shrub/pkg/hs/urbit-king/lib/Urbit/Vere/Term.hs
2020-11-17 18:27:48 +01:00

672 lines
24 KiB
Haskell

{-|
Terminal Driver
-}
module Urbit.Vere.Term
( module Term
, localClient
, connectToRemote
, runTerminalClient
, connClient
, term
, term'
) where
import Data.Char
import Foreign.Marshal.Alloc
import Foreign.Ptr
import Foreign.Storable
import RIO.FilePath
import System.Posix.IO
import System.Posix.Terminal
import Urbit.Arvo
import Urbit.King.App
import Urbit.Noun.Time
import Urbit.Prelude hiding (getCurrentTime)
import Urbit.Vere.Pier.Types
import Data.List ((!!))
import RIO.Directory (createDirectoryIfMissing)
import Urbit.King.API (readPortsFile)
import Urbit.TermSize (TermSize(TermSize))
import Urbit.Vere.Term.API (Client(Client), ClientTake(..))
import qualified Data.Set as S
import qualified Data.ByteString.Internal as BS
import qualified Data.ByteString.UTF8 as BS
import qualified System.Console.ANSI as ANSI
import qualified Urbit.TermSize as T
import qualified Urbit.Vere.NounServ as Serv
import qualified Urbit.Vere.Term.API as Term
import qualified Urbit.Vere.Term.Render as T
-- Types -----------------------------------------------------------------------
-- | All stateful data in the printing to stdOutput.
data LineState = LineState
{ lsLine :: Text
, lsCurPos :: Int
, lsSpinTimer :: Maybe (Async ())
, lsSpinCause :: Maybe Text
, lsSpinFirstRender :: Bool
, lsSpinFrame :: Int
, lsPrevEndTime :: Wen
}
-- | A record used in reading data from stdInput.
data ReadData = ReadData
{ rdBuf :: Ptr Word8
, rdEscape :: Bool
, rdBracket :: Bool
, rdUTF8 :: ByteString
, rdUTF8width :: Int
}
-- | Private data to the Client that we keep around for stop().
data Private = Private
{ pReaderThread :: Async ()
, pWriterThread :: Async ()
, pPreviousConfiguration :: TerminalAttributes
}
-- Utils -----------------------------------------------------------------------
blewEvent :: Word -> Word -> Ev
blewEvent w h = EvBlip $ BlipEvTerm $ TermEvBlew (UD 1, ()) w h
initialHail :: Ev
initialHail = EvBlip $ BlipEvTerm $ TermEvHail (UD 1, ()) ()
-- Version one of this is punting on the ops_u.dem flag: whether we're running
-- in daemon mode.
--------------------------------------------------------------------------------
rioAllocaBytes :: (MonadIO m, MonadUnliftIO m)
=> Int -> (Ptr a -> m b) -> m b
rioAllocaBytes size action =
withRunInIO $ \run ->
allocaBytes size $ \x -> run (action x)
{-|
Because of legacy reasons, some file operations are in the terminal
driver. These should be filtered out and handled locally instead of
in any abstractly connected terminal.
-}
isTerminalBlit :: Blit -> Bool
isTerminalBlit (Sav _ _) = False
isTerminalBlit (Sag _ _) = False
isTerminalBlit _ = True
--------------------------------------------------------------------------------
connClient :: Serv.Conn ClientTake [Term.Ev] -> Client
connClient c = Client
{ give = Serv.cSend c
, take = Serv.cRecv c
}
connectToRemote :: forall e. HasLogFunc e
=> Port
-> Client
-> RAcquire e (Async (), Async ())
connectToRemote port local = mkRAcquire start stop
where
stop (x, y) = cancel x >> cancel y
start = do
Serv.Client{..} <- Serv.wsClient "/terminal/0" (fromIntegral port)
-- TODO XX Handle disconnect more cleanly.
ferry <- async $ forever $ atomically $ asum
[ Term.take local >>= \case
Nothing -> empty
Just ev -> Serv.cSend cConn ev
, Serv.cRecv cConn >>= \case
Nothing -> empty
Just ev -> Term.give local ev
]
pure (ferry, cAsync)
data HackConfigDir = HCD { _hcdPax :: FilePath }
makeLenses ''HackConfigDir
instance HasPierPath HackConfigDir where pierPathL = hcdPax
runTerminalClient :: forall e. HasLogFunc e => FilePath -> RIO e ()
runTerminalClient pier = runRAcquire $ do
mPort <- runRIO (HCD pier) readPortsFile
port <- maybe (error "Can't connect") pure mPort
mExit <- io newEmptyTMVarIO
cli <- localClient (putTMVar mExit ())
(tid, sid) <- connectToRemote (Port $ fromIntegral port) cli
atomically $ waitSTM tid <|> waitSTM sid <|> takeTMVar mExit
where
runRAcquire :: RAcquire e () -> RIO e ()
runRAcquire act = rwith act $ const $ pure ()
-- Spinner ---------------------------------------------------------------------
-- Call an STM action after delay of `first` microseconds and then every
-- `rest` microseconds after that.
repeatedly :: Int -> Int -> STM () -> IO ()
repeatedly first rest action = do
threadDelay first
forever $ do
atomically action
threadDelay rest
spinners :: [Text]
spinners = ["|", "/", "-", "\\"]
leftBracket, rightBracket :: Text
leftBracket = "«"
rightBracket = "»"
_spin_cool_us, _spin_warm_us, _spin_rate_us, _spin_idle_us :: Integral i => i
_spin_cool_us = 500000
_spin_warm_us = 50000
_spin_rate_us = 250000
_spin_idle_us = 500000
-- Client ----------------------------------------------------------------------
{-|
Initializes the generalized input/output parts of the terminal.
-}
localClient :: forall e. HasLogFunc e
=> STM ()
-> RAcquire e Client
localClient doneSignal = fst <$> mkRAcquire start stop
where
start :: HasLogFunc e => RIO e (Client, Private)
start = do
tsWriteQueue <- newTQueueIO :: RIO e (TQueue [Term.Ev])
spinnerMVar <- newEmptyTMVarIO :: RIO e (TMVar ())
-- Track the terminal size, keeping track of the size of the local
-- terminal for our own printing, as well as putting size changes into an
-- event queue so we can send changes to the terminal muxing system.
tsizeTVar <- newTVarIO (TermSize 80 24) -- Value doesn't matter.
tsSizeChange <- newEmptyTMVarIO
io $ T.liveTermSize (\ts -> atomically $ do
-- We keep track of the console's local size for
-- our own tank washing.
writeTVar tsizeTVar ts
-- We queue up changes so we can broadcast them
-- to the muxing client.
putTMVar tsSizeChange ts)
pWriterThread <- asyncBound
(writeTerminal tsWriteQueue spinnerMVar tsizeTVar)
pPreviousConfiguration <- io $ getTerminalAttributes stdInput
-- Create a new configuration where we put the terminal in raw mode and
-- disable a bunch of preprocessing.
let newTermSettings = flip withTime 0
$ flip withMinInput 1
$ foldl' withoutMode pPreviousConfiguration
$ disabledFlags
io $ setTerminalAttributes stdInput newTermSettings Immediately
tsReadQueue <- newTQueueIO
pReaderThread <- asyncBound
(readTerminal tsReadQueue tsWriteQueue (bell tsWriteQueue))
let client = Client { take = Just <$> asum
[ readTQueue tsReadQueue <&> ClientTakeBelt,
takeTMVar tsSizeChange <&> ClientTakeSize
]
, give = writeTQueue tsWriteQueue
}
pure (client, Private{..})
stop :: HasLogFunc e
=> (Client, Private) -> RIO e ()
stop (Client{..}, Private{..}) = do
-- Note that we don't `cancel pReaderThread` here. This is a deliberate
-- decision because fdRead calls into a native function which the runtime
-- can't kill. If we were to cancel here, the internal `waitCatch` would
-- block until the next piece of keyboard input. Since this only happens
-- at shutdown, just leak the file descriptor.
cancel pWriterThread
-- inject one final newline, as we're usually on the prompt.
putStr "\r\n"
-- take the terminal out of raw mode
io $ setTerminalAttributes stdInput pPreviousConfiguration Immediately
{-
A list of terminal flags that we disable.
TODO: Terminal library missing CSIZE?
-}
disabledFlags :: [TerminalMode]
disabledFlags = [ StartStopOutput
, KeyboardInterrupts
, EnableEcho
, EchoLF
, ProcessInput
, ExtendedFunctions
, MapCRtoLF
, CheckParity
, StripHighBit
, EnableParity
, ProcessOutput
]
-- Writes data to the terminal. Both the terminal reading, normal logging,
-- and effect handling can all emit bytes which go to the terminal.
writeTerminal :: TQueue [Term.Ev] -> TMVar () -> TVar TermSize -> RIO e ()
writeTerminal q spinner termSizeVar = do
currentTime <- io $ now
loop (LineState "" 0 Nothing Nothing True 0 currentTime)
where
writeBlank :: LineState -> RIO e LineState
writeBlank ls = putStr "\r\n" $> ls
writeTrace :: LineState -> Text -> RIO e LineState
writeTrace ls p = do
putStr "\r"
T.clearLine
putStr p
termRefreshLine ls
writeSlog :: LineState -> (Atom, Tank) -> RIO e LineState
writeSlog ls slog = do
putStr "\r"
T.clearLine
TermSize width _ <- atomically $ readTVar termSizeVar
-- TODO: Ignoring priority for now. Priority changes the color of,
-- and adds a prefix of '>' to, the output.
let lines = fmap unTape $ wash (WashCfg 0 width) $ tankTree $ snd slog
forM lines $ \line -> putStr (line <> "\r\n")
termRefreshLine ls
{-
Figure out how long to wait to show the spinner. When we
don't have a vane name to display, we assume its a user
action and trigger immediately. Otherwise, if we receive an
event shortly after a previous spin, use a shorter delay to
avoid giving the impression of a half-idle system.
-}
doSpin :: LineState -> Maybe Text -> RIO e LineState
doSpin ls@LineState{..} mTxt = do
maybe (pure ()) cancel lsSpinTimer
current <- io $ now
delay <- pure $ case mTxt of
Nothing -> 0
Just _ ->
if (gap current lsPrevEndTime ^. microSecs) < _spin_idle_us
then _spin_warm_us
else _spin_cool_us
spinTimer <- io $ async
$ repeatedly delay _spin_rate_us
$ void
$ tryPutTMVar spinner ()
pure $ ls { lsSpinTimer = Just spinTimer
, lsSpinCause = mTxt
, lsSpinFirstRender = True
}
unspin :: LineState -> RIO e LineState
unspin ls@LineState{..} = do
maybe (pure ()) cancel lsSpinTimer
-- We do a final flush of the spinner mvar to ensure we don't
-- have a lingering signal which will redisplay the spinner after
-- we call termRefreshLine below.
atomically $ tryTakeTMVar spinner
-- If we ever actually ran the spinner display callback, we need
-- to force a redisplay of the command prompt.
ls <- if not lsSpinFirstRender || True
then termRefreshLine ls
else pure ls
endTime <- io $ now
pure $ ls { lsSpinTimer = Nothing, lsPrevEndTime = endTime }
execEv :: LineState -> Term.Ev -> RIO e LineState
execEv ls = \case
Term.Blits bs -> foldM writeBlit ls bs
Term.Trace p -> writeTrace ls (unCord p)
Term.Slog s -> writeSlog ls s
Term.Blank -> writeBlank ls
Term.Spinr (Just txt) -> doSpin ls (unCord <$> txt)
Term.Spinr Nothing -> unspin ls
-- TODO What does this do?
spin :: LineState -> RIO e LineState
spin ls@LineState{..} = do
let spinner = (spinners !! lsSpinFrame) ++ case lsSpinCause of
Nothing -> ""
Just str -> leftBracket ++ str ++ rightBracket
putStr (spinner <> pack (ANSI.cursorBackwardCode (length spinner)))
let newFrame = (lsSpinFrame + 1) `mod` length spinners
pure $ ls { lsSpinFirstRender = False
, lsSpinFrame = newFrame
}
loop :: LineState -> RIO e ()
loop ls = do
join $ atomically $ asum
[ readTQueue q >>= pure . (foldM execEv ls >=> loop)
, takeTMVar spinner >> pure (spin ls >>= loop)
]
-- Writes an individual blit to the screen
writeBlit :: LineState -> Blit -> RIO e LineState
writeBlit ls = \case
Bel () -> T.soundBell $> ls
Clr () -> do T.clearScreen
termRefreshLine ls
Hop w -> termShowCursor ls (fromIntegral w)
Klr s -> do ls2 <- termShowClear ls
termShowStub ls2 s
Lin c -> do ls2 <- termShowClear ls
termShowLine ls2 (pack c)
Mor () -> termShowMore ls
Sag path noun -> pure ls
Sav path atom -> pure ls
Url url -> pure ls
termRenderDeco :: Deco -> Char
termRenderDeco = \case
DecoBr -> '1'
DecoUn -> '4'
DecoBl -> '5'
DecoNull -> '0'
termRenderTint :: Tint -> Char
termRenderTint = \case
TintK -> '0'
TintR -> '1'
TintG -> '2'
TintY -> '3'
TintB -> '4'
TintM -> '5'
TintC -> '6'
TintW -> '7'
TintNull -> '9'
-- Wraps the appropriate escape sequence around a piece of styled text
termRenderStubSegment :: Stye -> [Char] -> [Char]
termRenderStubSegment Stye {..} tape =
case (S.null decoset, back, fore) of
(True, TintNull, TintNull) -> tape
_ -> styled
where
decoset = setFromHoonSet deco
escape = [chr 27, '[']
styles = intercalate ";" $ filter (not . null)
[ intersperse ';' $ fmap termRenderDeco $ toList decoset
, case back of
TintNull -> []
tint -> ['4', termRenderTint tint]
, case fore of
TintNull -> []
tint -> ['3', termRenderTint tint]
]
styled = mconcat [escape, styles, "m", tape, escape, "0m"]
-- Displays and sets styled text as the current line
termShowStub :: LineState -> Stub -> RIO e LineState
termShowStub ls (Stub s) = do
let visualLength = sum $ fmap (length . snd) s
let outText = pack $ mconcat $ fmap (uncurry termRenderStubSegment) s
putStr outText
pure ls { lsLine = outText, lsCurPos = visualLength }
-- Moves the cursor to the requested position
termShowCursor :: LineState -> Int -> RIO e LineState
termShowCursor ls@LineState{..} {-line pos)-} newPos = do
if newPos < lsCurPos then do
T.cursorLeft (lsCurPos - newPos)
pure ls { lsCurPos = newPos }
else if newPos > lsCurPos then do
T.cursorRight (newPos - lsCurPos)
pure ls { lsCurPos = newPos }
else
pure ls
-- Moves the cursor left without any mutation of the LineState. Used only
-- in cursor spinning.
_termSpinnerMoveLeft :: Int -> RIO e ()
_termSpinnerMoveLeft = T.cursorLeft
-- Displays and sets the current line
termShowLine :: LineState -> Text -> RIO e LineState
termShowLine ls newStr = do
putStr newStr
pure ls { lsLine = newStr, lsCurPos = (length newStr) }
termShowClear :: LineState -> RIO e LineState
termShowClear ls = do
putStr "\r"
T.clearLine
pure ls { lsLine = "", lsCurPos = 0 }
-- New Current Line
termShowMore :: LineState -> RIO e LineState
termShowMore ls = do
putStr "\r\n"
pure ls { lsLine = "", lsCurPos = 0 }
-- Redraw the current LineState, maintaining the current curpos
termRefreshLine :: LineState -> RIO e LineState
termRefreshLine ls@LineState{lsCurPos,lsLine} = do
ls <- termShowClear ls
ls <- termShowLine ls lsLine
termShowCursor ls lsCurPos
-- ring my bell
bell :: TQueue [Term.Ev] -> RIO e ()
bell q = atomically $ writeTQueue q $ [Term.Blits [Bel ()]]
-- Reads data from stdInput and emit the proper effect
--
-- This entire path is a divergence from how term.c does things,
-- probably. First, the vtime is 0, not 1 in term.c. So (IIUC), we'll
-- always have a latency of 1/10 of a second.
--
-- A better way to do this would be to get some sort of epoll on stdInput,
-- since that's kinda closer to what libuv does?
readTerminal :: forall e. HasLogFunc e
=> TQueue Belt -> TQueue [Term.Ev] -> (RIO e ()) -> RIO e ()
readTerminal rq wq bell =
rioAllocaBytes 1 $ \ buf -> loop (ReadData buf False False mempty 0)
where
loop :: ReadData -> RIO e ()
loop rd@ReadData{..} = do
-- The problem with using fdRead raw is that it will text encode
-- things like \ESC instead of 27. That makes it broken for our
-- purposes.
--
io (try $ fdReadBuf stdInput rdBuf 1) >>= \case
Left (e :: IOException) -> do
-- Ignore EAGAINs when doing reads
loop rd
Right 0 -> loop rd
Right _ -> do
w <- io $ peek rdBuf
-- print ("{" ++ (show w) ++ "}")
let c = BS.w2c w
if rdEscape then
if rdBracket then do
case c of
'A' -> sendBelt $ Aro U
'B' -> sendBelt $ Aro D
'C' -> sendBelt $ Aro R
'D' -> sendBelt $ Aro L
_ -> bell
loop rd { rdEscape = False, rdBracket = False}
else if isAsciiLower c then do
sendBelt $ Met $ Cord $ pack [c]
loop rd { rdEscape = False }
else if c == '.' then do
sendBelt $ Met $ Cord "dot"
loop rd { rdEscape = False }
else if w == 8 || w == 127 then do
sendBelt $ Met $ Cord "bac"
loop rd { rdEscape = False }
else if c == '[' || c == '0' then do
loop rd { rdBracket = True }
else do
bell
loop rd { rdEscape = False }
else if rdUTF8width /= 0 then do
-- continue reading into the utf8 accumulation buffer
rd@ReadData{..} <- pure rd { rdUTF8 = snoc rdUTF8 w }
if length rdUTF8 /= rdUTF8width then loop rd
else do
case BS.decode rdUTF8 of
Nothing ->
error "empty utf8 accumulation buffer"
Just (c, bytes) | bytes /= rdUTF8width ->
error "utf8 character size mismatch?!"
Just (c, bytes) -> sendBelt $ Txt $ Tour $ [c]
loop rd { rdUTF8 = mempty, rdUTF8width = 0 }
else if w >= 32 && w < 127 then do
sendBelt $ Txt $ Tour $ [c]
loop rd
else if w == 0 then do
bell
loop rd
else if w == 8 || w == 127 then do
sendBelt $ Bac ()
loop rd
else if w == 13 then do
sendBelt $ Ret ()
loop rd
else if w == 3 then do
-- ETX (^C)
logInfo $ displayShow "Ctrl-c interrupt"
atomically $ do
writeTQueue wq [Term.Trace "interrupt\r\n"]
writeTQueue rq $ Ctl $ Cord "c"
loop rd
else if w <= 26 then do
case pack [BS.w2c (w + 97 - 1)] of
"d" -> atomically doneSignal
c -> do sendBelt $ Ctl $ Cord c
loop rd
else if w == 27 then do
loop rd { rdEscape = True }
else do
-- start the utf8 accumulation buffer
loop rd { rdUTF8 = singleton w,
rdUTF8width = if w < 224 then 2
else if w < 240 then 3
else 4 }
sendBelt :: HasLogFunc e => Belt -> RIO e ()
sendBelt b = do
-- logDebug $ displayShow ("terminalBelt", b)
atomically $ writeTQueue rq b
--------------------------------------------------------------------------------
{-|
Terminal Driver
Until blew/hail events succeeds, ignore effects.
Wait until blew/hail event callbacks invoked.
If success, signal success.
If failure, try again several times.
If still failure, bring down ship.
Don't wait for other drivers to boot
Begin normal operation (start accepting requests)
-}
term'
:: HasPierEnv e
=> (TermSize, Client)
-> IO ()
-> RIO e ([Ev], RAcquire e (DriverApi TermEf))
term' (tsize, client) serfSIGINT = do
let TermSize wi hi = tsize
initEv = [blewEvent wi hi, initialHail]
pure (initEv, runDriver)
where
runDriver = do
env <- ask
ventQ :: TQueue EvErr <- newTQueueIO
diOnEffect <- term env (tsize, client) (writeTQueue ventQ) serfSIGINT
let diEventSource = fmap RRWork <$> tryReadTQueue ventQ
pure (DriverApi {..})
{-|
Terminal Driver
-}
term :: forall e. (HasPierEnv e)
=> e
-> (TermSize, Client)
-> (EvErr -> STM ())
-> IO ()
-> RAcquire e (TermEf -> IO ())
term env (tsize, Client{..}) plan serfSIGINT = runTerm
where
runTerm :: RAcquire e (TermEf -> IO ())
runTerm = do
tim <- mkRAcquire (async readLoop) cancel
pure (runRIO env . handleEffect)
{-
Because our terminals are always `Demux`ed, we don't have to
care about disconnections.
-}
readLoop :: RIO e ()
readLoop = forever $ do
atomically take >>= \case
Nothing -> pure ()
Just (ClientTakeBelt b) -> do
when (b == Ctl (Cord "c")) $ do
io serfSIGINT
let beltEv = EvBlip $ BlipEvTerm $ TermEvBelt (UD 1, ()) $ b
let beltFailed _ = pure ()
atomically $ plan (EvErr beltEv beltFailed)
Just (ClientTakeSize ts@(TermSize w h)) -> do
let blewFailed _ = pure ()
atomically $ plan (EvErr (blewEvent w h) blewFailed)
handleEffect :: TermEf -> RIO e ()
handleEffect = \case
TermEfInit _ _ -> pure ()
TermEfMass _ _ -> pure ()
TermEfLogo _ _ -> atomically =<< view killPierActionL
TermEfBlit _ blits -> do
let (termBlits, fsWrites) = partition isTerminalBlit blits
atomically $ give [Term.Blits termBlits]
for_ fsWrites handleFsWrite
handleFsWrite :: Blit -> RIO e ()
handleFsWrite (Sag path noun) = performPut path (jamBS noun)
handleFsWrite (Sav path atom) = performPut path (atomBytes atom)
handleFsWrite _ = pure ()
performPut :: Path -> ByteString -> RIO e ()
performPut path bs = do
pierPath <- view pierPathL
let putOutFile = pierPath </> ".urb" </> "put" </> (pathToFilePath path)
createDirectoryIfMissing True (takeDirectory putOutFile)
writeFile putOutFile bs