shrub/pkg/arvo/lib/primitive-rsa.hoon
2019-07-16 15:59:39 -07:00

85 lines
1.9 KiB
Plaintext

:: |rsa: primitive, textbook RSA
::
:: Unpadded, unsafe, unsuitable for encryption!
::
|%
:: +key:rsa: rsa public or private key
::
+= key
$: :: pub: public parameters (n=modulus, e=pub-exponent)
::
pub=[n=@ux e=@ux]
:: sek: secret parameters (d=private-exponent, p/q=primes)
::
sek=(unit [d=@ux p=@ux q=@ux])
==
:: +ramp: make rabin-miller probabilistic prime
::
:: XX replace +ramp:number?
:: a: bitwidth
:: b: snags (XX small primes to check divisibility?)
:: c: entropy
::
++ ramp
|= [a=@ b=(list @) c=@]
=. c (shas %ramp c)
:: XX what is this value?
::
=| d=@
|- ^- @ux
:: XX what is this condition?
::
?: =((mul 100 a) d)
~|(%ar-ramp !!)
:: e: prime candidate
::
:: Sets low bit, as prime must be odd.
:: Sets high bit, as +raw:og only gives up to :a bits.
::
=/ e :(con 1 (lsh 0 (dec a) 1) (~(raw og c) a))
:: XX what algorithm is this modular remainder check?
::
?: ?& (levy b |=(f/@ !=(1 (mod e f))))
(pram:number e)
==
e
$(c +(c), d (shax d))
:: +elcm:rsa: carmichael totient
::
++ elcm
|= [a=@ b=@]
(div (mul a b) d:(egcd a b))
:: +new-key:rsa: write somethingXXX
::
++ new-key
=/ e `@ux`65.537
|= [wid=@ eny=@]
^- key
=/ diw (rsh 0 1 wid)
=/ p=@ux (ramp diw [3 5 ~] eny)
=/ q=@ux (ramp diw [3 5 ~] +(eny))
=/ n=@ux (mul p q)
=/ d=@ux (~(inv fo (elcm (dec p) (dec q))) e)
[[n e] `[d p q]]
:: +en:rsa: primitive RSA encryption
::
:: ciphertext = message^e (mod n)
::
++ en
|= [m=@ k=key]
~| %rsa-len
?> (lte (met 0 m) (met 0 n.pub.k))
(~(exp fo n.pub.k) e.pub.k m)
:: +de:rsa: primitive RSA decryption
::
:: message = ciphertext^d (mod e)
::
++ de
|= [m=@ k=key]
:: XX assert rsa-len here too?
~| %rsa-need-ring
?> ?=(^ sek.k)
=/ fu (fu:number p.u.sek.k q.u.sek.k)
(out.fu (exp.fu d.u.sek.k (sit.fu m)))
--