |message-still to assemble messages
::
:: last-acked: highest $message-num we've fully acknowledged
:: last-heard: highest $message-num we've heard all fragments on
:: pending-vane-ack: heard but not processed by local vane
:: live-messages: partially received messages
:: naxplanations: enqueued nack diagnostics
::
+$ message-still-state
$: last-acked=message-num
last-heard=message-num
pending-vane-ack=(qeu [=message-num =message])
live-messages=(map message-num partial-rcv-message)
==
:: $partial-rcv-message: message for which we've received some fragments
::
:: num-fragments: total number of fragments in this message
:: num-received: how many fragments we've received so far
:: fragments: fragments we've received, eventually producing a $message
::
+$ partial-rcv-message
$: num-fragments=fragment-num
num-received=fragment-num
fragments=(map fragment-num fragment)
==
::
+| %dialectics
::
:: $move: output effect; either request or response
::
+$ move [=duct card=(wind note gift)]
::
:: $task: job for ames
::
:: %born: process restart notification
:: %crud: crash report
:: %hear: packet from unix
:: %hole: report that packet handling crashed
:: %init: vane boot
:: %sunk: a ship breached and has a new .rift
:: %vega: kernel reload notification
:: %wegh: request for memory usage report
:: %west: request to send message
::
+$ task
$% [%born ~]
[%crud =error]
[%hear =lane =blob]
[%hole =lane =blob]
[%init =ship]
[%sunk =ship =rift]
[%vega ~]
[%wegh ~]
[%west =ship =message]
==
:: $gift: effect from ames
::
:: %east: message to vane from peer
:: %send: packet to unix
:: %rest: notify vane that peer (n)acked our message
::
+$ gift
$% [%east payload=*]
[%send =lane =blob]
[%rest error=(unit error)]
==
:: $note: request to other vane
::
:: TODO: specialize gall interface for subscription management
::
+$ note
$% $: %b
$% [%wait date=@da]
[%rest date=@da]
== ==
$: %c
$% [%west =ship =message]
== ==
$: %g
$% [%west =ship =message]
== ==
$: %j
$% [%pubs =ship]
[%turf ~]
[%west =ship =message]
[%vein ~]
== == ==
:: $sign: response from other vane
::
+$ sign
$% $: %b
$% [%wake error=(unit tang)]
== ==
$: %j
$% [%pubs public:able:jael]
[%turf turf=(list turf)]
[%vein =life vein=(map life ring)]
== == ==
:: $message-pump-task: job for |message-pump
::
:: %send: packetize and send application-level message
:: %hear-fragment-ack: deal with a packet acknowledgment
:: %hear-message-ack: deal with message negative acknowledgment
:: %wake: handle timer firing
::
+$ message-pump-task
$% [%send =message]
[%hear-fragment-ack =message-num =fragment-num]
[%hear-message-ack =message-num ok=? lag=@dr]
[%wake ~]
==
:: $message-pump-gift: effect from |message-pump
::
:: %ack-message: report message acknowledgment
:: %send: emit message fragment
:: %wait: set a new timer at .date
:: %rest: cancel timer at .date
::
+$ message-pump-gift
$% [%ack-message =message-num ok=?]
[%send =static-fragment]
[%wait date=@da]
[%rest date=@da]
==
:: $packet-pump-task: job for |packet-pump
::
:: %hear-fragment-ack: deal with a packet acknowledgment
:: %hear-message-ack: deal with message acknowledgment
:: %finalize: finish event, possibly updating timer
:: %wake: handle timer firing
::
+$ packet-pump-task
$% [%hear-fragment-ack =message-num =fragment-num]
[%hear-message-ack =message-num lag=@dr]
[%finalize ~]
[%wake ~]
==
:: $packet-pump-gift: effect from |packet-pump
::
:: %send: emit message fragment
:: %wait: set a new timer at .date
:: %rest: cancel timer at .date
::
+$ packet-pump-gift
$% [%send =static-fragment]
[%wait date=@da]
[%rest date=@da]
==
:: $message-still-task: job for |message-still
::
:: %hear: handle receiving a message fragment packet
:: %done: receive confirmation from vane of processing completion or
:: failure with diagnostic
::
+$ message-still-task
$% [%hear =lane =shut-packet]
[%done =message-num error=(unit error)]
==
:: $message-still-gift: effect from |message-still
::
:: %hear-message: $message assembled from received packets, to be
:: sent to a local vane for processing
:: %ack-fragment: emit ack in response to heard fragment
:: %ack-message: emit ack in response to message processing
::
+$ message-still-gift
$% [%hear-message =message]
[%ack-fragment =message-num =fragment-num]
[%ack-message =message-num ok=? lag=@dr]
==
--
:: external vane interface
::
=<
|= pit=vase
=| =ames-state
|= [our=ship eny=@ now=@da scry-gate=sley]
=* ames-gate .
|%
:: +call: handle request $task
::
++ call
|= [=duct type=* wrapped-task=(hobo task)]
^- [(list move) _ames-gate]
::
=/ =task
?. ?=(%soft -.wrapped-task)
wrapped-task
;;(task p.wrapped-task)
::
=/ event-core (per-event [our eny now scry-gate] duct ames-state)
::
=^ moves ames-state
=< abet
?- -.task
%born !!
%crud !!
%hear (on-hear:event-core [lane blob]:task)
%hole !!
%init !!
%sunk !!
%vega !!
%wegh !!
%west !!
==
::
[moves ames-gate]
:: +take: handle response $sign
::
++ take
|= [=wire =duct type=* =sign]
^- [(list move) _ames-gate]
::
!!
:: +stay: extract state before reload
::
++ stay ames-state
:: +load: load in old state after reload
::
++ load
|= old=^ames-state
ames-gate(ames-state old)
:: +scry: dereference namespace
::
++ scry
|= [fur=(unit (set monk)) ren=@tas why=shop syd=desk lot=coin tyl=path]
^- (unit (unit cage))
::
[~ ~]
--
:: helpers
::
|%
++ per-event
=| moves=(list move)
|= [[our=ship eny=@ now=@da scry-gate=sley] =duct =ames-state]
|%
++ event-core .
++ abet [(flop moves) ames-state]
++ emit |=(=move event-core(moves [move moves]))
::
::
++ on-hear
|= [=lane =blob]
^+ event-core
::
=/ =packet (decode-packet blob)
::
%. [lane packet]
::
?. =(our rcvr.packet)
on-hear-forward
::
?: encrypted.packet
on-hear-shut
on-hear-open
::
::
++ on-hear-forward
|= [=lane =packet]
^+ event-core
::
!!
::
::
++ on-hear-open
|= [=lane =packet]
^+ event-core
::
!!
::
::
++ on-hear-shut
|= [=lane =packet]
^+ event-core
:: encrypted packet content must be an encrypted atom
::
?> ?=(@ content.packet)
::
=/ sndr-state (~(get by peers.ames-state) sndr.packet)
::
?. ?=([~ %known *] sndr-state)
(enqueue-alien-packet lane packet)
::
=/ =peer-state +.u.sndr-state
=/ =channel [[our sndr.packet] now +.ames-state -.peer-state]
=/ =shut-packet (decrypt symmetric-key.channel content.packet)
:: ward against replay attacks
::
?> =(sndr-life.shut-packet her-life.channel)
?> =(rcvr-life.shut-packet our-life.channel)
::
?: ?=(%& -.meat.shut-packet)
%+ on-hear-fragment
%- fall :_ *message-still-state
(~(get by rcv.peer-state) bone.shut-packet)
[channel lane shut-packet]
::
%+ on-hear-ack
%- fall :_ *message-pump-state
(~(get by snd.peer-state) bone.shut-packet)
[channel lane shut-packet]
::
::
++ on-hear-ack
|= [=message-pump-state =channel =lane =shut-packet]
^+ event-core
::
=/ pump (make-message-pump message-pump-state channel)
::
=/ task=message-pump-task
?> ?=(%| -.meat.shut-packet)
?: ?=(%& -.p.meat.shut-packet)
[%hear-fragment-ack message-num.shut-packet p.p.meat.shut-packet]
[%hear-message-ack message-num.shut-packet p.p.meat.shut-packet]
::
=^ pump-gifts message-pump-state (work:pump task)
::
=. peers.ames-state
%+ ~(jab by peers.ames-state) her.channel
|= =ship-state
?> ?=(%known -.ship-state)
=/ =peer-state +.ship-state
=. snd.peer-state
(~(put by snd.peer-state) bone.shut-packet message-pump-state)
[%known peer-state]
::
(process-pump-gifts pump-gifts)
::
::
++ process-pump-gifts
|= pump-gifts=(list message-pump-gift)
^+ event-core
::
!!
::
::
++ on-hear-fragment
|= [=message-still-state =channel =lane =shut-packet]
^+ event-core
::
=/ still (make-message-still message-still-state channel)
::
=^ still-gifts message-still-state (work:still %hear lane shut-packet)
::
=. peers.ames-state
%+ ~(jab by peers.ames-state) her.channel
|= =ship-state
?> ?=(%known -.ship-state)
=/ =peer-state +.ship-state
=. rcv.peer-state
(~(put by rcv.peer-state) bone.shut-packet message-still-state)
[%known peer-state]
::
(process-still-gifts still-gifts)
::
::
++ process-still-gifts
|= still-gifts=(list message-still-gift)
^+ event-core
::
!!
::
++ enqueue-alien-packet
|= [=lane =packet]
^+ event-core
::
=/ sndr-state (~(get by peers.ames-state) sndr.packet)
::
=+ ^- [already-pending=? todos=pending-requests]
?~ sndr-state
[%.n *pending-requests]
[%.y ?>(?=(%alien -.u.sndr-state) +.u.sndr-state)]
::
=. rcv-packets.todos [[lane packet] rcv-packets.todos]
::
=. peers.ames-state
(~(put by peers.ames-state) sndr.packet %alien todos)
::
=? event-core !already-pending
(emit duct %pass /alien %j %pubs sndr.packet)
::
event-core
--
::
::
++ make-message-pump
|= [=message-pump-state =channel]
=| gifts=(list message-pump-gift)
::
|%
++ message-pump .
++ give |=(gift=message-pump-gift message-pump(gifts [gift gifts]))
++ packet-pump
(make-packet-pump packet-pump-state.message-pump-state channel)
:: +work: handle a $message-pump-task
::
++ work
|= task=message-pump-task
^+ [gifts message-pump-state]
::
=~ ?- -.task
%send (on-send message.task)
%hear-message-ack (on-hear-message-ack [message-num ok lag]:task)
* (run-packet-pump task)
==
feed-packets
(run-packet-pump %finalize ~)
[(flop gifts) message-pump-state]
==
::
::
++ on-send
|= =message
^+ message-pump
::
=. unsent-messages.message-pump-state
(~(put to unsent-messages.message-pump-state) message)
::
message-pump
::
::
++ on-hear-message-ack
|= [=message-num ok=? lag=@dr]
^+ message-pump
:: ignore acks on already-processed messages
::
?: (lth message-num current.message-pump-state)
message-pump
:: ignore duplicate already-processed acks waiting for emission
::
?: (~(has by queued-message-acks.message-pump-state) message-num)
message-pump
:: clear and print .unsent-fragments if nonempty
::
=? unsent-fragments.message-pump-state
::
?& =(current next):message-pump-state
?=(^ unsent-fragments.message-pump-state)
==
~& %early-message-ack^ok^her.channel
~
:: clear all packets from this message from the packet pump
::
=. message-pump (run-packet-pump %hear-message-ack message-num lag)
::
=. queued-message-acks.message-pump-state
(~(put by queued-message-acks.message-pump-state) message-num ok)
::
|- ^+ message-pump
::
=/ ack
%- ~(get by queued-message-acks.message-pump-state)
current.message-pump-state
::
?~ ack
message-pump
::
=. queued-message-acks.message-pump-state
%- ~(del by queued-message-acks.message-pump-state)
current.message-pump-state
::
=. message-pump (give %ack-message current.message-pump-state ok.u.ack)
::
$(current.message-pump-state +(current.message-pump-state))
::
::
++ feed-packets
:: if nothing to send, no-op
::
?: ?& =(~ unsent-messages.message-pump-state)
=(~ unsent-fragments.message-pump-state)
==
::
message-pump
:: we have unsent fragments of the current message; feed them
::
?. =(~ unsent-fragments.message-pump-state)
=/ res (send:packet-pump unsent-fragments.message-pump-state)
=+ [unsent packet-pump-gifts state]=res
::
=. unsent-fragments.message-pump-state unsent
=. packet-pump-state.message-pump-state state
::
=. message-pump (process-packet-pump-gifts packet-pump-gifts)
:: if it sent all of them, feed it more; otherwise, we're done
::
?~ unsent
feed-packets
message-pump
:: .unsent-messages is nonempty; pop a message off and feed it
::
=^ message unsent-messages.message-pump-state
~(get to unsent-messages.message-pump-state)
::
=. unsent-fragments.message-pump-state
::
=/ chunks (rip 13 (jam message))
=/ num-fragments=fragment-num (lent chunks)
=| counter=@
::
|- ^- (list static-fragment)
?~ chunks ~
::
:- [message-num=next.message-pump-state num-fragments counter i.chunks]
::
$(chunks t.chunks, counter +(counter))
::
=. next.message-pump-state +(next.message-pump-state)
feed-packets
::
::
++ run-packet-pump
|= =packet-pump-task
^+ message-pump
::
=^ packet-pump-gifts packet-pump-state.message-pump-state
(work:packet-pump packet-pump-task)
::
(process-packet-pump-gifts packet-pump-gifts)
::
::
++ process-packet-pump-gifts
|= packet-pump-gifts=(list packet-pump-gift)
^+ message-pump
::
?~ packet-pump-gifts
message-pump
=. message-pump (give i.packet-pump-gifts)
::
$(packet-pump-gifts t.packet-pump-gifts)
--
::
::
++ make-packet-pump
|= [=packet-pump-state =channel]
=| gifts=(list packet-pump-gift)
|%
++ packet-pump .
++ work
|= task=packet-pump-task
^+ [gifts packet-pump-state]
::
=- [(flop gifts) packet-pump-state]
::
?- -.task
%hear-fragment-ack !!
%hear-message-ack (on-hear-message-ack message-num.task)
%wake on-wake
%finalize on-finalize
==
::
::
++ send
|= fragments=(list static-fragment)
^+ [fragments gifts packet-pump-state]
::
!!
::
::
++ on-hear-message-ack
|= =message-num
^+ packet-pump
::
=. live.packet-pump-state
=< kept
%+ sift:live-set live.packet-pump-state
|= item=live-fragment
=(message-num.item message-num)
::
!!
::
::
++ on-finalize
^+ packet-pump
::
!!
::
::
++ on-wake
^+ packet-pump
::
!!
++ live-set
%- (ordered-set live-fragment)
|= [a=live-fragment b=live-fragment]
^- ?
::
?: (lth message-num.a message-num.b)
%.y
?: (gth message-num.a message-num.b)
%.n
(lte fragment-num.a fragment-num.b)
--
::
::
++ make-message-still
|= [=message-still-state =channel]
=| gifts=(list message-still-gift)
|%
++ work
|= task=message-still-task
^+ [gifts message-still-state]
::
=- [(flop -.-) +.-]
::
?- -.task
%hear (on-hear [lane shut-packet]:task)
%done (on-done [message-num error]:task)
==
::
::
++ on-hear
|= [=lane =shut-packet]
^+ [gifts message-still-state]
::
!!
::
::
++ on-done
|= [=message-num error=(unit error)]
^+ [gifts message-still-state]
::
!!
--
:: +encrypt: encrypt $shut-packet into atomic packet content
::
++ encrypt
|= [=symmetric-key plaintext=shut-packet]
^- @
::
(en:crub:crypto symmetric-key (jam plaintext))
:: +decrypt: decrypt packet content to a $shut-packet or die
::
++ decrypt
|= [=symmetric-key ciphertext=@]
^- shut-packet
::
;; shut-packet
%- cue
%- need
(de:crub:crypto symmetric-key ciphertext)
:: +encode-packet: serialize a packet into a bytestream
::
++ encode-packet
|= packet
^- blob
::
=/ sndr-meta (encode-ship-metadata sndr)
=/ rcvr-meta (encode-ship-metadata rcvr)
:: body: <<sndr rcvr (jam [origin content])>>
::
:: The .sndr and .rcvr ship addresses are encoded with fixed
:: lengths specified by the packet header. They live outside
:: the jammed-data section to simplify packet filtering in the
:: interpreter.
::
=/ body=@
;: mix
sndr
(lsh 3 size.sndr-meta rcvr)
(lsh 3 (add size.sndr-meta size.rcvr-meta) (jam [origin content]))
==
:: header: 32-bit header assembled from bitstreams of fields
::
:: <<version checksum sndr-rank rcvr-rank encryption-type unused>>
:: 4 bits at the end of the header are unused.
::
=/ header=@
%+ can 0
:~ [3 protocol-version]
[20 (mug body)]
[2 rank.sndr-meta]
[2 rank.rcvr-meta]
[5 ?:(encrypted %0 %1)]
==
:: result is <<header body>>
::
(mix header (lsh 5 1 body))
:: +decode-packet: deserialize packet from bytestream or crash
::
++ decode-packet
|= =blob
^- packet
:: first 32 (2^5) bits are header; the rest is body
::
=/ header (end 5 1 blob)
=/ body (rsh 5 1 blob)
::
=/ version (end 0 3 header)
=/ checksum (cut 0 [3 20] header)
=/ sndr-size (decode-ship-size (cut 0 [23 2] header))
=/ rcvr-size (decode-ship-size (cut 0 [25 2] header))
=/ encrypted ?+((cut 0 [27 5] header) !! %0 %.y, %1 %.n)
::
?> =(protocol-version version)
?> =(checksum (end 0 20 (mug body)))
::
=/ =dyad
:- sndr=(end 3 sndr-size body)
rcvr=(cut 3 [sndr-size rcvr-size] body)
::
=+ ;; [origin=(unit @uxlane) content=*]
%- cue
(rsh 3 (add rcvr-size sndr-size) body)
::
[dyad encrypted origin content]
:: +decode-ship-size: decode a 2-bit ship type specifier into a byte width
::
:: Type 0: galaxy or star -- 2 bytes
:: Type 1: planet -- 4 bytes
:: Type 2: moon -- 8 bytes
:: Type 3: comet -- 16 bytes
::
++ decode-ship-size
|= rank=@
^- @
::
?+ rank !!
%0 2
%1 4
%2 8
%3 16
==
:: +encode-ship-metadata: produce size (in bytes) and address rank for .ship
::
:: 0: galaxy or star
:: 1: planet
:: 2: moon
:: 3: comet
::
++ encode-ship-metadata
|= =ship
^- [size=@ =rank]
::
=/ size=@ (met 3 ship)
::
?: (lte size 2) [2 %0]
?: (lte size 4) [4 %1]
?: (lte size 8) [8 %2]
[16 %3]
--