shrub/lib/ring.hoon
2019-06-06 14:49:04 -07:00

436 lines
12 KiB
Plaintext

:: ring signatures over the edwards curve
::
|%
:: an ugly copy/paste of the private parts of +ed:crypto here
::
++ ed
=+ ~+
:: q: prime modulus of field
::
=+ [b=256 q=(sub (bex 255) 19)]
=+ fq=~(. fo q)
:: l: prime order
::
=+ ^= l
%+ add
(bex 252)
27.742.317.777.372.353.535.851.937.790.883.648.493
=+ d=(dif.fq 0 (fra.fq 121.665 121.666))
=+ ii=(exp.fq (div (dec q) 4) 2)
[b=b q=q fq=fq l=l d=d ii=ii]
::
|%
:: :: ++norm:ed:crypto
++ norm ::
|=(x/@ ?:(=(0 (mod x 2)) x (sub q x)))
:: :: ++xrec:ed:crypto
++ xrec :: recover x-coord
|= y/@ ^- @
=+ ^= xx
%+ mul (dif.fq (mul y y) 1)
(inv.fq +(:(mul d y y)))
=+ x=(exp.fq (div (add 3 q) 8) xx)
?: !=(0 (dif.fq (mul x x) (sit.fq xx)))
(norm (pro.fq x ii))
(norm x)
::
++ ward :: edwards multiply
|= {pp/{@ @} qq/{@ @}} ^- {@ @}
=+ dp=:(pro.fq d -.pp -.qq +.pp +.qq)
=+ ^= xt
%+ pro.fq
%+ sum.fq
(pro.fq -.pp +.qq)
(pro.fq -.qq +.pp)
(inv.fq (sum.fq 1 dp))
=+ ^= yt
%+ pro.fq
%+ sum.fq
(pro.fq +.pp +.qq)
(pro.fq -.pp -.qq)
(inv.fq (dif.fq 1 dp))
[xt yt]
:: :: ++scam:ed:crypto
++ scam :: scalar multiply
|= {pp/{@ @} e/@} ^- {@ @}
?: =(0 e)
[0 1]
=+ qq=$(e (div e 2))
=> .(qq (ward qq qq))
?: =(1 (dis 1 e))
(ward qq pp)
qq
:: :: ++curv:ed:crypto
++ curv :: point on curve?
|= {x/@ y/@} ^- ?
.= 0
%+ dif.fq
%+ sum.fq
(pro.fq (sub q (sit.fq x)) x)
(pro.fq y y)
(sum.fq 1 :(pro.fq d x x y y))
:: :: ++deco:ed:crypto
++ deco :: decode point
|= s/@ ^- (unit {@ @})
=+ y=(cut 0 [0 (dec b)] s)
=+ si=(cut 0 [(dec b) 1] s)
=+ x=(xrec y)
=> .(x ?:(!=(si (dis 1 x)) (sub q x) x))
=+ pp=[x y]
?. (curv pp)
~
[~ pp]
:: +prime-order: the prime order of the edwards curve
::
++ l
^l
:: :: ++bb:ed:crypto
++ bb ::
=+ bby=(pro.fq 4 (inv.fq 5))
[(xrec bby) bby]
--
:: +point: point on the ed25519 curve
::
+$ point
[@ @]
:: +ecc-n: order of the elliptic group curve ed25519
::
++ ecc-n
~+
l:ed
:: +ecc-g: the curve base point of ed25519
::
++ ecc-g
~+
bb:ed
:: +point-mul: scalar multiplication (module operation on elliptic curve)
::
++ point-mul
|= [scalar=@ =point]
(scam:ed point scalar)
:: +point-add: addition (group operation on elliptic curve)
::
++ point-add
ward:ed
:: +point-base-mul: scalar multiplication over the base point
::
++ point-base-mul
|= scalar=@
(point-mul scalar ecc-g)
:: +oracle: deterministic random response on input
::
++ oracle
|= input=*
(mod (shaz (jam input)) ecc-n)
::
::::
::
:: +generate-public-linkage: generate public linkage information
::
++ generate-public-linkage
|= link-scope=*
^- [data=@ h=point]
::
=/ data=@ (oracle link-scope)
=/ h=point (point-base-mul data)
[data h]
:: +generate-linkage: generates linkage information from scope and private key
::
:: data: deterministically picked data point based off scope
:: h: h = [data] * g
:: y: y = [x] * h
++ generate-linkage
|= [link-scope=(unit *) my-private-key=@]
^- (unit [data=@ h=point y=point])
::
?~ link-scope
~
::
=+ [data=@ h=point]=(generate-public-linkage u.link-scope)
=/ y=point (point-mul my-private-key h)
[~ data h y]
:: +generate-challenge: generate challenge from a given message
::
:: When :link-scope is ~ (ie, we're not building a linked ring signature),
:: calculates just the hash of `[message g]`. Otherwise, weaves the linkage
:: state into the challenge.
::
++ generate-challenge
|= $: :: common to both linked and unlinked
message=*
g=point
:: high level universal state
::
link-state=(unit [data=@ h=point y=point])
:: point to include in challenge when link-state isn't ~
::
h=(unit point)
==
^- @
::
%- oracle
?~ link-state
[message g]
[data.u.link-state y.u.link-state message g (need h)]
:: +generate-challenges: generates the full list of challenges
::
++ generate-challenges
|= $: link-state=(unit [data=@ h=point y=point])
message=*
public-keys=(list point)
ss=(list @)
::
prev-k=@u
prev-s=@
prev-ch=@
challenges=(list @)
==
^- (list @)
::
=/ gs=point
%+ point-add
(point-mul prev-s ecc-g)
(point-mul prev-ch (snag prev-k public-keys))
::
=/ hs=(unit point)
?~ link-state
~
::
:- ~
%+ point-add
(point-mul prev-s h.u.link-state)
(point-mul prev-ch y.u.link-state)
::
=/ ch=@
(generate-challenge message gs link-state hs)
::
?~ ss
[ch challenges]
::
%_ $
prev-k (mod (add prev-k 1) (lent public-keys))
prev-s i.ss
prev-ch ch
ss t.ss
challenges [ch challenges]
==
:: +point-mul-h: maybe multiply u by h in linkage
::
:: Since linkage tags are optional, we need to be able to just do the math
:: in case :linkage is set and fall through otherwise. +point-mul-h is used
:: to generate the (unit point) consumed by +generate-challenge.
::
++ point-mul-h
|= [u=@ linkage=(unit [data=@ h=point y=point])]
^- (unit point)
?~ linkage
~
[~ (point-mul u h.u.linkage)]
:: +reorder: reorders a list so the ith element is first
::
++ reorder
|* [i=@ l=(list)]
%+ weld
(slag i l)
(scag i l)
:: +ring-signature: types of a ring signature
::
++ ring-signature
$: ch0=@
::
s=(list @)
:: linked ring signature tag
::
:: Two linked ring signatures with the same link scope can be shown to
:: have been made by the same private key, leading to Sybil
:: resistance...but if your private keys are compromised, your
:: adversary can determine which signatures you made.
::
y=(unit point)
==
--
:: Signature interface
::
|%
:: +sign: creates a ring signature on an ed25519 curve
::
:: Creates an optionally linkable ring signature on
::
++ sign
|= $: message=*
link-scope=(unit *)
::
anonymity-set=(set point)
my-public-key=point
my-private-key=@
::
eny=@uvJ
==
^- ring-signature
|^ ~& [%anonymity-list anonymity-list]
:: k: our public-key's position in :anonymity-list
::
=/ k=@u
~| [%couldnt-find my-public-key in=anonymity-list]
(need (find [my-public-key ~] anonymity-list))
:: Generate linkage information if given
::
=/ linkage=(unit [data=@ h=point y=point])
(generate-linkage link-scope my-private-key)
:: initialize our random number generator from entropy
::
=+ rand=~(. og eny)
:: generate the random s values used in the ring
::
=^ random-s-values=(list @) rand
=| count=@
=| random-s-values=(list @)
|-
?: =(count (sub participants 1))
[random-s-values rand]
::
=^ v=@ rand (rads:rand ecc-n)
$(count (add 1 count), random-s-values [v random-s-values])
::
?> ?=(^ random-s-values)
=/ sk1=@ i.random-s-values
=/ sk2-to-prev-sk=(list @) t.random-s-values
:: Pick a random :u
::
=^ u=@ rand
(rads:rand ecc-n)
:: Compute challenge at k + 1
::
=/ chk1=@
%- generate-challenge :*
message
(point-mul u ecc-g)
linkage
(point-mul-h u linkage)
==
:: Generate challenges for [ck, ..., c1, c0, ... ck + 2, ck + 1]
::
=/ reversed-chk-to-chk1=(list @)
%- generate-challenges :*
linkage
message
anonymity-list
sk2-to-prev-sk
::
(mod (add k 1) participants)
sk1
chk1
[chk1 ~]
==
=/ chk=@ (head reversed-chk-to-chk1)
:: Compute s = u - x * c mod n
::
:: TODO: I believe this part is wrong and that this is what is
:: breaking the signature verification. For some reason, this doesn't
:: result in . I must be screwing up the math here, but I don't
:: understand how.
::
:: The aos implementation is "let sK = (u - ECDSA.private_d privKey *
:: chK) `mod` n", and I believe the following is equivalent? At least
:: with smaller prime numbers, testing it in both the dojo and ghci,
:: they got the same results on simple things like `5 - 14 % 7`.
::
:: But I must be doing something wrong here because this sk doesn't
:: line up with the rest of the ring.
::
=/ sk=@ (~(dif fo ecc-n) u (mul my-private-key chk))
::
=/ ordered-challenges=(list @)
(order-challenges k (flop reversed-chk-to-chk1))
::
=/ ordered-ss=(list @) (order-ss k [sk sk1 sk2-to-prev-sk])
=/ ch0 (head ordered-challenges)
::
[ch0 ordered-ss ?~(linkage ~ `y.u.linkage)]
::
++ anonymity-list
~(tap in anonymity-set)
::
++ participants
(lent anonymity-list)
::
++ order-challenges
|= [k=@ ch=(list @)]
(reorder (sub participants (add k 1)) ch)
::
++ order-ss
|= [k=@ sk-to-prev-sk=(list @)]
(reorder (sub participants k) sk-to-prev-sk)
--
:: +verify: verify signature
::
++ verify
|= $: message=*
link-scope=(unit *)
::
anonymity-set=(set point)
signature=ring-signature
==
^- ?
:: TODO: if our signature has a linking y, we must have a link-scope and
:: vice versa.
::
:: decompose the signature into [s0 s1 s2....]
::
~! s.signature
?> ?=([@ @ *] s.signature)
=/ s0=@ i.s.signature
=/ s1=@ i.t.s.signature
=/ s2-to-end=(list @) t.t.s.signature
:: anonymity-list: set of public keys listified in ring order
::
=/ anonymity-list=(list point)
~(tap in anonymity-set)
:: participants: length of :anonymity-list
::
=/ participants=@u
(lent anonymity-list)
::
=/ z0p=point
%+ point-add
(point-mul s0 ecc-g)
::
(point-mul ch0.signature (head anonymity-list))
:: generate the linkage using public data, and the y point from the signature
::
=/ linkage=(unit [data=@ h=point y=point])
?~ link-scope
~
=+ [data=@ h=point]=(generate-public-linkage u.link-scope)
:- ~
[data h (need y.signature)]
::
=/ z0pp=(unit point)
?~ linkage
~
:- ~
%+ point-add
(point-mul s0 h.u.linkage)
(point-mul ch0.signature y.u.linkage)
:: initial challenge
::
=/ ch1=@
(generate-challenge message z0p linkage z0pp)
::
=/ challenges
%- generate-challenges :*
linkage
message
anonymity-list
s2-to-end
::
(mod 1 participants)
s1
ch1
[ch1 ~]
==
::
=(ch0.signature (head challenges))
--