shrub/vere/raft.c
2018-11-26 12:22:13 -05:00

2058 lines
50 KiB
C

/* v/raft.c
**
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <uv.h>
#include "all.h"
#include "vere/vere.h"
/* u3_rent: Log entry wire format.
*/
typedef struct {
c3_w tem_w; // Log entry term
c3_w typ_w; // Entry type, %ra|%ov
c3_w len_w; // Word length of blob
c3_w* bob_w; // Blob
} u3_rent;
/* u3_rmsg: Raft RPC wire format.
*/
typedef struct _u3_rmsg {
c3_w ver_w; // version, mug('a')...
c3_d len_d; // Words in message
c3_w tem_w; // Current term
c3_w typ_w; // %apen|%revo|%rasp
union {
struct {
c3_w suc_w; // Request successful
} rasp;
struct {
c3_d lai_d; // Last log index
c3_w lat_w; // Last log term
c3_w nam_w; // Name word length
c3_c* nam_c; // Requestor name
union {
struct {
c3_d cit_d; // Leader commitIndex
c3_d ent_d; // Number of entries
u3_rent* ent_u; // Entries
} apen;
};
} rest;
};
} u3_rmsg;
static ssize_t _raft_rmsg_read(const u3_rbuf* buf_u, u3_rmsg* msg_u);
static void _raft_rmsg_send(u3_rcon* ron_u, const u3_rmsg* msg_u);
static void _raft_rmsg_free(u3_rmsg* msg_u);
static void _raft_conn_dead(u3_rcon* ron_u);
static u3_noun _raft_remove_run(u3_rcon* ron_u);
static void _raft_send_rasp(u3_rcon* ron_u, c3_t suc_t);
static void _raft_rreq_free(u3_rreq* req_u);
static void _raft_time_cb(uv_timer_t* tim_u);
static void
_raft_rnam_free(u3_rnam* nam_u)
{
if ( nam_u ) {
c3_assert(0 == nam_u->ron_u);
c3_assert(0 == nam_u->nex_u);
free(nam_u->str_c);
free(nam_u->nam_c);
free(nam_u->por_c);
}
free(nam_u);
}
/* _raft_readname(): parse a raft host:port peer name.
*/
static u3_rnam*
_raft_readname(const c3_c* str_c, c3_w siz_w)
{
u3_rnam* nam_u = calloc(1, sizeof(*nam_u));
c3_c* col_c;
c3_w nam_w;
nam_u->str_c = c3_malloc(siz_w + 1);
strncpy(nam_u->str_c, str_c, siz_w + 1);
nam_u->str_c[siz_w] = '\0';
if ( 0 == (col_c = strchr(nam_u->str_c, ':')) ) {
uL(fprintf(uH, "raft: invalid name %s\n", nam_u->str_c));
_raft_rnam_free(nam_u);
nam_u = 0;
}
else {
nam_w = col_c - nam_u->str_c + 1;
nam_u->nam_c = c3_malloc(nam_w);
strncpy(nam_u->nam_c, nam_u->str_c, nam_w + 1);
*(nam_u->nam_c + nam_w) = 0;
nam_u->por_c = strdup(col_c + 1);
}
return nam_u;
}
/* u3_raft_readopt(): parse a string into a list of raft peers.
*/
u3_rnam*
u3_raft_readopt(const c3_c* arg_c, c3_c* our_c, c3_s oup_s)
{
u3_rnam* nam_u;
u3_rnam* nex_u;
c3_c* com_c;
if ( 0 == (com_c = strchr(arg_c, ',')) ) {
nam_u = _raft_readname(arg_c, strlen(arg_c));
nex_u = 0;
}
else {
nam_u = _raft_readname(arg_c, com_c - arg_c);
nex_u = u3_raft_readopt(com_c + 1, our_c, oup_s);
}
if ( nam_u ) {
c3_c* end_c;
c3_w por_w = strtoul(nam_u->por_c, &end_c, 10);
if ( '\0' == *nam_u->por_c || '\0' != *end_c || por_w >= 65536 ) {
uL(fprintf(uH, "raft: invalid port %s\n", nam_u->por_c));
_raft_rnam_free(nam_u);
_raft_rnam_free(nex_u);
nam_u = 0;
}
else {
if ( oup_s == por_w && 0 == strcmp(our_c, nam_u->nam_c) ) {
_raft_rnam_free(nam_u);
nam_u = nex_u;
}
else nam_u->nex_u = nex_u;
}
}
else _raft_rnam_free(nex_u);
return nam_u;
}
/* _raft_alloc(): libuv-style allocator for raft.
*/
static void
_raft_alloc(uv_handle_t* had_u,
size_t len_i,
uv_buf_t* buf
)
{
void* ptr_v = c3_malloc(len_i);
*buf = uv_buf_init(ptr_v, len_i);
}
/* _raft_election_rand(): election timeout.
*/
static c3_w
_raft_election_rand()
{
c3_w ret = (1.0 + (float) rand() / RAND_MAX) * 150;
//uL(fprintf(uH, "raft: timeout %d\n", ret));
return ret;
}
/* _raft_promote(): actions on raft leader election.
*/
static void
_raft_promote(u3_raft* raf_u)
{
if ( u3_raty_lead == raf_u->typ_e ) {
uL(fprintf(uH, "raft: double promote; ignoring\n"));
}
else {
c3_i sas_i;
if ( 1 == raf_u->pop_w ) {
// uL(fprintf(uH, "raft: -> lead\n"));
raf_u->typ_e = u3_raty_lead;
// TODO boot in multiuser mode
u3_sist_boot();
if ( c3n == u3_Host.ops_u.bat ) {
u3_lo_lead();
}
}
else {
c3_assert(u3_raty_cand == raf_u->typ_e);
uL(fprintf(uH, "raft: cand -> lead\n"));
raf_u->typ_e = u3_raty_lead;
sas_i = uv_timer_stop(&raf_u->tim_u);
c3_assert(0 == sas_i);
sas_i = uv_timer_start(&raf_u->tim_u, _raft_time_cb, 50, 50);
c3_assert(0 == sas_i);
}
}
}
/* _raft_demote(): demote to follower.
*/
static void
_raft_demote(u3_raft* raf_u)
{
u3_raty typ_e = raf_u->typ_e;
raf_u->vog_c = 0;
u3_sist_nil("vote");
raf_u->vot_w = 0;
raf_u->typ_e = u3_raty_foll;
if ( u3_raty_lead == typ_e ) {
c3_i sas_i;
uL(fprintf(uH, "raft: lead -> foll\n"));
sas_i = uv_timer_stop(&raf_u->tim_u);
c3_assert(0 == sas_i);
sas_i = uv_timer_start(&raf_u->tim_u, _raft_time_cb,
_raft_election_rand(), 0);
c3_assert(0 == sas_i);
// TODO dump not-yet-committed events
}
else {
c3_assert(u3_raty_cand == typ_e);
uL(fprintf(uH, "raft: cand -> foll\n"));
}
}
/* _raft_note_term(): note a term from the network, demoting if it is newer.
*/
static void
_raft_note_term(u3_raft* raf_u, c3_w tem_w)
{
if ( raf_u->tem_w < tem_w ) {
uL(fprintf(uH, "raft: got term from network: %d\n", tem_w));
raf_u->tem_w = tem_w;
u3_sist_put("term", (c3_y*)&raf_u->tem_w, sizeof(c3_w));
c3_assert(raf_u->typ_e != u3_raty_none);
if ( raf_u->typ_e == u3_raty_foll ) {
c3_assert(0 == raf_u->vot_w);
} else _raft_demote(raf_u);
}
}
/* _raft_rest_name(): update conn name from incoming request.
**
** If this connection already has a name, make sure the passed name
** matches. Otherwise, try to associate it with a name, killing old
** connections to that name.
*/
static void // TODO indicate whether conn died
_raft_rest_name(u3_rcon* ron_u, const c3_c* nam_c)
{
if ( 0 != ron_u->nam_u ) {
if ( 0 != strcmp(ron_u->nam_u->str_c, nam_c) ) {
uL(fprintf(uH, "raft: names disagree o:%s n:%s\n",
ron_u->nam_u->str_c, nam_c));
_raft_conn_dead(ron_u);
}
}
else {
u3_raft* raf_u = ron_u->raf_u;
u3_rnam* nam_u = raf_u->nam_u;
while ( nam_u ) {
if ( 0 == strcmp(nam_u->str_c, nam_c) ) {
if ( nam_u->ron_u ) {
c3_assert(nam_u->ron_u != ron_u);
//uL(fprintf(uH, "raft: closing old conn %p to %s (%p)\n",
// nam_u->ron_u, nam_u->str_c, ron_u));
_raft_conn_dead(nam_u->ron_u);
}
uL(fprintf(uH, "raft: incoming conn from %s\n", nam_u->str_c));
nam_u->ron_u = ron_u;
ron_u->nam_u = nam_u;
_raft_remove_run(ron_u);
break;
}
else nam_u = nam_u->nex_u;
}
if ( 0 == ron_u->nam_u ) {
uL(fprintf(uH, "connection from unkown peer %s\n", nam_c));
_raft_conn_dead(ron_u);
}
}
}
/* _raft_do_rest(): effects of an incoming request.
*/
static void
_raft_do_rest(u3_rcon* ron_u, const u3_rmsg* msg_u)
{
u3_raft* raf_u = ron_u->raf_u;
if ( u3_raty_cand == raf_u->typ_e || u3_raty_foll == raf_u->typ_e ) {
c3_i sas_i;
sas_i = uv_timer_stop(&raf_u->tim_u);
c3_assert(0 == sas_i);
sas_i = uv_timer_start(&raf_u->tim_u, _raft_time_cb,
_raft_election_rand(), 0);
c3_assert(0 == sas_i);
}
_raft_rest_name(ron_u, msg_u->rest.nam_c);
_raft_note_term(raf_u, msg_u->tem_w);
}
/* _raft_do_apen(): Handle incoming AppendEntries.
*/
static void
_raft_do_apen(u3_rcon* ron_u, const u3_rmsg* msg_u)
{
c3_assert(c3__apen == msg_u->typ_w);
_raft_do_rest(ron_u, msg_u);
/* TODO respond */
}
/* _raft_apen_done(): process AppendEntries response.
*/
static void
_raft_apen_done(u3_rreq* req_u, c3_w suc_w)
{
c3_assert(c3__apen == req_u->msg_u->typ_w);
/* TODO */
}
/* _raft_do_revo(): Handle incoming RequestVote.
*/
static void
_raft_do_revo(u3_rcon* ron_u, const u3_rmsg* msg_u)
{
u3_raft* raf_u = ron_u->raf_u;
c3_assert(c3__revo == msg_u->typ_w);
_raft_do_rest(ron_u, msg_u);
c3_assert(0 != ron_u->nam_u);
if ( msg_u->tem_w >= raf_u->tem_w &&
(0 == raf_u->vog_c ||
0 == strcmp(raf_u->vog_c, ron_u->nam_u->str_c)) &&
(raf_u->lat_w < msg_u->rest.lat_w ||
(raf_u->lat_w == msg_u->rest.lat_w &&
raf_u->ent_d <= msg_u->rest.lai_d)) )
{
raf_u->vog_c = ron_u->nam_u->str_c;
u3_sist_put("vote", (c3_y*)raf_u->vog_c, strlen(raf_u->vog_c));
uL(fprintf(uH, "raft: granting vote to %s\n", raf_u->vog_c));
_raft_send_rasp(ron_u, 1);
}
else _raft_send_rasp(ron_u, 0);
}
/* _raft_revo_done(): process RequestVote response.
*/
static void
_raft_revo_done(u3_rreq* req_u, c3_w suc_w)
{
u3_rcon* ron_u = req_u->ron_u;
u3_raft* raf_u = ron_u->raf_u;
c3_assert(c3__revo == req_u->msg_u->typ_w);
if ( suc_w && req_u->msg_u->tem_w == raf_u->tem_w ) {
if ( c3n == ron_u->nam_u->vog ) {
ron_u->nam_u->vog = c3y;
raf_u->vot_w++;
}
else {
uL(fprintf(uH, "XX raft: duplicate response for %s [tem:%d]\n",
ron_u->nam_u->str_c, raf_u->tem_w));
}
}
if ( raf_u->vot_w > raf_u->pop_w / 2 ) {
uL(fprintf(uH, "raft: got majority of %d for term %d\n",
raf_u->vot_w, raf_u->tem_w));
_raft_promote(raf_u);
}
}
/* _raft_do_rasp(): act on an incoming raft RPC response.
*/
static void
_raft_do_rasp(u3_rcon* ron_u, u3_rmsg* msg_u)
{
u3_raft* raf_u = ron_u->raf_u;
c3_assert(c3__rasp == msg_u->typ_w);
if ( 0 == ron_u->nam_u ) {
uL(fprintf(uH, "raft: invalid connection from unknown host\n"));
_raft_conn_dead(ron_u);
}
else {
u3_rreq* req_u = ron_u->out_u;
if ( !req_u ) {
uL(fprintf(uH, "raft: response with no request from %s\n",
ron_u->nam_u->str_c));
_raft_conn_dead(ron_u);
}
else {
switch ( req_u->msg_u->typ_w ) {
default: {
uL(fprintf(uH, "raft: bogus request type %x?!\n",
req_u->msg_u->typ_w));
c3_assert(0);
}
case c3__apen: {
_raft_apen_done(req_u, msg_u->rasp.suc_w);
break;
}
case c3__revo: {
_raft_revo_done(req_u, msg_u->rasp.suc_w);
break;
}
}
_raft_note_term(raf_u, msg_u->tem_w);
ron_u->out_u = req_u->nex_u;
if ( 0 == req_u->nex_u ) {
c3_assert(req_u == ron_u->tou_u);
ron_u->tou_u = 0;
}
_raft_rreq_free(req_u);
}
}
}
/* _raft_rmsg_read(): read a u3_rmsg from a buffer.
**
** Returns <0 on parse failure.
** Returns 0 on partial data.
** Returns bytes read on successful read.
**
** If successful, caller must eventually call _raft_free_rmsg() on msg_u.
*/
static ssize_t
_raft_rmsg_read(const u3_rbuf* buf_u, u3_rmsg* msg_u)
{
ssize_t red_i = 0;
c3_d ben_d;
if ( buf_u->len_w < sizeof(c3_w) + sizeof(c3_d) ) {
return 0;
}
memcpy(&msg_u->ver_w, buf_u->buf_y + red_i, sizeof(c3_w));
red_i += sizeof(c3_w);
if ( msg_u->ver_w != u3r_mug('a') ) {
uL(fprintf(uH, "raft: versions don't match: %x %x\n",
msg_u->ver_w, u3r_mug('a')));
return -1;
}
memcpy(&msg_u->len_d, buf_u->buf_y + red_i, sizeof(c3_d));
red_i += sizeof(c3_d);
if ( msg_u->len_d < 4 ) {
uL(fprintf(uH, "raft: length too short (a) %" PRIu64 "\n", msg_u->len_d));
return -1;
}
ben_d = 4ULL * msg_u->len_d;
if ( buf_u->len_w < ben_d ) {
return 0;
}
if ( ben_d < red_i + 2 * sizeof(c3_w) ) {
uL(fprintf(uH, "raft: length too short (b) %" PRIu64 "\n", msg_u->len_d));
return -1;
}
memcpy(&msg_u->tem_w, buf_u->buf_y + red_i, sizeof(c3_w));
red_i += sizeof(c3_w);
memcpy(&msg_u->typ_w, buf_u->buf_y + red_i, sizeof(c3_w));
red_i += sizeof(c3_w);
switch ( msg_u->typ_w ) {
default: {
uL(fprintf(uH, "raft: unknown msg type %x\n", msg_u->typ_w));
return -1;
}
case c3__rasp: {
if ( ben_d < red_i + sizeof(c3_w) ) {
uL(fprintf(uH, "raft: length too short (c) %" PRIu64 "\n", msg_u->len_d));
return -1;
}
memcpy(&msg_u->rasp.suc_w, buf_u->buf_y + red_i, sizeof(c3_w));
red_i += sizeof(c3_w);
break;
}
case c3__apen: case c3__revo: {
if ( ben_d < red_i + sizeof(c3_d) + 2 * sizeof(c3_w) ) {
uL(fprintf(uH, "raft: length too short (d) %" PRIu64 "\n", msg_u->len_d));
return -1;
}
memcpy(&msg_u->rest.lai_d, buf_u->buf_y + red_i, sizeof(c3_d));
red_i += sizeof(c3_d);
memcpy(&msg_u->rest.lat_w, buf_u->buf_y + red_i, sizeof(c3_w));
red_i += sizeof(c3_w);
memcpy(&msg_u->rest.nam_w, buf_u->buf_y + red_i, sizeof(c3_w));
red_i += sizeof(c3_w);
if ( ben_d < red_i + 4 * msg_u->rest.nam_w ) {
uL(fprintf(uH, "raft: length too short (e) %" PRIu64 "\n", msg_u->len_d));
return -1;
}
msg_u->rest.nam_c = c3_malloc(4 * msg_u->rest.nam_w);
strncpy(msg_u->rest.nam_c, (const char*)(buf_u->buf_y + red_i), 4 * msg_u->rest.nam_w + 1);
red_i += 4 * msg_u->rest.nam_w;
break;
}
}
if ( c3__apen == msg_u->typ_w ) {
if ( ben_d < red_i + 2 * sizeof(c3_d) ) {
uL(fprintf(uH, "raft: length too short (f) %" PRIu64 "\n", msg_u->len_d));
red_i = -1;
goto fail;
}
memcpy(&msg_u->rest.apen.cit_d, buf_u->buf_y + red_i, sizeof(c3_d));
red_i += sizeof(c3_d);
memcpy(&msg_u->rest.apen.ent_d, buf_u->buf_y + red_i, sizeof(c3_d));
red_i += sizeof(c3_d);
msg_u->rest.apen.ent_u = calloc(
1, msg_u->rest.apen.ent_d * sizeof(u3_rent));
{
c3_d i_d;
u3_rent* ent_u = msg_u->rest.apen.ent_u;
for ( i_d = 0; i_d < msg_u->rest.apen.ent_d; i_d++ ) {
if ( ben_d < red_i + 3 * sizeof(c3_w) ) {
uL(fprintf(uH, "raft: length too short (g) %" PRIu64 "\n", msg_u->len_d));
red_i = -1;
goto fail;
}
memcpy(&ent_u[i_d].tem_w, buf_u->buf_y + red_i, sizeof(c3_w));
red_i += sizeof(c3_w);
memcpy(&ent_u[i_d].typ_w, buf_u->buf_y + red_i, sizeof(c3_w));
red_i += sizeof(c3_w);
memcpy(&ent_u[i_d].len_w, buf_u->buf_y + red_i, sizeof(c3_w));
red_i += sizeof(c3_w);
if ( ben_d < red_i + 4 * ent_u[i_d].len_w ) {
uL(fprintf(uH, "raft: length too short (h) %" PRIu64 "\n", msg_u->len_d));
red_i = -1;
goto fail;
}
ent_u[i_d].bob_w = c3_malloc(4 * ent_u[i_d].len_w);
memcpy(ent_u[i_d].bob_w, buf_u->buf_y + red_i, 4 * ent_u[i_d].len_w);
red_i += 4 * ent_u[i_d].len_w;
}
}
}
if ( red_i != ben_d ) {
uL(fprintf(uH, "raft: sizes don't match r:%zd w:%" PRIu64 "\n", red_i, ben_d));
red_i = -1;
goto fail;
}
out:
return red_i;
fail:
_raft_rmsg_free(msg_u);
goto out;
}
/* _raft_rbuf_grow(): append data to the buffer, reallocating if needed.
**
** Returns new buffer location, as realloc.
*/
static u3_rbuf*
_raft_rbuf_grow(u3_rbuf* buf_u, const c3_y* buf_y, size_t siz_i)
{
if ( 0 == buf_u ) {
buf_u = c3_malloc(sizeof(*buf_u) + siz_i);
buf_u->len_w = 0;
buf_u->cap_w = siz_i;
}
if ( buf_u->cap_w < buf_u->len_w + siz_i ) {
c3_w cap_w = c3_max(2 * buf_u->cap_w, buf_u->len_w + siz_i);
buf_u = realloc(buf_u, sizeof(*buf_u) + cap_w);
buf_u->cap_w = cap_w;
}
memcpy(buf_u->buf_y + buf_u->len_w, buf_y, siz_i);
buf_u->len_w += siz_i;
return buf_u;
}
/* _raft_bytes_send():
*/
static void
_raft_bytes_send(u3_rcon* ron_u, const void* ptr_v, size_t siz_i)
{
ron_u->wri_u = _raft_rbuf_grow(ron_u->wri_u, ptr_v, siz_i);
}
/* _raft_rmsg_send(): send a u3_rmsg over the wire.
*/
static void
_raft_rmsg_send(u3_rcon* ron_u, const u3_rmsg* msg_u)
{
c3_d len_d = sizeof(c3_d) + 3 * sizeof(c3_w);
_raft_bytes_send(ron_u, &msg_u->ver_w, sizeof(c3_w));
_raft_bytes_send(ron_u, &msg_u->len_d, sizeof(c3_d));
_raft_bytes_send(ron_u, &msg_u->tem_w, sizeof(c3_w));
_raft_bytes_send(ron_u, &msg_u->typ_w, sizeof(c3_w));
switch ( msg_u->typ_w ) {
default: {
uL(fprintf(uH, "raft: send: unknown message type\n"));
c3_assert(0);
}
case c3__rasp: {
len_d += sizeof(c3_w);
_raft_bytes_send(ron_u, &msg_u->rasp.suc_w, sizeof(c3_w));
break;
}
case c3__apen: case c3__revo: {
len_d += sizeof(c3_d) + 2 * sizeof(c3_w) + 4 * msg_u->rest.nam_w;
_raft_bytes_send(ron_u, &msg_u->rest.lai_d, sizeof(c3_d));
_raft_bytes_send(ron_u, &msg_u->rest.lat_w, sizeof(c3_w));
_raft_bytes_send(ron_u, &msg_u->rest.nam_w, sizeof(c3_w));
_raft_bytes_send(ron_u, msg_u->rest.nam_c, 4 * msg_u->rest.nam_w);
break;
}
}
if ( c3__apen == msg_u->typ_w ) {
c3_d i_d;
u3_rent* ent_u = msg_u->rest.apen.ent_u;
len_d += 2 * sizeof(c3_d);
_raft_bytes_send(ron_u, &msg_u->rest.apen.cit_d, sizeof(c3_d));
_raft_bytes_send(ron_u, &msg_u->rest.apen.ent_d, sizeof(c3_d));
for ( i_d = 0; i_d < msg_u->rest.apen.ent_d; i_d++ ) {
len_d += 3 * sizeof(c3_w) + ent_u[i_d].len_w;
_raft_bytes_send(ron_u, &ent_u[i_d].tem_w, sizeof(c3_w));
_raft_bytes_send(ron_u, &ent_u[i_d].typ_w, sizeof(c3_w));
_raft_bytes_send(ron_u, &ent_u[i_d].len_w, sizeof(c3_w));
_raft_bytes_send(ron_u, ent_u[i_d].bob_w, ent_u[i_d].len_w);
}
}
//uL(fprintf(uH, "raft: sent %" PRIu64 " (%" PRIu64 ") [%x]\n",
// len_d, msg_u->len_d, msg_u->typ_w));
c3_assert(len_d == 4 * msg_u->len_d);
}
/* _raft_rmsg_free(): free a u3_rmsg's resources (but not the msg itself).
*/
static void
_raft_rmsg_free(u3_rmsg* msg_u) {
if ( c3__apen == msg_u->typ_w && msg_u->rest.apen.ent_u ) {
c3_d i_d;
for ( i_d = 0; i_d < msg_u->rest.apen.ent_d; i_d++ ) {
free(msg_u->rest.apen.ent_u[i_d].bob_w);
}
free(msg_u->rest.apen.ent_u);
msg_u->rest.apen.ent_u = 0;
}
if ( c3__apen == msg_u->typ_w || c3__revo == msg_u->typ_w ) {
free(msg_u->rest.nam_c);
msg_u->rest.nam_c = 0;
}
}
/* An unusual lameness in libuv.
*/
struct _u3_write_t {
uv_write_t wri_u;
c3_y* buf_y;
};
/* _raft_write_cb(): generic write callback.
*/
static void
_raft_write_cb(uv_write_t* wri_u, c3_i sas_i)
{
struct _u3_write_t* req_u = (struct _u3_write_t*)wri_u;
if ( 0 != sas_i ) {
uL(fprintf(uH, "raft: write_cb: error\n"));
_raft_conn_dead((u3_rcon*)wri_u->handle);
}
free(req_u->buf_y);
free(req_u);
}
/* _raft_conn_work(): read and write requests and responses.
*/
static void
_raft_conn_work(u3_rcon* ron_u)
{
c3_assert(c3y == ron_u->liv);
if ( c3y == ron_u->red ) {
c3_assert(ron_u->red_u);
ron_u->red = c3n;
while (1) {
u3_rmsg msg_u;
ssize_t ret_i = _raft_rmsg_read(ron_u->red_u, &msg_u);
if ( ret_i < 0 ) {
if ( ron_u->nam_u ) {
uL(fprintf(uH, "raft: conn_work: error reading from %s\n",
ron_u->nam_u->str_c));
}
else {
uL(fprintf(uH, "raft: conn_work: error reading\n"));
}
_raft_conn_dead(ron_u);
break;
}
else if ( ret_i == 0 ) {
break;
}
else {
if ( 4 * msg_u.len_d != ret_i ) {
uL(fprintf(uH, "raft: conn_work: lengths don't match\n"));
c3_assert(0);
}
else {
c3_assert(ron_u->red_u->len_w >= ret_i);
memmove(ron_u->red_u->buf_y,
ron_u->red_u->buf_y + ret_i,
ron_u->red_u->len_w - ret_i);
ron_u->red_u->len_w -= ret_i;
switch ( msg_u.typ_w ) {
default: {
uL(fprintf(uH, "raft: work: unknown message type %x\n",
msg_u.typ_w));
break;
}
case c3__apen: {
_raft_do_apen(ron_u, &msg_u);
break;
}
case c3__revo: {
_raft_do_revo(ron_u, &msg_u);
break;
}
case c3__rasp: {
_raft_do_rasp(ron_u, &msg_u);
break;
}
}
_raft_rmsg_free(&msg_u);
}
}
}
}
if ( ron_u->wri_u && ron_u->wri_u->len_w > 0 ) {
uv_buf_t buf_u;
struct _u3_write_t* req_u = c3_malloc(sizeof(*req_u));
req_u->buf_y = c3_malloc(ron_u->wri_u->len_w);
memcpy(req_u->buf_y, ron_u->wri_u->buf_y, ron_u->wri_u->len_w);
buf_u.base = (char*)req_u->buf_y;
buf_u.len = ron_u->wri_u->len_w;
c3_w ret_w;
if ( 0 != (ret_w = uv_write((uv_write_t*)req_u,
(uv_stream_t*)&ron_u->wax_u,
&buf_u,
1,
_raft_write_cb)) )
{
uL(fprintf(uH, "raft: conn_work (write): %s\n",
uv_strerror(ret_w)));
free(req_u->buf_y);
free(req_u);
}
else {
ron_u->wri_u->len_w = 0;
}
}
}
/* _raft_conn_read_cb(): generic connection read callback.
*/
static void
_raft_conn_read_cb(uv_stream_t* tcp_u,
ssize_t siz_i,
const uv_buf_t * buf_u)
{
u3_rcon* ron_u = (u3_rcon*)tcp_u;
u3_lo_open();
{
if ( siz_i < 0 ) {
uL(fprintf(uH, "raft: read ERROR"));
_raft_conn_dead(ron_u);
}
else if ( siz_i == 0 ) {
// do nothing
}
else {
if ( c3y == ron_u->liv ) {
ron_u->red_u = _raft_rbuf_grow(ron_u->red_u, (c3_y*)buf_u->base, siz_i);
ron_u->red = c3y;
_raft_conn_work(ron_u);
}
else uL(fprintf(uH, "XX raft: read on dead conn %p\n", ron_u));
}
}
free(buf_u->base);
u3_lo_shut(c3n);
}
/* _raft_conn_new(): allocate a new raft connection.
*/
static u3_rcon*
_raft_conn_new(u3_raft* raf_u)
{
u3_rcon* ron_u = c3_malloc(sizeof(*ron_u));
uv_tcp_init(u3L, &ron_u->wax_u);
ron_u->red_u = 0;
ron_u->out_u = ron_u->tou_u = 0;
ron_u->red_u = 0;
ron_u->red = c3n;
ron_u->wri_u = 0;
ron_u->nam_u = 0;
ron_u->raf_u = raf_u;
ron_u->nex_u = 0;
ron_u->liv = c3n;
return ron_u;
}
/* _raft_remove_run(): remove a connection from the list of unknowns.
*/
static u3_noun
_raft_remove_run(u3_rcon* ron_u)
{
u3_raft* raf_u = ron_u->raf_u;
u3_noun suc = c3n;
if ( raf_u->run_u == ron_u ) {
raf_u->run_u = ron_u->nex_u;
suc = c3y;
}
else {
u3_rcon* pre_u = raf_u->run_u;
while ( pre_u ) {
if ( pre_u->nex_u == ron_u ) {
pre_u->nex_u = ron_u->nex_u;
suc = c3y;
break;
}
else pre_u = pre_u->nex_u;
}
}
return suc;
}
static u3_rreq*
_raft_rreq_new(u3_rcon* ron_u)
{
u3_rreq* req_u = c3_malloc(sizeof(*req_u));
req_u->msg_u = c3_malloc(sizeof(*req_u->msg_u));
req_u->nex_u = 0;
req_u->ron_u = ron_u;
if ( ron_u->tou_u ) {
c3_assert(ron_u->out_u);
ron_u->tou_u->nex_u = req_u;
ron_u->tou_u = req_u;
}
else {
c3_assert(0 == ron_u->out_u);
ron_u->tou_u = ron_u->out_u = req_u;
}
return req_u;
}
static void
_raft_rreq_free(u3_rreq* req_u)
{
_raft_rmsg_free(req_u->msg_u);
free(req_u->msg_u); // XX
free(req_u);
}
/* _raft_conn_free(): unlink a connection and free its resources.
*/
static void
_raft_conn_free(uv_handle_t* had_u)
{
u3_rcon* ron_u = (void*)had_u;
u3_raft* raf_u = ron_u->raf_u;
//uL(fprintf(uH, "raft: conn_free %p\n", ron_u));
// Unlink references.
if ( ron_u->nam_u ) {
c3_assert(c3n == _raft_remove_run(ron_u));
if ( ron_u->nam_u->ron_u == ron_u ) {
ron_u->nam_u->ron_u = 0;
}
}
else {
u3_noun suc = _raft_remove_run(ron_u);
c3_assert(c3y == suc);
// Slow, expensive debug assert.
{
u3_rnam* nam_u = raf_u->nam_u;
while ( nam_u ) {
c3_assert(nam_u->ron_u != ron_u);
nam_u = nam_u->nex_u;
}
}
}
// Free requests.
{
u3_rreq* req_u = ron_u->out_u;
if ( 0 == req_u ) {
c3_assert(0 == ron_u->tou_u);
}
else {
while ( req_u ) {
if ( 0 == req_u->nex_u ) {
c3_assert(req_u == ron_u->tou_u);
}
ron_u->out_u = req_u->nex_u;
_raft_rreq_free(req_u);
req_u = ron_u->out_u;
}
}
}
free(ron_u->red_u);
free(ron_u->wri_u);
free(ron_u);
}
/* _raft_conn_dead(): kill a connection.
*/
static void
_raft_conn_dead(u3_rcon* ron_u)
{
if ( c3n == ron_u->liv ) {
//uL(fprintf(uH, "raft: conn already dead %p\n", ron_u));
return;
}
else {
uL(fprintf(uH, "raft: conn_dead %p\n", ron_u));
ron_u->liv = c3n;
}
uv_read_stop((uv_stream_t*)&ron_u->wax_u);
uv_close((uv_handle_t*)&ron_u->wax_u, _raft_conn_free);
}
/* _raft_listen_cb(): generic listen callback.
*/
static void
_raft_listen_cb(uv_stream_t* str_u, c3_i sas_i)
{
u3_raft* raf_u = (u3_raft*)str_u;
if ( 0 != sas_i ) {
uL(fprintf(uH, "raft: listen_cb: error\n"));
}
else {
u3_rcon* ron_u = _raft_conn_new(raf_u);
if ( 0 != uv_accept((uv_stream_t*)&raf_u->wax_u,
(uv_stream_t*)&ron_u->wax_u) )
{
uL(fprintf(uH, "raft: accept: error\n"));
uv_close((uv_handle_t*)&ron_u->wax_u, 0);
free(ron_u);
}
else {
ron_u->liv = c3y;
uv_read_start((uv_stream_t*)&ron_u->wax_u,
_raft_alloc,
_raft_conn_read_cb);
ron_u->nex_u = raf_u->run_u;
raf_u->run_u = ron_u;
}
}
}
/* _raft_connect_cb(): generic connection callback.
*/
static void
_raft_connect_cb(uv_connect_t* con_u, c3_i sas_i)
{
u3_rcon* ron_u = con_u->data;
free(con_u);
if ( 0 != sas_i ) {
uL(fprintf(uH, "raft: connect_cb: %s\n",
uv_strerror(sas_i)));
uv_close((uv_handle_t*)&ron_u->wax_u, _raft_conn_free);
}
else {
c3_assert(ron_u->nam_u);
uL(fprintf(uH, "raft: connected to %s\n", ron_u->nam_u->str_c));
ron_u->liv = c3y;
uv_read_start((uv_stream_t*)&ron_u->wax_u,
_raft_alloc,
_raft_conn_read_cb);
_raft_conn_work(ron_u);
}
}
/* _raft_getaddrinfo_cb(): generic getaddrinfo callback.
*/
static void
_raft_getaddrinfo_cb(uv_getaddrinfo_t* raq_u,
c3_i sas_i,
struct addrinfo* add_u)
{
struct addrinfo* res_u;
uv_connect_t* con_u = c3_malloc(sizeof(*con_u));
u3_rcon* ron_u = raq_u->data;
//uL(fprintf(uH, "getaddrinfo_cb %s\n", ron_u->nam_u->nam_c));
con_u->data = ron_u;
for ( res_u = add_u; res_u; res_u = res_u->ai_next ) {
if ( 0 != uv_tcp_connect(con_u,
&ron_u->wax_u,
(const struct sockaddr*)res_u->ai_addr,
_raft_connect_cb) )
{
uL(fprintf(uH, "raft: getaddrinfo_cb: %s\n",
uv_strerror(sas_i)));
uv_close((uv_handle_t*)&ron_u->wax_u, 0);
continue;
}
else {
#if 0
c3_c add_c[17] = {'\0'};
uv_ip4_name((struct sockaddr_in*)res_u->ai_addr, add_c, 16);
uL(fprintf(uH, "raft: conn %s\n", add_c));
#endif
break; // Found one
}
}
if ( !res_u ) {
uL(fprintf(uH, "raft: getaddrinfo_cb: no address matched\n"));
_raft_conn_free((uv_handle_t*)&ron_u->wax_u);
free(con_u);
}
uv_freeaddrinfo(add_u);
free(raq_u);
}
/* _raft_conn_all(): ensure that we are connected to each peer.
*/
static void
_raft_conn_all(u3_raft* raf_u, void (*con_f)(u3_rcon* ron_u))
{
u3_rnam* nam_u = raf_u->nam_u;
u3_rcon* ron_u;
while ( nam_u ) {
if ( 0 == nam_u->ron_u || c3n == nam_u->ron_u->liv ) {
struct addrinfo hit_u;
uv_getaddrinfo_t* raq_u = c3_malloc(sizeof(*raq_u));
ron_u = _raft_conn_new(raf_u);
//uL(fprintf(uH, "raft: new conn to %s:%s %p\n",
// nam_u->nam_c, nam_u->por_c, ron_u));
memset(&hit_u, 0, sizeof(hit_u));
hit_u.ai_family = AF_INET;
hit_u.ai_socktype = SOCK_STREAM;
hit_u.ai_protocol = IPPROTO_TCP;
raq_u->data = ron_u;
int ret;
if ( 0 != (ret = uv_getaddrinfo(u3L,
raq_u,
_raft_getaddrinfo_cb,
nam_u->nam_c,
nam_u->por_c,
&hit_u) ))
{
uL(fprintf(uH, "raft: getaddrinfo: %s\n",
uv_strerror(ret)));
uv_close((uv_handle_t*)&ron_u->wax_u, 0);
free(raq_u);
free(ron_u);
c3_assert(0);
}
else {
ron_u->nam_u = nam_u;
nam_u->ron_u = ron_u;
}
con_f(nam_u->ron_u);
}
else {
//uL(fprintf(uH, "raft: existing connection %p for %s\n",
// nam_u->ron_u, nam_u->str_c));
con_f(nam_u->ron_u);
if ( c3y == nam_u->ron_u->liv ) {
_raft_conn_work(nam_u->ron_u);
}
}
nam_u = nam_u->nex_u;
}
}
/* _raft_write_base(): Populate the base fields of a u3_rmsg.
**
** Should not be called directly.
*/
static void
_raft_write_base(u3_rcon* ron_u, u3_rmsg* msg_u)
{
u3_raft* raf_u = ron_u->raf_u;
msg_u->ver_w = u3r_mug('a');
msg_u->tem_w = raf_u->tem_w;
msg_u->len_d = 5;
}
/* _raft_write_rest(): Write fields for an RPC request to msg_u.
**
** Should not be called directly.
*/
static void
_raft_write_rest(u3_rcon* ron_u, c3_d lai_d, c3_w lat_w, u3_rmsg* msg_u)
{
u3_raft* raf_u = ron_u->raf_u;
c3_assert(ron_u->nam_u);
_raft_write_base(ron_u, msg_u);
msg_u->rest.lai_d = lai_d;
msg_u->rest.lat_w = lat_w;
msg_u->rest.nam_w = 1 + strlen(raf_u->str_c) / 4;
msg_u->rest.nam_c = calloc(1, 4 * msg_u->rest.nam_w);
strncpy(msg_u->rest.nam_c, raf_u->str_c, 4 * msg_u->rest.nam_w + 1);
msg_u->len_d += 4 + msg_u->rest.nam_w;
}
/* _raft_write_apen(): Write fields for an AppendEntries request.
*/
static void
_raft_write_apen(u3_rcon* ron_u,
c3_d lai_d, c3_w lat_w,
c3_d cit_d, c3_d ent_d, u3_rent* ent_u,
u3_rmsg* msg_u)
{
_raft_write_rest(ron_u, lai_d, lat_w, msg_u);
msg_u->typ_w = c3__apen;
msg_u->rest.apen.cit_d = cit_d;
msg_u->rest.apen.ent_d = ent_d;
msg_u->len_d += 4;
msg_u->rest.apen.ent_u = ent_u;
{
c3_d i_d;
for ( i_d = 0; i_d < ent_d; i_d++ ) {
msg_u->len_d += 3 + ent_u[i_d].len_w;
}
}
}
/* _raft_write_revo(): Write fields for a RequestVote request.
*/
static void
_raft_write_revo(u3_rcon* ron_u, u3_rmsg* msg_u)
{
u3_raft* raf_u = ron_u->raf_u;
_raft_write_rest(ron_u, raf_u->ent_d, raf_u->lat_w, msg_u);
msg_u->typ_w = c3__revo;
}
/* _raft_send_rasp(): Send a rasp (raft response) to a peer.
*/
static void
_raft_send_rasp(u3_rcon* ron_u, c3_t suc_t)
{
u3_rmsg msg_u;
_raft_write_base(ron_u, &msg_u);
msg_u.typ_w = c3__rasp;
msg_u.rasp.suc_w = suc_t;
msg_u.len_d += 1;
_raft_rmsg_send(ron_u, &msg_u);
}
/* _raft_send_beat(): send a heartbeat (empty AppendEntries) to a peer.
**
** Creates a new request.
*/
static void
_raft_send_beat(u3_rcon* ron_u)
{
u3_rreq* req_u = _raft_rreq_new(ron_u);
u3_rmsg* msg_u = req_u->msg_u;
c3_log_every(50, "raft: beat 50\n");
_raft_write_apen(ron_u, 0, 0, 0, 0, 0, msg_u);
_raft_rmsg_send(ron_u, msg_u);
}
/* _raft_send_revo(): send a RequestVote to a peer.
**
** Creates a new request.
*/
static void
_raft_send_revo(u3_rcon* ron_u)
{
u3_rreq* req_u = _raft_rreq_new(ron_u);
u3_rmsg* msg_u = req_u->msg_u;
_raft_write_revo(ron_u, msg_u);
_raft_rmsg_send(ron_u, msg_u);
}
/* _raft_start_election(): bump term, vote for self, solicit votes from peers.
*/
static void
_raft_start_election(u3_raft* raf_u)
{
c3_i sas_i;
c3_assert(0 == uv_is_active((uv_handle_t*)&raf_u->tim_u));
sas_i = uv_timer_start(&raf_u->tim_u, _raft_time_cb,
_raft_election_rand(), 0);
c3_assert(sas_i == 0);
raf_u->tem_w++;
u3_sist_put("term", (c3_y*)&raf_u->tem_w, sizeof(c3_w));
uL(fprintf(uH, "raft: starting election [tem:%d]\n", raf_u->tem_w));
{
u3_rnam* nam_u;
for ( nam_u = raf_u->nam_u; nam_u; nam_u = nam_u->nex_u ) {
nam_u->vog = c3n;
}
}
raf_u->vot_w = 1;
raf_u->vog_c = raf_u->str_c;
u3_sist_put("vote", (c3_y*)raf_u->vog_c, strlen(raf_u->vog_c));
_raft_conn_all(raf_u, _raft_send_revo);
}
/* _raft_heartbeat(): send a heartbeat to all peers.
*/
static void
_raft_heartbeat(u3_raft* raf_u)
{
_raft_conn_all(raf_u, _raft_send_beat);
}
/* _raft_time_cb(): generic timer callback.
**
** Called on election timeouts for non-leaders, and at heartbeat interval for
** leaders.
*/
static void
_raft_time_cb(uv_timer_t* tim_u)
{
u3_raft* raf_u = tim_u->data;
//uL(fprintf(uH, "raft: time\n"));
switch ( raf_u->typ_e ) {
default: {
uL(fprintf(uH, "raft: time_cb: unknown server state\n"));
c3_assert(0);
}
case u3_raty_foll: {
uL(fprintf(uH, "raft: foll -> cand\n"));
raf_u->typ_e = u3_raty_cand;
// continue to cand
}
case u3_raty_cand: {
_raft_start_election(raf_u);
break;
}
case u3_raty_lead: {
_raft_heartbeat(raf_u);
break;
}
}
}
/* _raft_foll_init(): begin, follower mode.
*/
static void
_raft_foll_init(u3_raft* raf_u)
{
uL(fprintf(uH, "raft: none -> foll\n"));
raf_u->typ_e = u3_raty_foll;
// Initialize and count peers.
{
u3_rnam* nam_u = u3_raft_readopt(u3_Host.ops_u.raf_c,
u3_Host.ops_u.nam_c,
u3_Host.ops_u.rop_s);
if ( 0 == nam_u ) {
uL(fprintf(uH, "raft: couldn't parse arg '%s'\n", u3_Host.ops_u.raf_c));
u3_lo_bail();
}
raf_u->pop_w = 1; raf_u->nam_u = nam_u;
while ( nam_u ) {
raf_u->pop_w++; nam_u = nam_u->nex_u;
}
}
// Set our name.
{
c3_i wri_i, siz_i;
siz_i = strlen(u3_Host.ops_u.nam_c) + strlen(":65536") + 1;
raf_u->str_c = c3_malloc(siz_i);
wri_i = snprintf(raf_u->str_c, siz_i, "%s:%d",
u3_Host.ops_u.nam_c, u3_Host.ops_u.rop_s);
c3_assert(wri_i < siz_i);
}
// Load persisted settings.
{
c3_w tem_w = 0;
c3_c* vog_c = 0;
c3_i ret_i;
if ( (ret_i = u3_sist_has("term")) >= 0 ) {
c3_assert(sizeof(c3_w) == ret_i);
u3_sist_get("term", (c3_y*)&tem_w);
uL(fprintf(uH, "raft: term from sist: %u\n", tem_w));
}
if ( (ret_i = u3_sist_has("vote")) >= 0 ) {
c3_assert(ret_i > 0);
vog_c = c3_malloc(ret_i);
u3_sist_get("vote", (c3_y*)vog_c);
uL(fprintf(uH, "raft: vote from sist: %s\n", vog_c));
}
raf_u->tem_w = tem_w;
if ( vog_c ) {
if ( 0 == strcmp(vog_c, raf_u->str_c) ) {
raf_u->vog_c = raf_u->str_c;
raf_u->vot_w = 1;
raf_u->typ_e = u3_raty_cand;
}
else {
u3_rnam* nam_u;
for ( nam_u = raf_u->nam_u; nam_u; nam_u = nam_u->nex_u ) {
if ( 0 == strcmp(vog_c, nam_u->str_c) ) {
raf_u->vog_c = nam_u->str_c;
break;
}
}
if ( 0 == nam_u ) {
uL(fprintf(uH, "raft: discarding unknown vote %s\n", vog_c));
}
}
free(vog_c);
}
}
// Bind the listener.
{
struct sockaddr_in add_u;
c3_w ret_w;
if (0 != (ret_w = uv_ip4_addr("0.0.0.0", u3_Host.ops_u.rop_s, &add_u ))){
uL(fprintf(uH, "raft: init: %s\n", uv_strerror(ret_w)));
c3_assert(0);
}
if ( 0 != (ret_w = uv_tcp_init(u3L, &raf_u->wax_u)) ) {
uL(fprintf(uH, "raft: init: %s\n", uv_strerror(ret_w)));
c3_assert(0);
}
if ( 0 != (ret_w = uv_tcp_bind(&raf_u->wax_u, (struct sockaddr *) & add_u, 0)) ) {
uL(fprintf(uH, "raft: bind: %s\n", uv_strerror(ret_w)));
c3_assert(0);
}
if ( 0 != (ret_w = uv_listen((uv_stream_t*)&raf_u->wax_u, 16, _raft_listen_cb)) ) {
uL(fprintf(uH, "raft: listen: %s\n", uv_strerror(ret_w)));
c3_assert(0);
}
else {
uL(fprintf(uH, "raft: on TCP %d\n", u3_Host.ops_u.rop_s));
}
}
// Start the initial election timeout.
uv_timer_start(&raf_u->tim_u, _raft_time_cb, _raft_election_rand(), 0);
}
/* _raft_lone_init(): begin, single-instance mode.
*/
static void
_raft_lone_init(u3_raft* raf_u)
{
// uL(fprintf(uH, "raft: single-instance mode\n"));
raf_u->pop_w = 1;
_raft_promote(raf_u);
}
/* u3_raft_init(): start Raft process.
*/
void
u3_raft_init()
{
u3_raft* raf_u = u3Z;
// Initialize timer -- used in both single and multi-instance mode,
// for different things.
uv_timer_init(u3L, &raf_u->tim_u);
raf_u->tim_u.data = raf_u;
if ( 0 == u3_Host.ops_u.raf_c ) {
_raft_lone_init(raf_u);
}
else {
_raft_foll_init(raf_u);
}
}
/* _raft_sure(): apply and save an input ovum and its result.
*/
static void
_raft_sure(u3_noun ovo, u3_noun vir, u3_noun cor)
{
// Whatever worked, save it. (XX - should be concurrent with execute.)
// We'd like more events that don't change the state but need work here.
{
u3r_mug(cor);
u3r_mug(u3A->roc);
if ( c3n == u3r_sing(cor, u3A->roc) ) {
u3A->roe = u3nc(u3nc(vir, ovo), u3A->roe);
u3z(u3A->roc);
u3A->roc = cor;
}
else {
u3z(ovo);
// push a new event into queue
u3A->roe = u3nc(u3nc(vir, u3_nul), u3A->roe);
u3z(cor);
}
}
}
/* _raft_lame(): handle an application failure.
*/
static void
_raft_lame(u3_noun ovo, u3_noun why, u3_noun tan)
{
u3_noun bov, gon;
#if 0
{
c3_c* oik_c = u3r_string(u3h(u3t(ovo)));
// uL(fprintf(uH, "lame: %s\n", oik_c));
free(oik_c);
}
#endif
// Formal error in a network packet generates a hole card.
//
// There should be a separate path for crypto failures,
// to prevent timing attacks, but isn't right now. To deal
// with a crypto failure, just drop the packet.
//
if ( (c3__exit == why) && (c3__hear == u3h(u3t(ovo))) ) {
u3_lo_punt(2, u3kb_flop(u3k(tan)));
bov = u3nc(u3k(u3h(ovo)), u3nc(c3__hole, u3k(u3t(u3t(ovo)))));
u3z(why);
}
else {
bov = u3nc(u3k(u3h(ovo)), u3nt(c3__crud, why, u3k(tan)));
}
// u3_lo_show("data", u3k(u3t(u3t(ovo))));
u3z(ovo);
gon = u3m_soft(0, u3v_poke, u3k(bov));
if ( u3_blip == u3h(gon) ) {
_raft_sure(bov, u3k(u3h(u3t(gon))), u3k(u3t(u3t(gon))));
u3z(tan);
u3z(gon);
}
else {
u3z(gon);
{
u3_noun vab = u3nc(u3k(u3h(bov)),
u3nc(c3__warn, u3i_tape("crude crash!")));
u3_noun nog = u3m_soft(0, u3v_poke, u3k(vab));
if ( u3_blip == u3h(nog) ) {
_raft_sure(vab, u3k(u3h(u3t(nog))), u3k(u3t(u3t(nog))));
u3z(tan);
u3z(nog);
}
else {
u3z(nog);
u3z(vab);
uL(fprintf(uH, "crude: all delivery failed!\n"));
u3_lo_punt(2, u3kb_flop(u3k(tan)));
uL(fprintf(uH, "crude: punted\n"));
// c3_assert(!"crud");
}
}
}
}
/* _raft_punk(): insert and apply an input ovum (unprotected).
*/
static void
_raft_punk(u3_noun ovo)
{
#ifdef GHETTO
c3_c* txt_c = u3r_string(u3h(u3t(ovo)));
#endif
c3_w sec_w;
// static c3_w num_w;
u3_noun gon;
// uL(fprintf(uH, "punk: %s: %d\n", u3r_string(u3h(u3t(ovo))), num_w++));
// XX this is wrong - the timer should be on the original hose.
//
if (c3__term == u3h(u3t(u3h(ovo)))) {
sec_w = 0;
} else sec_w = 600;
#ifdef GHETTO
struct timeval b4, f2, d0;
gettimeofday(&b4, 0);
if( c3__belt != u3h(u3t(ovo)) ){
uL(fprintf(uH, "%%soft %s\n", txt_c));
}
#endif
gon = u3m_soft(sec_w, u3v_poke, u3k(ovo));
#ifdef GHETTO
c3_w ms_w;
c3_w clr_w;
gettimeofday(&f2, 0);
timersub(&f2, &b4, &d0);
ms_w = (d0.tv_sec * 1000) + (d0.tv_usec / 1000);
clr_w = ms_w > 1000 ? 1 : ms_w < 100 ? 2 : 3; // red, green, yellow
if(c3__belt != u3h(u3t(ovo)) || clr_w != 2){
uL(fprintf(uH, "\x1b[3%dm%%punk %s %4d.%02dms\x1b[0m\n",
clr_w, txt_c, ms_w, (int) (d0.tv_usec % 1000) / 10));
}
free(txt_c);
#endif
if ( u3_blip != u3h(gon) ) {
u3_noun why = u3k(u3h(gon));
u3_noun tan = u3k(u3t(gon));
u3z(gon);
_raft_lame(ovo, why, tan);
}
else {
u3_noun vir = u3k(u3h(u3t(gon)));
u3_noun cor = u3k(u3t(u3t(gon)));
u3_noun nug;
u3z(gon);
nug = u3v_nick(vir, cor);
if ( u3_blip != u3h(nug) ) {
u3_noun why = u3k(u3h(nug));
u3_noun tan = u3k(u3t(nug));
u3z(nug);
_raft_lame(ovo, why, tan);
}
else {
vir = u3k(u3h(u3t(nug)));
cor = u3k(u3t(u3t(nug)));
u3z(nug);
_raft_sure(ovo, vir, cor);
}
}
// uL(fprintf(uH, "punk oot %s\n", txt_c));
// free(txt_c);
}
static void
_raft_comm(c3_d bid_d)
{
u3p(u3v_cart) egg_p;
u3_lo_open();
egg_p = u3A->ova.egg_p;
while ( egg_p ) {
u3v_cart* egg_u = u3to(u3v_cart, egg_p);
if ( egg_u->ent_d <= bid_d ) {
egg_u->cit = c3y;
} else break;
egg_p = egg_u->nex_p;
}
u3_lo_shut(c3y);
}
static void
_raft_comm_cb(uv_timer_t* tim_u)
{
u3_raft* raf_u = tim_u->data;
_raft_comm(raf_u->ent_d);
}
static c3_d
_raft_push(u3_raft* raf_u, c3_w* bob_w, c3_w len_w)
{
c3_assert(raf_u->typ_e == u3_raty_lead);
c3_assert(0 != bob_w && 0 < len_w);
if ( 1 == raf_u->pop_w ) {
c3_assert(u3_raty_lead == raf_u->typ_e);
raf_u->ent_d = u3_sist_pack(raf_u->tem_w, c3__ov, bob_w, len_w);
raf_u->lat_w = raf_u->tem_w; // XX
if ( !uv_is_active((uv_handle_t*)&raf_u->tim_u) ) {
uv_timer_start(&raf_u->tim_u, _raft_comm_cb, 0, 0);
}
return raf_u->ent_d;
}
else {
// TODO
uL(fprintf(uH, "raft: multi-instance push\n"));
c3_assert(0);
}
}
/* _raft_kick_all(): kick a list of events, transferring.
*/
static void
_raft_kick_all(u3_noun vir)
{
while ( u3_nul != vir ) {
u3_noun ovo = u3k(u3h(vir));
u3_noun nex = u3k(u3t(vir));
u3z(vir); vir = nex;
u3_reck_kick(ovo);
}
}
/* _raft_spac(): print n spaces.
*/
void _raft_spac(c3_w n)
{
for (; n > 0; n--)
(fprintf(stderr," "));
}
/* _raft_print_memory: print memory amount. cf u3a_print_memory().
*/
void
_raft_print_memory(c3_w wor_w)
{
c3_w byt_w = (wor_w * 4);
c3_w gib_w = (byt_w / 1000000000);
c3_w mib_w = (byt_w % 1000000000) / 1000000;
c3_w kib_w = (byt_w % 1000000) / 1000;
c3_w bib_w = (byt_w % 1000);
if ( gib_w ) {
(fprintf(stderr, "GB/%d.%03d.%03d.%03d\r\n",
gib_w, mib_w, kib_w, bib_w));
}
else if ( mib_w ) {
(fprintf(stderr, "MB/%d.%03d.%03d\r\n", mib_w, kib_w, bib_w));
}
else if ( kib_w ) {
(fprintf(stderr, "KB/%d.%03d\r\n", kib_w, bib_w));
}
else {
(fprintf(stderr, "B/%d\r\n", bib_w));
}
}
#if 0
/* _raft_prof_noun(): get memory usage, in words, of noun. RETAIN.
*/
c3_w
_raft_prof_noun(u3p(u3h_root) hax, u3_noun non, c3_t dud)
{
return 0;
/*
u3_weak got = u3h_git(hax, dud ? non & 0x7fffffff : non);
if (u3_none != got) {
return 1;
}
else {
c3_w res;
if (!(non & 0x80000000)) {
res = 1;
}
if (_(u3ud(non))) {
res = 3 + 3 + u3r_met(5, non);
}
else {
res = 3 + 2
+ _raft_prof_noun(hax, u3h(non), dud)
+ _raft_prof_noun(hax, u3t(non), dud);
}
u3h_put(hax, dud ? non & 0x7fffffff : non, res);
return res;
}
*/
}
#endif
/* _raft_prof(): print memory profile. RETAIN.
*/
c3_w
_raft_prof(u3p(u3h_root) hax, c3_w den, u3_noun mas)
{
c3_w tot_w = 0;
u3_noun h_mas, t_mas;
if ( c3n == u3r_cell(mas, &h_mas, &t_mas) ) {
_raft_spac(den);
(fprintf(stderr, "mistyped mass\r\n"));
return tot_w;
}
else if ( _(u3du(h_mas)) ) {
_raft_spac(den);
(fprintf(stderr, "mistyped mass head\r\n"));
u3m_p("h_mas", h_mas);
return tot_w;
}
else {
_raft_spac(den);
c3_c* lab_c = u3m_pretty(h_mas);
(fprintf(stderr, "%s: ", lab_c));
free(lab_c);
u3_noun it_mas, tt_mas;
if ( c3n == u3r_cell(t_mas, &it_mas, &tt_mas) ) {
(fprintf(stderr, "mistyped mass tail\r\n"));
return tot_w;
}
else if ( c3y == it_mas ) {
tot_w += u3a_mark_noun(tt_mas);
_raft_print_memory(tot_w);
#if 1
/* The basic issue here is that tt_mas is included in
* u3A->sac, so they can't both be roots in the normal
* sense. When we mark u3A->sac later on, we want tt_mas
* to appear unmarked, but its children should be already
* marked.
*/
if ( _(u3a_is_dog(tt_mas)) ) {
u3a_box* box_u = u3a_botox(u3a_to_ptr(tt_mas));
#ifdef U3_MEMORY_DEBUG
if ( 1 == box_u->eus_w ) {
box_u->eus_w = 0xffffffff;
}
else {
box_u->eus_w -= 1;
}
#else
if ( -1 == (c3_w)box_u->use_w ) {
box_u->use_w = 0x80000000;
}
else {
box_u->use_w += 1;
}
#endif
}
#endif
return tot_w;
}
else if ( c3n == it_mas ) {
(fprintf(stderr, "\r\n"));
while ( _(u3du(tt_mas)) ) {
tot_w += _raft_prof(hax, den+2, u3h(tt_mas));
tt_mas = u3t(tt_mas);
}
_raft_spac(den);
(fprintf(stderr, "--"));
_raft_print_memory(tot_w);
return tot_w;
}
else {
_raft_spac(den);
(fprintf(stderr, "mistyped (strange) mass tail\r\n"));
return tot_w;
}
}
}
/* _raft_grab(): garbage collect, checking for profiling. RETAIN.
*/
static void
_raft_grab(u3_noun ova)
{
if ( u3_nul != u3A->sac ) {
c3_w usr_w = 0, ova_w = 0, sac_w = 0, utv_w = 0, utm_w = 0, wep_w = 0,
har_w = 0, das_w = 0, gul_w = 0, tax_w = 0, mer_w = 0, don_w = 0,
day_w = 0, car_w = 0;
c3_assert( u3R == &(u3H->rod_u) );
fprintf(stderr, "\r\n");
usr_w = _raft_prof(u3_nul, 0, u3A->sac);
fprintf(stderr, "total userspace: ");
_raft_print_memory(usr_w);
ova_w = u3a_mark_noun(ova);
fprintf(stderr, "effects list: ");
_raft_print_memory(ova_w);
sac_w = u3a_mark_noun(u3A->sac);
fprintf(stderr, "space profile: ");
_raft_print_memory(sac_w);
utv_w = u3v_mark();
fprintf(stderr, "arvo stuff: ");
_raft_print_memory(utv_w);
har_w = u3h_mark(u3R->jed.war_p);
fprintf(stderr, " warm jet state: ");
_raft_print_memory(har_w);
das_w = u3h_mark(u3R->jed.cod_p);
fprintf(stderr, " cold jet state: ");
_raft_print_memory(das_w);
gul_w = u3a_mark_noun(u3R->ski.gul);
fprintf(stderr, " namespace: ");
_raft_print_memory(gul_w);
tax_w = u3a_mark_noun(u3R->bug.tax);
fprintf(stderr, " trace stack list: ");
_raft_print_memory(tax_w);
mer_w = u3a_mark_noun(u3R->bug.mer);
fprintf(stderr, " trace stack buffer: ");
_raft_print_memory(mer_w);
don_w = u3a_mark_noun(u3R->pro.don);
fprintf(stderr, " profile battery list: ");
_raft_print_memory(don_w);
day_w = u3a_mark_noun(u3R->pro.day);
fprintf(stderr, " profile doss: ");
_raft_print_memory(day_w);
car_w = u3h_mark(u3R->cax.har_p);
fprintf(stderr, " memoization: ");
_raft_print_memory(car_w);
utm_w = har_w + das_w + gul_w + tax_w + mer_w + don_w + day_w + car_w;
fprintf(stderr, "total road stuff: ");
_raft_print_memory(utm_w);
fprintf(stderr, "total marked: ");
_raft_print_memory(usr_w + ova_w + sac_w + utv_w + utm_w);
wep_w = u3a_sweep();
fprintf(stderr, "sweep: ");
_raft_print_memory(wep_w);
u3h_free(u3R->cax.har_p);
u3R->cax.har_p = u3h_new();
u3z(u3A->sac);
u3A->sac = u3_nul;
}
}
int FOO;
/* u3_raft_work(): work.
*/
void
u3_raft_work(void)
{
if ( u3Z->typ_e != u3_raty_lead ) {
c3_assert(u3A->ova.egg_p == 0);
if ( u3_nul != u3A->roe ) {
uL(fprintf(uH, "raft: dropping roe!!\n"));
u3z(u3A->roe);
u3A->roe = u3_nul;
}
}
else {
u3_noun ova;
u3_noun vir;
u3_noun nex;
// Delete finished events.
//
while ( u3A->ova.egg_p ) {
u3p(u3v_cart) egg_p = u3A->ova.egg_p;
u3v_cart* egg_u = u3to(u3v_cart, u3A->ova.egg_p);
if ( c3y == egg_u->did ) {
vir = egg_u->vir;
if ( egg_p == u3A->ova.geg_p ) {
c3_assert(egg_u->nex_p == 0);
u3A->ova.geg_p = u3A->ova.egg_p = 0;
}
else {
c3_assert(egg_u->nex_p != 0);
u3A->ova.egg_p = egg_u->nex_p;
}
egg_u->cit = c3y;
u3a_free(egg_u);
}
else break;
}
// Poke pending events, leaving the poked events and errors on u3A->roe.
//
{
if ( 0 == u3Z->lug_u.len_d ) {
return;
}
ova = u3kb_flop(u3A->roe);
u3A->roe = u3_nul;
u3_noun hed = (u3_nul == ova) ? u3_nul : u3h(ova);
if ( u3_nul != hed ) {
u3_term_ef_blit(0, u3nc(u3nc(c3__bee, u3k(hed)), u3_nul));
}
while ( u3_nul != ova ) {
_raft_punk(u3k(u3t(u3h(ova))));
c3_assert(u3_nul == u3h(u3h(ova)));
nex = u3k(u3t(ova));
u3z(ova); ova = nex;
}
if ( u3_nul != hed ) {
u3_term_ef_blit(0, u3nc(u3nc(c3__bee, u3_nul), u3_nul));
}
}
// Cartify, jam, and encrypt this batch of events. Take a number, Raft will
// be with you shortly.
{
c3_d bid_d;
c3_w len_w;
c3_w* bob_w;
u3_noun ron;
u3_noun ovo;
ova = u3kb_flop(u3A->roe);
u3A->roe = u3_nul;
while ( u3_nul != ova ) {
ovo = u3k(u3t(u3h(ova)));
vir = u3k(u3h(u3h(ova)));
nex = u3k(u3t(ova));
u3z(ova); ova = nex;
if ( u3_nul != ovo ) {
u3v_cart* egg_u = u3a_malloc(sizeof(*egg_u));
u3p(u3v_cart) egg_p = u3of(u3v_cart, egg_u);
egg_u->nex_p = 0;
egg_u->cit = c3n;
egg_u->did = c3n;
egg_u->vir = vir;
ron = u3ke_jam(u3nc(u3k(u3A->now), ovo));
c3_assert(u3A->key);
// don't encrypt for the moment, bootstrapping
// ron = u3dc("en:crua", u3k(u3A->key), ron);
len_w = u3r_met(5, ron);
bob_w = c3_malloc(len_w * 4L);
u3r_words(0, len_w, bob_w, ron);
u3z(ron);
bid_d = _raft_push(u3Z, bob_w, len_w);
egg_u->ent_d = bid_d;
if ( 0 == u3A->ova.geg_p ) {
c3_assert(0 == u3A->ova.egg_p);
u3A->ova.geg_p = u3A->ova.egg_p = egg_p;
}
else {
c3_assert(0 == u3to(u3v_cart, u3A->ova.geg_p)->nex_p);
u3to(u3v_cart, u3A->ova.geg_p)->nex_p = egg_p;
u3A->ova.geg_p = egg_p;
}
_raft_kick_all(vir);
egg_u->did = c3y;
egg_u->vir = 0;
_raft_grab(ova);
}
}
}
}
}