shrub/i/n/a.h
2014-11-06 11:29:53 -08:00

493 lines
16 KiB
C

/* include/g/a.h
**
** This file is in the public domain.
*/
/** Tunables.
**/
# undef U3_MEMORY_DEBUG
# ifdef U3_MEMORY_DEBUG
# define u3a_leak_on(x) (u3_Code = x)
# define u3a_leak_off (u3_Code = 0)
# endif
# define u3a_bits U3_OS_LoomBits // 28, max 29
# define u3a_page 12 // 16Kbyte pages
# define u3a_pages (1 << (u3a_bits - u3a_page)) // 2^16 pages
# define u3a_words (1 << u3a_bits)
# define u3a_bytes (c3_w)((1 << (2 + u3a_bits)))
/** Data structures.
**/
/* u3_atom, u3_cell: logical atom and cell structures.
*/
typedef struct {
c3_w mug_w;
} u3a_noun;
typedef struct {
c3_w mug_w;
c3_w len_w;
c3_w buf_w[0];
} u3a_atom;
typedef struct {
c3_w mug_w;
u3_noun hed;
u3_noun tel;
} u3a_cell;
/* Inside a noun.
*/
# define u3a_is_cat(som) (((som) >> 31) ? c3n : c3y)
# define u3a_is_dog(som) (((som) >> 31) ? c3y : c3n)
# define u3a_is_pug(som) ((2 == ((som) >> 30)) ? c3y : c3n)
# define u3a_is_pom(som) ((3 == ((som) >> 30)) ? c3y : c3n)
# define u3a_to_off(som) ((som) & 0x3fffffff)
# define u3a_to_ptr(som) (u3a_into(u3a_to_off(som)))
# define u3a_to_wtr(som) ((c3_w *)u3a_to_ptr(som))
# define u3a_to_pug(off) (off | 0x80000000)
# define u3a_to_pom(off) (off | 0xc0000000)
# define u3a_is_atom(som) c3o(u3a_is_cat(som), \
u3a_is_pug(som))
# define u3a_is_cell(som) u3a_is_pom(som)
# define u3a_de_twin(dog, dog_w) ((dog & 0xc0000000) | u3a_outa(dog_w))
# define u3a_h(som) \
( _(u3a_is_cell(som)) \
? ( ((u3a_cell *)u3a_to_ptr(som))->hed )\
: u3m_bail(c3__exit) )
# define u3a_t(som) \
( _(u3a_is_cell(som)) \
? ( ((u3a_cell *)u3a_to_ptr(som))->tel )\
: u3m_bail(c3__exit) )
/* u3a_box: classic allocation box.
**
** The box size is also stored at the end of the box in classic
** bad ass malloc style. Hence a box is:
**
** ---
** siz_w
** use_w
** if(debug) cod_w
** user data
** siz_w
** ---
**
** Do not attempt to adjust this structure!
*/
typedef struct _u3a_box {
c3_w siz_w; // size of this box
c3_w use_w; // reference count; free if 0
# ifdef U3_MEMORY_DEBUG
c3_w eus_w; // recomputed refcount
c3_w cod_w; // tracing code
# endif
} u3a_box;
# define u3a_boxed(len_w) (len_w + c3_wiseof(u3a_box) + 1)
# define u3a_boxto(box_v) ( (void *) \
( ((c3_w *)(void*)(box_v)) + \
c3_wiseof(u3a_box) ) )
# define u3a_botox(tox_v) ( (struct _u3a_box *) \
(void *) \
( ((c3_w *)(void*)(tox_v)) - \
c3_wiseof(u3a_box) ) )
/* u3a_fbox: free node in heap. Sets minimum node size.
**
*/
typedef struct _u3a_fbox {
u3a_box box_u;
u3p(struct _u3a_fbox) pre_p;
u3p(struct _u3a_fbox) nex_p;
} u3a_fbox;
# define u3_cc_minimum 6
# define u3_cc_fbox_no 28
/* u3a_road: contiguous allocation and execution context.
**
** A road is a normal heap-stack system, except that the heap
** and stack can point in either direction. Therefore, inside
** a road, we can nest another road in the opposite direction.
**
** When the opposite road completes, its heap is left on top of
** the opposite heap's stack. It's no more than the normal
** behavior of a stack machine for all subcomputations to push
** their results, internally durable, on the stack.
**
** The performance tradeoff of "leaping" - reversing directions
** in the road - is that if the outer computation wants to
** preserve the results of the inner one, not just use them for
** temporary purposes, it has to copy them.
**
** This is a trivial cost in some cases, a prohibitive cost in
** others. The upside, of course, is that all garbage accrued
** in the inner computation is discarded at zero cost.
**
** The goal of the road system is the ability to *layer* memory
** models. If you are allocating on a road, you have no idea
** how deep within a nested road system you are - in other words,
** you have no idea exactly how durable your result may be.
** But free space is never fragmented within a road.
**
** Roads do not reduce the generality or performance of a memory
** system, since even the most complex GC system can be nested
** within a road at no particular loss of performance - a road
** is just a block of memory. The cost of road allocation is,
** at least in theory, the branch prediction hits when we try to
** decide which side of the road we're allocating on. The road
** system imposes no pointer read or write barriers, of course.
**
** The road can point in either direction. If cap > hat, it
** looks like this ("north"):
**
** 0 rut hat ffff
** | | | |
** |~~~~~~~~~~~~-------##########################+++++++$~~~~~|
** | | | |
** 0 cap mat ffff
**
** Otherwise, it looks like this ("south"):
**
** 0 mat cap ffff
** | | | |
** |~~~~~~~~~~~~$++++++##########################--------~~~~~|
** | | | |
** 0 hat rut ffff
**
** Legend: - is durable storage (heap); + is temporary storage
** (stack); ~ is deep storage (immutable); $ is the allocation block;
** # is free memory.
**
** Pointer restrictions: pointers stored in + can point anywhere,
** except to more central pointers in +. (Ie, all pointers from
** stack to stack must point downward on the stack.) Pointers in
** - can only point to - or ~; pointers in ~ only point to ~.
**
** To "leap" is to create a new inner road in the ### free space.
** but in the reverse direction, so that when the inner road
** "falls" (terminates), its durable storage is left on the
** temporary storage of the outer road.
**
** In all cases, the pointer in a u3_noun is a word offset into
** u3H, the top-level road.
*/
typedef struct _u3a_road {
struct _u3a_road* par_u; // parent road
struct _u3a_road* kid_u; // child road list
struct _u3a_road* nex_u; // sibling road
struct _u3a_road* now_u; // current road pointer
u3p(c3_w) cap_p; // top of transient region
u3p(c3_w) hat_p; // top of durable region
u3p(c3_w) mat_p; // bottom of transient region
u3p(c3_w) rut_p; // bottom of durable region
u3p(c3_w) ear_p; // original cap if kid is live
c3_w fut_w[32]; // futureproof buffer
struct { // escape buffer
union {
jmp_buf buf;
c3_w buf_w[256]; // futureproofing
};
} esc;
struct { // miscellaneous config
c3_w fag_w; // flag bits
} how; //
struct { // allocation pools
u3p(u3a_fbox) fre_p[u3_cc_fbox_no]; // heap by node size log
c3_w fre_w; // number of free words
} all;
struct { // jet dashboard
u3p(u3h_root) har_p; // jet index (old style)
u3_noun das; // dashboard (new style)
} jed;
struct { // namespace
u3_noun flu; // (list $+(* (unit))), inward
} ski;
struct { // trace stack
u3_noun tax; // (list ,*)
u3_noun mer; // emergency buffer to release
} bug;
struct { // profile stack
c3_d nox_d; // nock steps
u3_noun don; // ++path
u3_noun day; // profile data, ++doss
} pro;
struct { // memoization
u3p(u3h_root) har_p; // (map (pair term noun) noun)
} cax;
} u3a_road;
typedef u3a_road u3_road;
/** Flags.
**/
enum u3a_flag {
u3a_flag_debug = 0x1, // debug memory
u3a_flag_gc = 0x2, // garbage collect once
u3a_flag_sand = 0x4, // sand mode, bump allocation
u3a_flag_die = 0x8 // process was asked to exit
};
/** Macros.
**/
# define u3a_into(x) ((void *)(u3_Loom + (x)))
# define u3a_outa(p) (((c3_w*)(void*)(p)) - u3_Loom)
# define u3to(type, x) ((type *) u3a_into(x))
# define u3of(type, x) (u3a_outa((type *)x))
# define u3a_is_north(r) __(r->cap_p > r->hat_p)
# define u3a_is_south(r) !u3a_is_north(r)
# define u3a_open(r) ( (c3y == u3a_is_north(r)) \
? (c3_w)(r->cap_p - r->hat_p) \
: (c3_w)(r->hat_p - r->cap_p) )
# define u3a_north_is_senior(r, dog) \
__((u3a_to_off(dog) < r->rut_p) || \
(u3a_to_off(dog) >= r->mat_p))
# define u3a_north_is_junior(r, dog) \
__((u3a_to_off(dog) >= r->cap_p) && \
(u3a_to_off(dog) < r->mat_p))
# define u3a_north_is_normal(r, dog) \
c3a(!(u3a_north_is_senior(r, dog)), \
!(u3a_north_is_junior(r, dog)))
# define u3a_south_is_senior(r, dog) \
__((u3a_to_off(dog) < r->mat_p) || \
(u3a_to_off(dog) >= r->rut_p))
# define u3a_south_is_junior(r, dog) \
__((u3a_to_off(dog) < r->cap_p) && \
(u3a_to_off(dog) >= r->mat_p))
# define u3a_south_is_normal(r, dog) \
c3a(!(u3a_south_is_senior(r, dog)), \
!(u3a_south_is_junior(r, dog)))
# define u3a_is_junior(r, som) \
( _(u3a_is_cat(som)) \
? c3n \
: _(u3a_is_north(r)) \
? u3a_north_is_junior(r, som) \
: u3a_south_is_junior(r, som) )
# define u3a_is_senior(r, som) \
( _(u3a_is_cat(som)) \
? c3y \
: _(u3a_is_north(r)) \
? u3a_north_is_senior(r, som) \
: u3a_south_is_senior(r, som) )
/* Word axis macros. For 31-bit axes only.
*/
/* u3_ax_dep(): number of axis bits.
*/
# define u3_ax_dep(a_w) (c3_bits_word(a_w) - 1)
/* u3_ax_cap(): root axis, 2 or 3.
*/
# define u3_ax_cap(a_w) (0x2 | (a_w >> (u3_ax_dep(a_w) - 1)))
/* u3_ax_mas(): remainder after cap.
*/
# define u3_ax_mas(a_w) \
( (a_w & ~(1 << u3_ax_dep(a_w))) | (1 << (u3_ax_dep(a_w) - 1)) )
/* u3_ax_peg(): connect two axes.
*/
# define u3_ax_peg(a_w, b_w) \
( (a_w << u3_ax_dep(b_w)) | (b_w &~ (1 << u3_ax_dep(b_w))) )
/* Conventional axes for gate call.
*/
# define u3v_pay 3 // payload
# define u3v_sam 6 // sample
# define u3v_sam_1 6
# define u3v_sam_2 12
# define u3v_sam_3 13
# define u3v_sam_4 24
# define u3v_sam_5 25
# define u3v_sam_6 26
# define u3v_sam_12 52
# define u3v_sam_13 53
# define u3v_sam_7 27
# define u3v_con 7 // context
# define u3v_con_2 14 // context
# define u3v_con_3 15 // context
# define u3v_con_sam 30 // sample in gate context
# define u3v_noc 2 // deprecated
# define u3v_bat 2 // battery
/** Globals.
**/
/* u3_Road / u3R: current road (thread-local).
*/
c3_global u3_road* u3_Road;
# define u3R u3_Road
/* u3_Code: memory code.
*/
#ifdef U3_MEMORY_DEBUG
c3_global c3_w u3_Code;
#endif
# define u3_Loom ((c3_w *)(void *)U3_OS_LoomBase)
/** Functions.
**/
/** Allocation.
**/
/* Basic allocation.
*/
/* u3a_walloc(): allocate storage measured in words.
*/
void*
u3a_walloc(c3_w len_w);
/* u3a_malloc(): allocate storage measured in bytes.
*/
void*
u3a_malloc(c3_w len_w);
/* u3a_free(): free storage.
*/
void
u3a_free(void* lag_v);
/* u3a_wealloc(): word realloc.
*/
void*
u3a_wealloc(void* lag_v, c3_w len_w);
/* u3a_realloc(): byte realloc.
*/
void*
u3a_realloc(void* lag_v, c3_w len_w);
/* Reference and arena control.
*/
/* u3a_gain(): gain a reference count in normal space.
*/
u3_weak
u3a_gain(u3_weak som);
/* u3a_take(): gain, copying juniors.
*/
u3_noun
u3a_take(u3_noun som);
/* u3a_left(): true of junior if preserved.
*/
c3_o
u3a_left(u3_noun som);
/* u3a_lose(): lose a reference.
*/
void
u3a_lose(u3_weak som);
/* u3a_wash(): wash all lazy mugs in subtree. RETAIN.
*/
void
u3a_wash(u3_noun som);
/* u3a_use(): reference count.
*/
c3_w
u3a_use(u3_noun som);
/* u3a_mark_ptr(): mark a pointer for gc. Produce size.
*/
c3_w
u3a_mark_ptr(void* ptr_v);
/* u3a_mark_noun(): mark a noun for gc. Produce size.
*/
c3_w
u3a_mark_noun(u3_noun som);
/* u3a_sweep(): sweep a fully marked road.
*/
void
u3a_sweep(c3_c* cap_c);
/* u3a_sane(): check allocator sanity.
*/
void
u3a_sane(void);
/* u3a_detect(): axis (som) is referenced from (fum).
**
** (som) and (fum) are both RETAINED.
*/
c3_d
u3a_detect(u3_noun fum, u3_noun som);
/* u3a_lush(): leak push.
*/
c3_w
u3a_lush(c3_w lab_w);
/* u3a_lop(): leak pop.
*/
void
u3a_lop(c3_w lab_w);
/* u3a_print_memory: print memory amount.
*/
void
u3a_print_memory(c3_c* cap_c, c3_w wor_w);
/* Atoms from proto-atoms.
*/
/* u3a_slab(): create a length-bounded proto-atom.
*/
c3_w*
u3a_slab(c3_w len_w);
/* u3a_slaq(): u3a_slaq() with a defined blocksize.
*/
c3_w*
u3a_slaq(c3_g met_g, c3_w len_w);
/* u3a_malt(): measure and finish a proto-atom.
*/
u3_noun
u3a_malt(c3_w* sal_w);
/* u3a_moot(): finish a pre-measured proto-atom; dangerous.
*/
u3_noun
u3a_moot(c3_w* sal_w);
/* u3a_mint(): finish a measured proto-atom.
*/
u3_noun
u3a_mint(c3_w* sal_w, c3_w len_w);