shrub/pkg/hs/urbit-king/lib/Urbit/Vere/Term.hs
2020-05-22 11:37:58 -07:00

548 lines
19 KiB
Haskell

{-|
Terminal Driver
-}
module Urbit.Vere.Term
( module Term
, localClient
, connectToRemote
, runTerminalClient
, connClient
, term
) where
import Data.Char
import Foreign.Marshal.Alloc
import Foreign.Ptr
import Foreign.Storable
import RIO.FilePath
import System.Posix.IO
import System.Posix.Terminal
import Urbit.Arvo hiding (Term)
import Urbit.King.Config
import Urbit.Prelude hiding (getCurrentTime)
import Urbit.Time
import Urbit.Vere.Pier.Types
import Data.List ((!!))
import RIO.Directory (createDirectoryIfMissing)
import Urbit.King.API (readPortsFile)
import Urbit.King.App (HasKingId(..), HasPierPath(..))
import Urbit.Vere.Term.API (Client(Client))
import qualified Data.ByteString.Internal as BS
import qualified Data.ByteString.UTF8 as BS
import qualified Urbit.Vere.NounServ as Serv
import qualified Urbit.Vere.Term.API as Term
import qualified Urbit.Vere.Term.Render as T
-- Types -----------------------------------------------------------------------
-- | All stateful data in the printing to stdOutput.
data LineState = LineState
{ lsLine :: Text
, lsCurPos :: Int
, lsSpinTimer :: Maybe (Async ())
, lsSpinCause :: Maybe Text
, lsSpinFirstRender :: Bool
, lsSpinFrame :: Int
, lsPrevEndTime :: Wen
}
-- | A record used in reading data from stdInput.
data ReadData = ReadData
{ rdBuf :: Ptr Word8
, rdEscape :: Bool
, rdBracket :: Bool
, rdUTF8 :: ByteString
, rdUTF8width :: Int
}
-- | Private data to the Client that we keep around for stop().
data Private = Private
{ pReaderThread :: Async ()
, pWriterThread :: Async ()
, pPreviousConfiguration :: TerminalAttributes
}
-- Utils -----------------------------------------------------------------------
initialBlew w h = EvBlip $ BlipEvTerm $ TermEvBlew (UD 1, ()) w h
initialHail = EvBlip $ BlipEvTerm $ TermEvHail (UD 1, ()) ()
-- Version one of this is punting on the ops_u.dem flag: whether we're running
-- in daemon mode.
spinners :: [Text]
spinners = ["|", "/", "-", "\\"]
leftBracket :: Text
leftBracket = "«"
rightBracket :: Text
rightBracket = "»"
_spin_cool_us = 500000
_spin_warm_us = 50000
_spin_rate_us = 250000
_spin_idle_us = 500000
--------------------------------------------------------------------------------
rioAllocaBytes :: (MonadIO m, MonadUnliftIO m)
=> Int -> (Ptr a -> m b) -> m b
rioAllocaBytes size action =
withRunInIO $ \run ->
allocaBytes size $ \x -> run (action x)
{-|
Because of legacy reasons, some file operations are in the terminal
driver. These should be filtered out and handled locally instead of
in any abstractly connected terminal.
-}
isTerminalBlit :: Blit -> Bool
isTerminalBlit (Sav _ _) = False
isTerminalBlit (Sag _ _) = False
isTerminalBlit _ = True
--------------------------------------------------------------------------------
connClient :: Serv.Conn Belt [Term.Ev] -> Client
connClient c = Client
{ give = Serv.cSend c
, take = Serv.cRecv c
}
connectToRemote :: e. HasLogFunc e
=> Port
-> Client
-> RAcquire e (Async (), Async ())
connectToRemote port local = mkRAcquire start stop
where
stop (x, y) = cancel x >> cancel y
start = do
Serv.Client{..} <- Serv.wsClient "/terminal/0" (fromIntegral port)
-- TODO XX Handle disconnect more cleanly.
ferry <- async $ forever $ atomically $ asum
[ Term.take local >>= \case
Nothing -> empty
Just ev -> Serv.cSend cConn ev
, Serv.cRecv cConn >>= \case
Nothing -> empty
Just ev -> Term.give local ev
]
pure (ferry, cAsync)
data HackConfigDir = HCD { _hcdPax :: FilePath }
makeLenses ''HackConfigDir
instance HasPierPath HackConfigDir where pierPathL = hcdPax
runTerminalClient :: e. HasLogFunc e => FilePath -> RIO e ()
runTerminalClient pier = runRAcquire $ do
mPort <- runRIO (HCD pier) readPortsFile
port <- maybe (error "Can't connect") pure mPort
mExit <- io newEmptyTMVarIO
(siz, cli) <- localClient (putTMVar mExit ())
(tid, sid) <- connectToRemote (Port $ fromIntegral port) cli
atomically $ waitSTM tid <|> waitSTM sid <|> takeTMVar mExit
where
runRAcquire :: RAcquire e () -> RIO e ()
runRAcquire act = rwith act $ const $ pure ()
{-|
Initializes the generalized input/output parts of the terminal.
-}
localClient :: e. HasLogFunc e
=> STM ()
-> RAcquire e (T.TSize, Client)
localClient doneSignal = fst <$> mkRAcquire start stop
where
start :: HasLogFunc e => RIO e ((T.TSize, Client), Private)
start = do
tsWriteQueue <- newTQueueIO
spinnerMVar <- newEmptyTMVarIO
pWriterThread <-
asyncBound (writeTerminal tsWriteQueue spinnerMVar)
pPreviousConfiguration <- io $ getTerminalAttributes stdInput
-- Create a new configuration where we put the terminal in raw mode and
-- disable a bunch of preprocessing.
let newTermSettings = flip withTime 0
$ flip withMinInput 1
$ foldl' withoutMode pPreviousConfiguration
$ disabledFlags
io $ setTerminalAttributes stdInput newTermSettings Immediately
tsReadQueue <- newTQueueIO
pReaderThread <- asyncBound
(readTerminal tsReadQueue tsWriteQueue (bell tsWriteQueue))
let client = Client { take = Just <$> readTQueue tsReadQueue
, give = writeTQueue tsWriteQueue
}
tsize <- io $ T.tsize
pure ((tsize, client), Private{..})
stop :: HasLogFunc e
=> ((T.TSize, Client), Private) -> RIO e ()
stop ((_, Client{..}), Private{..}) = do
-- Note that we don't `cancel pReaderThread` here. This is a deliberate
-- decision because fdRead calls into a native function which the runtime
-- can't kill. If we were to cancel here, the internal `waitCatch` would
-- block until the next piece of keyboard input. Since this only happens
-- at shutdown, just leak the file descriptor.
cancel pWriterThread
-- inject one final newline, as we're usually on the prompt.
putStr "\r\n"
-- take the terminal out of raw mode
io $ setTerminalAttributes stdInput pPreviousConfiguration Immediately
{-
A list of terminal flags that we disable.
TODO: Terminal library missing CSIZE?
-}
disabledFlags :: [TerminalMode]
disabledFlags = [ StartStopOutput
, KeyboardInterrupts
, EnableEcho
, EchoLF
, ProcessInput
, ExtendedFunctions
, MapCRtoLF
, CheckParity
, StripHighBit
, EnableParity
, ProcessOutput
]
-- An async which will put into an mvar after a delay. Used to spin the
-- spinner in writeTerminal.
spinnerHeartBeat :: Int -> Int -> TMVar () -> RIO e ()
spinnerHeartBeat first rest mvar = do
threadDelay first
loop
where
loop = do
atomically $ putTMVar mvar ()
threadDelay rest
loop
-- Writes data to the terminal. Both the terminal reading, normal logging,
-- and effect handling can all emit bytes which go to the terminal.
writeTerminal :: TQueue [Term.Ev] -> TMVar () -> RIO e ()
writeTerminal q spinner = do
currentTime <- io $ now
loop (LineState "" 0 Nothing Nothing True 0 currentTime)
where
writeBlank :: LineState -> RIO e LineState
writeBlank ls = do
putStr "\r\n"
pure ls
writeTrace :: LineState -> Text -> RIO e LineState
writeTrace ls p = do
putStr "\r"
T.clearLine
putStr p
termRefreshLine ls
{-
Figure out how long to wait to show the spinner. When we
don't have a vane name to display, we assume its a user
action and trigger immediately. Otherwise, if we receive an
event shortly after a previous spin, use a shorter delay to
avoid giving the impression of a half-idle system.
-}
doSpin :: LineState -> Maybe Text -> RIO e LineState
doSpin ls@LineState{..} mTxt = do
current <- io $ now
delay <- pure $ case mTxt of
Nothing -> 0
Just _ ->
if (gap current lsPrevEndTime ^. microSecs) < _spin_idle_us
then _spin_warm_us
else _spin_cool_us
spinTimer <- async $ spinnerHeartBeat delay _spin_rate_us spinner
pure $ ls { lsSpinTimer = Just spinTimer
, lsSpinCause = mTxt
, lsSpinFirstRender = True
}
unspin :: LineState -> RIO e LineState
unspin ls@LineState{..} = do
maybe (pure ()) cancel lsSpinTimer
-- We do a final flush of the spinner mvar to ensure we don't
-- have a lingering signal which will redisplay the spinner after
-- we call termRefreshLine below.
atomically $ tryTakeTMVar spinner
-- If we ever actually ran the spinner display callback, we need
-- to force a redisplay of the command prompt.
ls <- if not lsSpinFirstRender
then termRefreshLine ls
else pure ls
endTime <- io $ now
pure $ ls { lsSpinTimer = Nothing, lsPrevEndTime = endTime }
execEv :: LineState -> Term.Ev -> RIO e LineState
execEv ls = \case
Term.Blits bs -> foldM writeBlit ls bs
Term.Trace p -> writeTrace ls (unCord p)
Term.Blank -> writeBlank ls
Term.Spinr (Just txt) -> doSpin ls (unCord <$> txt)
Term.Spinr Nothing -> unspin ls
spin :: LineState -> RIO e LineState
spin ls@LineState{..} = do
let spinner = (spinners !! lsSpinFrame) ++ case lsSpinCause of
Nothing -> ""
Just str -> leftBracket ++ str ++ rightBracket
putStr spinner
termSpinnerMoveLeft (length spinner)
let newFrame = (lsSpinFrame + 1) `mod` (length spinners)
pure $ ls { lsSpinFirstRender = False
, lsSpinFrame = newFrame
}
loop :: LineState -> RIO e ()
loop ls = do
join $ atomically $ asum
[ readTQueue q >>= pure . (foldM execEv ls >=> loop)
, takeTMVar spinner >> pure (spin ls >>= loop)
]
-- Writes an individual blit to the screen
writeBlit :: LineState -> Blit -> RIO e LineState
writeBlit ls = \case
Bel () -> T.soundBell $> ls
Clr () -> do T.clearScreen
termRefreshLine ls
Hop w -> termShowCursor ls (fromIntegral w)
Lin c -> do ls2 <- termShowClear ls
termShowLine ls2 (pack c)
Mor () -> termShowMore ls
Sag path noun -> pure ls
Sav path atom -> pure ls
Url url -> pure ls
-- Moves the cursor to the requested position
termShowCursor :: LineState -> Int -> RIO e LineState
termShowCursor ls@LineState{..} {-line pos)-} newPos = do
if newPos < lsCurPos then do
T.cursorLeft (lsCurPos - newPos)
pure ls { lsCurPos = newPos }
else if newPos > lsCurPos then do
T.cursorRight (newPos - lsCurPos)
pure ls { lsCurPos = newPos }
else
pure ls
-- Moves the cursor left without any mutation of the LineState. Used only
-- in cursor spinning.
termSpinnerMoveLeft :: Int RIO e ()
termSpinnerMoveLeft = T.cursorLeft
-- Displays and sets the current line
termShowLine :: LineState -> Text -> RIO e LineState
termShowLine ls newStr = do
putStr newStr
pure ls { lsLine = newStr, lsCurPos = (length newStr) }
termShowClear :: LineState -> RIO e LineState
termShowClear ls = do
putStr "\r"
T.clearLine
pure ls { lsLine = "", lsCurPos = 0 }
-- New Current Line
termShowMore :: LineState -> RIO e LineState
termShowMore ls = do
putStr "\r\n"
pure ls { lsLine = "", lsCurPos = 0 }
-- Redraw the current LineState, maintaining the current curpos
termRefreshLine :: LineState -> RIO e LineState
termRefreshLine ls@LineState{lsCurPos,lsLine} = do
ls <- termShowClear ls
ls <- termShowLine ls lsLine
termShowCursor ls lsCurPos
-- ring my bell
bell :: TQueue [Term.Ev] -> RIO e ()
bell q = atomically $ writeTQueue q $ [Term.Blits [Bel ()]]
-- Reads data from stdInput and emit the proper effect
--
-- This entire path is a divergence from how term.c does things,
-- probably. First, the vtime is 0, not 1 in term.c. So (IIUC), we'll
-- always have a latency of 1/10 of a second.
--
-- A better way to do this would be to get some sort of epoll on stdInput,
-- since that's kinda closer to what libuv does?
readTerminal :: forall e. HasLogFunc e
=> TQueue Belt -> TQueue [Term.Ev] -> (RIO e ()) -> RIO e ()
readTerminal rq wq bell =
rioAllocaBytes 1 $ \ buf -> loop (ReadData buf False False mempty 0)
where
loop :: ReadData -> RIO e ()
loop rd@ReadData{..} = do
-- The problem with using fdRead raw is that it will text encode
-- things like \ESC instead of 27. That makes it broken for our
-- purposes.
--
io (try $ fdReadBuf stdInput rdBuf 1) >>= \case
Left (e :: IOException) -> do
-- Ignore EAGAINs when doing reads
loop rd
Right 0 -> loop rd
Right _ -> do
w <- io $ peek rdBuf
-- print ("{" ++ (show w) ++ "}")
let c = BS.w2c w
if rdEscape then
if rdBracket then do
case c of
'A' -> sendBelt $ Aro U
'B' -> sendBelt $ Aro D
'C' -> sendBelt $ Aro R
'D' -> sendBelt $ Aro L
_ -> bell
loop rd { rdEscape = False, rdBracket = False}
else if isAsciiLower c then do
sendBelt $ Met $ Cord $ pack [c]
loop rd { rdEscape = False }
else if c == '.' then do
sendBelt $ Met $ Cord "dot"
loop rd { rdEscape = False }
else if w == 8 || w == 127 then do
sendBelt $ Met $ Cord "bac"
loop rd { rdEscape = False }
else if c == '[' || c == '0' then do
loop rd { rdBracket = True }
else do
bell
loop rd { rdEscape = False }
else if rdUTF8width /= 0 then do
-- continue reading into the utf8 accumulation buffer
rd@ReadData{..} <- pure rd { rdUTF8 = snoc rdUTF8 w }
if length rdUTF8 /= rdUTF8width then loop rd
else do
case BS.decode rdUTF8 of
Nothing ->
error "empty utf8 accumulation buffer"
Just (c, bytes) | bytes /= rdUTF8width ->
error "utf8 character size mismatch?!"
Just (c, bytes) -> sendBelt $ Txt $ Tour $ [c]
loop rd { rdUTF8 = mempty, rdUTF8width = 0 }
else if w >= 32 && w < 127 then do
sendBelt $ Txt $ Tour $ [c]
loop rd
else if w == 0 then do
bell
loop rd
else if w == 8 || w == 127 then do
sendBelt $ Bac ()
loop rd
else if w == 13 then do
sendBelt $ Ret ()
loop rd
else if w == 3 then do
-- ETX (^C)
logDebug $ displayShow "Ctrl-c interrupt"
atomically $ do
writeTQueue wq [Term.Trace "interrupt\r\n"]
writeTQueue rq $ Ctl $ Cord "c"
loop rd
else if w <= 26 then do
case pack [BS.w2c (w + 97 - 1)] of
"d" -> atomically doneSignal
c -> do sendBelt $ Ctl $ Cord c
loop rd
else if w == 27 then do
loop rd { rdEscape = True }
else do
-- start the utf8 accumulation buffer
loop rd { rdUTF8 = singleton w,
rdUTF8width = if w < 224 then 2
else if w < 240 then 3
else 4 }
sendBelt :: HasLogFunc e => Belt -> RIO e ()
sendBelt b = do
-- logDebug $ displayShow ("terminalBelt", b)
atomically $ writeTQueue rq b
--------------------------------------------------------------------------------
{-|
Terminal Driver
-}
term :: forall e. (HasPierConfig e, HasLogFunc e, HasKingId e)
=> e
-> (T.TSize, Client)
-> (STM ())
-> QueueEv
-> ([Ev], RAcquire e (EffCb e TermEf))
term env (tsize, Client{..}) shutdownSTM enqueueEv =
(initialEvents, runTerm)
where
T.TSize wi hi = tsize
initialEvents = [(initialBlew wi hi), initialHail]
runTerm :: RAcquire e (EffCb e TermEf)
runTerm = do
tim <- mkRAcquire (async readLoop) cancel
pure handleEffect
{-
Because our terminals are always `Demux`ed, we don't have to
care about disconnections.
-}
readLoop :: RIO e ()
readLoop = forever $ do
atomically take >>= \case
Nothing -> pure ()
Just b -> do
let blip = EvBlip $ BlipEvTerm $ TermEvBelt (UD 1, ()) $ b
atomically $ enqueueEv $ blip
handleEffect :: TermEf -> RIO e ()
handleEffect = \case
TermEfInit _ _ -> pure ()
TermEfMass _ _ -> pure ()
TermEfLogo _ _ -> atomically shutdownSTM
TermEfBlit _ blits -> do
let (termBlits, fsWrites) = partition isTerminalBlit blits
atomically $ give [Term.Blits termBlits]
for_ fsWrites handleFsWrite
handleFsWrite :: Blit -> RIO e ()
handleFsWrite (Sag path noun) = performPut path (jamBS noun)
handleFsWrite (Sav path atom) = performPut path (atomBytes atom)
handleFsWrite _ = pure ()
performPut :: Path -> ByteString -> RIO e ()
performPut path bs = do
pierPath <- view pierPathL
let putOutFile = pierPath </> ".urb" </> "put" </> (pathToFilePath path)
createDirectoryIfMissing True (takeDirectory putOutFile)
writeFile putOutFile bs