shrub/pkg/arvo/app/roller.hoon

1214 lines
34 KiB
Plaintext

:: roller: Azimuth L2 roll aggregator
::
:: general flow is as described below, to ensure transactions actually go
:: through once we start sending it out, in the dumbest reasonable way.
::
:: periodic timer fires:
:: if there are no pending l2 txs, do nothing.
:: else kick off tx submission flow:
:: "freeze" pending txs, store alongside nonce, then increment nonce,
:: kick off thread for sending the corresponding l1 tx:
:: if nonce doesn't match on-chain expected nonce, bail.
:: if we can't afford the tx fee, bail.
:: construct, sign, submit the l1 tx.
:: if thread bailed, retry in five minutes.
:: if thread succeeded, retry in five minutes with higher gas price.
:: when retrying, only do so if l2 txs remain in the "frozen" txs group.
:: on %tx diff from naive, remove the matching tx from the frozen group.
::
::TODO questions:
:: - it's a bit weird how we just assume the raw and tx in raw-tx to match...
::
/- *dice
/+ azimuth,
naive,
dice,
lib=naive-transactions,
default-agent,
ethereum,
dbug,
verb
::
|%
+$ state-0
$: %0
:: pending: the next l2 txs to be sent
:: sending: l2 txs awaiting l2 confirmation, ordered by nonce
:: finding: raw-tx-hash reverse lookup for sending map
:: history: status of l2 txs by ethereum address
:: next-nonce: next l1 nonce to use
:: next-batch: when then next l2 batch will be sent
:: pre: predicted l2 state
:: own: ownership of azimuth points
:: derive: flag (derive predicted/ownership state)
::
pending=(list pend-tx)
sending=(tree [l1-tx-pointer send-tx])
::
$= finding
%+ map [=keccak nonce=(unit @ud)]
:: TODO: txs=(list l2-status) ?
[seen=@ud txs=(map @ud l2-status)]
::
history=(jug address:ethereum roll-tx)
next-nonce=(unit @ud)
next-batch=time
pre=^state:naive
own=owners
derive=?
::
:: pk: private key to send the roll
:: frequency: time to wait between sending batches (TODO fancier)
:: endpoint: ethereum rpc endpoint to use
:: contract: ethereum contract address
:: chain-id: mainnet, ropsten, local (https://chainid.network/)
::
pk=@
frequency=@dr
endpoint=(unit @t)
contract=@ux
chain-id=@
==
::
++ orm ((ordered-map l1-tx-pointer send-tx) nonce-order:dice)
+$ ini [nas=^state:naive own=owners]
+$ net ?(%mainnet %ropsten %local)
::
+$ l2-status
?(%confirmed %failed [=time =address:ethereum])
::
+$ config
$% [%frequency frequency=@dr]
[%setkey pk=@]
[%endpoint endpoint=@t =net]
==
::
+$ action
$% :: we need to include the address in submit so pending txs show up
:: in the tx history, but because users can send the wrong
:: address, in +apply-tx:predicted state, we just replace
:: the provided address, with the one used when the message was signed;
::
:: we need to do it there to know the correct nonce that the signed
:: message should have included.
::
[%submit force=? =address:naive sig=@ tx=part-tx]
[%cancel sig=@ keccak=@ =l2-tx =ship]
[%commit ~] ::TODO maybe pk=(unit @) later
[%config config]
==
::
+$ card card:agent:gall
::
:: TODO: add to config
::
++ resend-time ~m5
::
++ lverb &
--
::
=| state-0
=* state -
::
%- agent:dbug
%+ verb |
^- agent:gall
::
=<
|_ =bowl:gall
+* this .
do ~(. +> bowl)
def ~(. (default-agent this %|) bowl)
::
++ on-init
^- (quip card _this)
=. frequency ~h1
=. contract naive:local-contracts:azimuth
=. chain-id chain-id:local-contracts:azimuth
=^ card next-batch set-timer
:_ this
:~ card
[%pass /azimuth-events %agent [our.bowl %azimuth] %watch /event]
==
::
++ on-save !>(state)
++ on-load
|= old=vase
^- (quip card _this)
[~ this(state !<(state-0 old))]
::
++ on-poke
|= [=mark =vase]
^- (quip card _this)
=^ cards state
?+ mark (on-poke:def mark vase)
%roller-action
=+ !<(poke=action vase)
(on-action:do poke)
==
[cards this]
:: +on-peek: scry paths
::
:: /x/pending -> %noun (list pend-tx)
:: /x/pending/[~ship] -> %noun (list pend-tx)
:: /x/pending/[0xadd.ress] -> %noun (list pend-tx)
:: /x/tx/[0xke.ccak]/status -> %noun tx-status
:: /x/history/[0xadd.ress] -> %noun (list roll-tx)
:: /x/nonce/[~ship]/[proxy] -> %noun (unit @)
:: /x/spawned/[~star] -> %noun (list ship)
:: /x/unspawned/[~star] -> %noun (list ship)
:: /x/next-batch -> %atom time
:: /x/point/[~ship] -> %noun point:naive
:: /x/ships/[0xadd.ress] -> %noun (list ship)
:: /x/config -> %noun config
:: /x/chain-id -> %atom @
:: /x/owned -> %noun (list ship)
:: /x/transfers -> %noun (list ship)
:: /x/manager -> %noun (list ship)
:: /x/voting -> %noun (list ship)
:: /x/spawning -> %noun (list ship)
:: /x/predicted -> %noun state:naive
::
++ on-peek
|= =path
^- (unit (unit cage))
|^
?+ path ~
[%x %pending ~] ``noun+!>(pending)
[%x %pending @ ~] (pending-by i.t.t.path)
:: TODO: implement this
:: [%x %tx @ %status ~] (status i.t.t.path)
[%x %pending-tx @ ~] (transaction i.t.t.path)
[%x %history @ ~] (history i.t.t.path)
[%x %nonce @ @ ~] (nonce i.t.t.path i.t.t.t.path)
[%x %spawned @ ~] (spawned i.t.t.path)
[%x %unspawned @ ~] (unspawned i.t.t.path)
[%x %next-batch ~] ``atom+!>(next-batch)
[%x %point @ ~] (point i.t.t.path)
[%x %ships @ ~] (ships i.t.t.path)
[%x %config ~] config
[%x %chain-id ~] ``atom+!>(chain-id)
[%x %owned @ ~] (points-proxy %own i.t.t.path)
[%x %transfers @ ~] (points-proxy %transfer i.t.t.path)
[%x %manager @ ~] (points-proxy %manage i.t.t.path)
[%x %voting @ ~] (points-proxy %vote i.t.t.path)
[%x %spawning @ ~] (points-proxy %spawn i.t.t.path)
[%x %predicted ~] ``noun+!>(pre)
==
::
++ pending-by
|= wat=@t
?~ who=(slaw %p wat)
:: by-address
::
?~ wer=(slaw %ux wat)
[~ ~]
=; pending=(list pend-tx)
``noun+!>(pending)
%+ skim pending
|= pend-tx
:: TODO: use this instead? =(u.wer address)
::
?~ addr=(get-l1-address tx.raw-tx pre) |
=(u.wer u.addr)
:: by-ship
::
=; pending=(list pend-tx)
``noun+!>(pending)
%+ skim pending
|= pend-tx
=(u.who ship.from.tx.raw-tx)
::
:: ++ status
:: |= wat=@t
:: ?~ keccak=(slaw %ux wat)
:: [~ ~]
:: :+ ~ ~
:: :- %noun
:: !> ^- tx-status
:: ?^ status=(~(get by finding) u.keccak)
:: ?@ u.status [u.status ~]
:: [%sending `+.u.status]
:: :: TODO: potentially slow!
:: :: TODO: use ~(get by history) instead
:: =; known=?
:: [?:(known %pending %unknown) ~]
:: %+ lien pending
:: |= pend-tx
:: =(u.keccak (hash-tx:lib raw.raw-tx))
::
++ transaction
|= wat=@t
?~ keccak=(slaw %ux wat)
[~ ~]
:+ ~ ~
:- %noun
!> ^- (unit pend-tx)
:: TODO: potentially slow!
|-
?~ pending ~
=* tx i.pending
?: =(u.keccak (hash-tx:lib raw.raw-tx.tx))
`tx
$(pending t.pending)
::
++ history
|= wat=@t
:+ ~ ~
:- %noun
!> ^- (list roll-tx)
?~ addr=(slaw %ux wat) ~
%~ tap in
(~(get ju ^history) u.addr)
::
++ nonce
|= [who=@t proxy=@t]
?~ who=(slaw %p who)
[~ ~]
?. ?=(proxy:naive proxy)
[~ ~]
:+ ~ ~
:- %noun
!> ^- (unit @)
?~ point=(get:orm:naive points.pre u.who)
~
=/ nonce=@
=< nonce
(proxy-from-point:naive proxy u.point)
%- some
%+ roll pending
|= [pend-tx nonce=_nonce]
?:(=([u.who proxy] from.tx.raw-tx) +(nonce) nonce)
::
++ spawned
|= wat=@t
:+ ~ ~
:- %noun
!> ^- (list @p)
?~ star=(slaw %p wat) ~
=; range
(turn range head)
=, orm:naive
:: range exclusive [star first-moon-last-planet]
::
%- tap
(lot points.pre [`u.star `(cat 3 u.star 0x1.ffff)])
::
++ unspawned
|= wat=@t
:+ ~ ~
:- %noun
!> ^- (list @p)
?~ star=(slaw %p wat) ~
=/ spawned=(set @p)
=; points
(~(gas in *(set @p)) (turn points head))
=, orm:naive
%- tap
(lot points.pre [`u.star `(cat 3 u.star 0x1.ffff)])
=/ children=(list @p)
(turn (gulf 0x1 0xffff) |=(a=@ (cat 3 u.star a)))
%+ murn children
|= =ship
?: (~(has in spawned) ship) ~
`ship
::
++ point
|= wat=@t
?~ ship=(rush wat ;~(pfix sig fed:ag))
``noun+!>(*(unit point:naive))
``noun+!>((get:orm:naive points.pre u.ship))
::
++ ships
|= wat=@t
:+ ~ ~
:- %noun
!> ^- (list ship)
?~ addr=(slaw %ux wat)
~
=/ proxies=(list proxy:naive)
~[%own %spawn %manage %vote %transfer]
%+ roll proxies
|= [=proxy:naive ships=(list ship)]
%+ weld ships
~(tap in (~(get ju own) [proxy u.addr]))
::
++ config
:+ ~ ~
:- %noun
!> ^- roller-config
:* next-batch
frequency
resend-time
contract
chain-id
==
::
++ points-proxy
|= [=proxy:naive wat=@t]
:+ ~ ~
:- %noun
!> ^- (list ship)
?~ addr=(slaw %ux wat)
~
~(tap in (~(get ju own) [proxy u.addr]))
--
::
++ on-arvo
|= [=wire =sign-arvo]
^- (quip card _this)
?+ wire (on-arvo:def wire sign-arvo)
[%timer ~]
?+ +<.sign-arvo (on-arvo:def wire sign-arvo)
%wake =^(cards state on-timer:do [cards this])
==
::
[%predict ~]
?+ +<.sign-arvo (on-arvo:def wire sign-arvo)
%wake
=. own.state canonical-owners:do
=^ effects state
(predicted-state canonical-state):do
[(emit effects) this(derive &)]
==
::
[%resend @ @ ~]
=/ [address=@ux nonce=@ud]
[(slav %ux i.t.wire) (rash i.t.t.wire dem)]
?+ +<.sign-arvo (on-arvo:def wire sign-arvo)
%wake [(send-roll:do address nonce) this]
==
==
::
++ on-fail
|= [=term =tang]
::TODO if crashed during timer, set new timer? how to detect?
(on-fail:def term tang)
::
++ on-watch
|= =path
^- (quip card _this)
:_ this
|^
?+ path (on-watch:def path)
[%txs @ ~] [%give %fact ~ (give-txs i.t.path)]~
[%points @ ~] [%give %fact ~ (give-points i.t.path)]~
==
::
++ give-points
|= wat=@t
^- cage
:- %points
!> ^- (list [ship point:naive])
?~ addr=(slaw %ux wat) ~
:: %+ roll
:: ~(tap in (~(get ju own) u.addr))
=/ proxies=(list proxy:naive)
~[%own %spawn %manage %vote %transfer]
%+ roll proxies
|= [=proxy:naive points=(list [ship point:naive])]
%+ weld points
::
%+ roll ~(tap in (~(get ju own) [proxy u.addr]))
|= [=ship points=_points]
%+ snoc points
[ship (need (get:orm:naive points.pre ship))]
::
++ give-txs
|= wat=@t
^- cage
:- %txs
!> ^- (list roll-tx)
?~ addr=(slaw %ux wat) ~
%~ tap in
(~(get ju history) u.addr)
--
::
++ on-leave on-leave:def
++ on-agent
|= [=wire =sign:agent:gall]
^- (quip card _this)
|^
?+ wire (on-agent:def wire sign)
[%send @ @ *] (send-batch i.t.wire i.t.t.wire sign)
[%azimuth-events ~] (azimuth-event sign)
[%nonce ~] (nonce sign)
[%refresh-nonce @ ~] (refresh i.t.wire sign)
==
::
++ send-batch
|= [address=@t nonce=@t =sign:agent:gall]
^- (quip card _this)
=/ [address=@ux nonce=@ud]
[(slav %ux address) (rash nonce dem)]
?- -.sign
%poke-ack
?~ p.sign
%- (slog leaf+"Send batch thread started successfully" ~)
[~ this]
%- (slog leaf+"{(trip dap.bowl)} couldn't start thread" u.p.sign)
:_ this
[(leave:spider:do wire)]~
::
%watch-ack
?~ p.sign
[~ this]
=/ =tank leaf+"{(trip dap.bowl)} couldn't start listen to thread"
%- (slog tank u.p.sign)
[~ this]
::
%kick
[~ this]
::
%fact
?+ p.cage.sign (on-agent:def wire sign)
%thread-fail
=+ !<([=term =tang] q.cage.sign)
%- (slog leaf+"{(trip dap.bowl)} failed" leaf+<term> tang)
=^ cards state
(on-batch-result:do address nonce %.n^[%error 'thread failed'])
[cards this]
::
%thread-done
=+ !<(result=(each @ud [term @t]) q.cage.sign)
=^ cards state
(on-batch-result:do address nonce result)
[cards this]
==
==
::
++ azimuth-event
|= =sign:agent:gall
^- (quip card _this)
?+ -.sign [~ this]
%watch-ack
?~ p.sign [~ this]
=/ =tank leaf+"{(trip dap.bowl)} couldn't start listen to %azimuth"
%- (slog tank u.p.sign)
[~ this]
::
%fact
?+ p.cage.sign (on-agent:def wire sign)
%naive-diffs
=+ !<(=diff:naive q.cage.sign)
=^ cards state
(on-naive-diff:do diff)
[cards this]
::
%naive-state
~& > %received-azimuth-state
:: cache naive and ownership state
::
=^ nas own.state !<(ini q.cage.sign)
=^ effects state
(predicted-state:do nas)
[(emit effects) this]
==
==
::
++ nonce
|= =sign:agent:gall
^- (quip card _this)
?- -.sign
%poke-ack
?~ p.sign
%- (slog leaf+"Nonce thread started successfully" ~)
[~ this]
%- (slog leaf+"{(trip dap.bowl)} couldn't start thread" u.p.sign)
:_ this
[(leave:spider:do wire)]~
::
%watch-ack
?~ p.sign
[~ this]
=/ =tank leaf+"{(trip dap.bowl)} couldn't start listen to thread"
%- (slog tank u.p.sign)
[~ this]
::
%kick
[~ this]
::
%fact
?+ p.cage.sign (on-agent:def wire sign)
%thread-fail
=+ !<([=term =tang] q.cage.sign)
%- (slog leaf+"{(trip dap.bowl)} failed" leaf+<term> tang)
[~ this]
::
%thread-done
=+ !<(nonce=@ud q.cage.sign)
[~ this(next-nonce `nonce)]
==
==
::
++ refresh
|= [nonce=@t =sign:agent:gall]
^- (quip card _this)
=/ old-nonce=@ud (rash nonce dem)
?- -.sign
%poke-ack
?~ p.sign
%- (slog leaf+"Refresh Nonce thread started successfully" ~)
[~ this]
%- (slog leaf+"{(trip dap.bowl)} couldn't start thread" u.p.sign)
:_ this
[(leave:spider:do wire)]~
::
%watch-ack
?~ p.sign
[~ this]
=/ =tank leaf+"{(trip dap.bowl)} couldn't start listen to thread"
%- (slog tank u.p.sign)
[~ this]
::
%kick
[~ this]
::
%fact
?+ p.cage.sign (on-agent:def wire sign)
%thread-fail
=+ !<([=term =tang] q.cage.sign)
%- (slog leaf+"{(trip dap.bowl)} failed" leaf+<term> tang)
[~ this]
::
%thread-done
=+ !<(nonce=@ud q.cage.sign)
:: we only care about nonces >= than the one we received
::
=/ sorted
%- tap:orm
:: (range exclusive)
::
(lot:orm sending [`[get-address:do (dec old-nonce)] ~])
~& sort-lent+(lent sorted)
=/ confirmed-sending=_sending
(lot:orm sending [~ `[get-address:do old-nonce]])
=/ [nes=_sending nif=_finding]
=< [sending finding]
%+ roll sorted
|= $: [p=l1-tx-pointer q=send-tx]
new-nonce=_nonce
sending=_confirmed-sending
finding=_finding
==
|^
=* nonce nonce.p
=* txs txs.q
:: TODO: this shouldn't be needed
?: (lth nonce.p old-nonce)
~& ["weird case" nonce+nonce.p]
[new-nonce sending finding]
:+ +(new-nonce)
update-sending
update-finding
::
++ update-sending
(put:orm sending [p(nonce new-nonce) q(sent %.n)])
::
++ update-finding
%+ roll txs.q
|= [=raw-tx:naive finding=_finding]
=/ hash=keccak
(hash-raw-tx:lib raw-tx)
=/ old-key=[keccak (unit @ud)]
[hash `nonce.p]
=/ new-key=[keccak (unit @ud)]
[hash `new-nonce]
?~ val=(~(get by finding) old-key)
finding
?~ txs.u.val
~? lverb [dap.bowl %empty-finding-tx]
finding
%. [new-key u.val]
~(put by (~(del by finding) old-key))
--
::
=: sending nes
finding nif
next-nonce `+(nonce)
==
[(send-roll get-address nonce) this]
==
==
--
--
::
|_ =bowl:gall
::TODO /lib/sys.hoon?
++ sys
|%
++ b
|%
++ wait
|= [=wire =time]
^- card
[%pass wire %arvo %b %wait time]
--
--
::TODO /lib/spider.hoon?
++ spider
|%
++ start-thread
|= [=wire thread=term arg=vase]
^- (list card)
=/ tid=@ta (rap 3 thread '--' (scot %uv eny.bowl) ~)
=/ args [~ `tid thread arg]
:~ [%pass wire %agent [our.bowl %spider] %watch /thread-result/[tid]]
[%pass wire %agent [our.bowl %spider] %poke %spider-start !>(args)]
==
::
++ leave
|= =path
^- card
[%pass path %agent [our.bowl %spider] %leave ~]
--
::
::
++ emit
|= updates=(list update)
|- ^- (list card)
?~ updates ~
=* up i.updates
=/ [address=@t last-owner=(unit @t)]
?- -.up
%tx
:_ ~
(scot %ux address.up)
::
%point
:- (scot %ux address.new.up)
?~(old.up ~ `(scot %ux address.u.old.up))
==
%+ weld
$(updates t.updates)
^- (list card)
?- -.i.updates
%tx
[%give %fact ~[/txs/[address]] tx+!>(roll-tx.up)]~
::
%point
%+ weld
[%give %fact ~[/points/[address]] point+!>([ship point]:up)]~
?~ last-owner ~
[%give %fact ~[/points/[u.last-owner]] point+!>([ship point]:up)]~
==
::
++ part-tx-to-full
|= =part-tx
^- [octs tx:naive]
?- -.part-tx
%raw
?~ batch=(parse-raw-tx:naive 0 q.raw.part-tx)
~? lverb [dap.bowl %parse-failed]
:: TODO: maybe return a unit if parsing fails?
::
!!
[raw tx]:-.u.batch
::
%don [(gen-tx-octs:lib +.part-tx) +.part-tx]
%ful +.part-tx
==
:: +canonical-state: current l2 state from /app/azimuth
::
++ canonical-state
.^ ^state:naive
%gx
(scot %p our.bowl)
%azimuth
(scot %da now.bowl)
/nas/noun
==
:: +canonical-owners: current azimuth point ownership
::
++ canonical-owners
.^ owners
%gx
(scot %p our.bowl)
%azimuth
(scot %da now.bowl)
/own/noun
==
:: +predicted-state
::
:: derives predicted state from applying pending/sending txs to
:: the canonical state, discarding invalid txs in the process.
::
++ predicted-state
|= nas=^state:naive
^- (quip update _state)
=. pre.state nas
=. own.state canonical-owners
|^
=^ [nes=_sending updates-1=(list update)] state
apply-sending
=^ [nep=_pending updates-2=(list update)] state
apply-pending
:- (welp updates-1 updates-2)
state(sending nes, pending nep)
::
++ apply-pending
(apply-txs pending %pending next-nonce.state)
::
++ apply-sending
=| ups=(list update)
=/ valid=_sending ~
=+ sorted=(tap:orm sending)
|- ^+ [[valid ups] state]
?~ sorted [[valid ups] state]
::
=* key key.i.sorted
=* val val.i.sorted
=+ txs=(turn txs.val |=(=raw-tx:naive [| 0x0 *time raw-tx]))
=^ [new-valid=_txs nups=_ups] state
(apply-txs txs %sending `nonce.key)
:: we only hear updates for this nonce if it has been sent
::
=. valid ::=? valid sent.val
%^ put:orm valid
key
:: TODO: too much functional hackery?
val(txs (turn new-valid (cork tail (cork tail tail))))
$(sorted t.sorted, ups (welp ups nups))
::
++ apply-txs
|= [txs=(list pend-tx) type=?(%pending %sending) nonce=(unit @ud)]
=/ valid=_txs ~
=| ups=(list update)
=| local=(set keccak)
|- ^+ [[valid ups] state]
?~ txs [[valid ups] state]
::
=* tx i.txs
=* raw-tx raw-tx.i.txs
=* ship ship.from.tx.raw-tx.i.txs
=* time time.i.txs
=/ hash=@ux (hash-raw-tx:lib raw-tx)
=/ sign-address=(unit @ux)
(extract-address:lib raw-tx pre.state chain-id)
=^ [gud=? nups=_ups] state
(try-apply pre.state force.tx raw-tx)
:: TODO: only replace address if !=(address.tx sign-address)?
::
=? tx &(gud ?=(^ sign-address))
tx(address u.sign-address)
::
=/ =roll-tx
[ship type hash time (l2-tx +<.tx.raw-tx)]
=? nups !gud
%+ snoc nups
[%tx address.tx roll-tx(status %failed)]
=? valid gud (snoc valid tx)
=? finding.state !gud
=+ index=~(wyt in local)
%+ ~(put by finding) [hash nonce]
:- 0
%. [index %failed]
?^ l2-txs=(~(get by finding) [hash nonce])
~(put by txs.u.l2-txs)
~(put by *(map @ud l2-status))
::
=? history.state !gud
%. [address.tx roll-tx(status %failed)]
~(put ju (~(del ju history.state) address.tx roll-tx))
$(txs t.txs, ups (weld ups nups), local (~(put in local) hash))
::
++ try-apply
|= [nas=^state:naive force=? =raw-tx:naive]
^- [[? ups=(list update)] _state]
=/ [success=? predicted=_nas ups=(list update) owners=_own]
(apply-raw-tx:dice force raw-tx nas own chain-id)
:- [success ups]
state(pre predicted, own owners)
--
::
++ get-l1-address
|= [=tx:naive nas=^state:naive]
^- (unit address:ethereum)
?~ point=(get:orm:naive points.nas ship.from.tx) ~
=< `address
(proxy-from-point:naive proxy.from.tx u.point)
::
++ on-action
|= =action
^- (quip card _state)
?- -.action
%commit on-timer
%config (on-config +.action)
%cancel (cancel-tx +.action)
::
%submit
%- take-tx
:* force.action
address.action
now.bowl
sig.action
(part-tx-to-full tx.action)
==
==
::
++ on-config
|= =config
^- (quip card _state)
?- -.config
%frequency [~ state(frequency frequency.config)]
::
%endpoint
:- ~
=/ [contract=@ux chain-id=@]
=< [naive chain-id]
=, azimuth
?- net.config
%mainnet mainnet-contracts
%ropsten ropsten-contracts
%local local-contracts
==
%_ state
contract contract
chain-id chain-id
endpoint `endpoint.config
==
::
%setkey
?~ pk=(de:base16:mimes:html pk.config)
`state
[(get-nonce q.u.pk /nonce) state(pk q.u.pk)]
==
:: TODO: move address to state?
::
++ get-address
^- address:ethereum
(address-from-prv:key:ethereum pk)
:: +cancel-tx: cancel a pending transaction
::
++ cancel-tx
|= [sig=@ =keccak =l2-tx =ship]
^- (quip card _state)
:: TODO: try with all the nonces in sending?
::
?^ status=(~(get by finding) keccak next-nonce)
~? lverb [dap.bowl %tx-not-pending status+u.status]
[~ state]
:: "cancel: 0x1234abcd"
::
=/ message=octs
%: cad:naive 3
8^'cancel: '
::
=; hash=@t
(met 3 hash)^hash
(crip "0x{((x-co:co 20) keccak)}")
::
~
==
?~ addr=(verify-sig:lib sig message)
~? lverb [dap.bowl %cancel-sig-fail]
[~ state]
=^ time pending
=| nep=(list pend-tx)
=| tx-time=time
|- ^- [time _pending]
?~ pending [tx-time nep]
=+ i.pending
=? tx-time =(keccak (hash-raw-tx:lib raw-tx))
time
=? nep !=(keccak (hash-raw-tx:lib raw-tx))
(snoc nep i.pending)
$(pending t.pending)
:: TODO: mark as failed instead? add a %cancelled to tx-status?
::
=. history
%+ ~(del ju history) u.addr
[ship %pending keccak time l2-tx]
[~ state]
:: +take-tx: accept submitted l2 tx into the :pending list
::
++ take-tx
|= pend-tx
^- (quip card _state)
=/ hash=@ux (hash-raw-tx:lib raw-tx)
:: TODO: what if this hash/tx is already in the history?
:: e.g. if previously failed, but now it will go through
:: a) check in :finding that hash doesn't exist and if so, skip ?
:: b) extract the status from :finding, use it to delete
:: the entry in :history, and then insert it as %pending ?
::
:: =/ not-sent=? !(~(has by finding) hash)
:: =? pending not-sent
=. pending (snoc pending [force address time raw-tx])
:: =? history not-sent
=^ update-cards history
=/ =roll-tx
:* ship.from.tx.raw-tx
%pending
hash
time
(l2-tx +<.tx.raw-tx)
==
:- [%tx address roll-tx]~
(~(put ju history) [address roll-tx])
:: ?. not-sent ~& "skip" [~ state]
:: toggle flush flag
::
:_ state(derive ?:(derive | derive))
%+ weld (emit update-cards)
?. derive ~
:: derive predicted state in 1m.
::
[(wait:b:sys /predict (add ~m1 now.bowl))]~
:: +set-timer: %wait until next whole :frequency
::
++ set-timer
^- [=card =time]
=+ time=(mul +((div now.bowl frequency)) frequency)
[(wait:b:sys /timer time) time]
:: +on-timer: every :frequency, freeze :pending txs roll and start sending it
::
++ on-timer
^- (quip card _state)
=^ updates-1 state
(predicted-state canonical-state)
=^ cards state
?: =(~ pending)
~? lverb [dap.bowl %pending-empty] [~ state]
?~ next-nonce
~? lverb [dap.bowl %missing-roller-nonce] [~ state]
:: because we increment the next-nonce after a thread is done
:: we can't guarantee that the nonce will be set up before the
:: timer fires, so this checks makes sure that a pending batch
:: goes to sending after the previous thread has come back
?: out-of-sync
~? lverb [dap.bowl %nonce-out-sync] [~ state]
=/ nonce=@ud u.next-nonce
=^ updates-2 history update-history
:: TODO: move to +on-batch-result to prevent the case the
:: tx succeds but we get a "Runtime Error: revert"?
::
=: pending ~
derive &
:: this is moved to +on-batch-result so it's incremented only
:: when we get a confirmation that thread has been sent succesfully
:: otherwise we might get into a situation where the thread for
:: nonce "n" is very slow at confirming (e.g. L1 nonce out of sync),
:: and the next batch with nonce "n+1" goes into sending, which will
:: mean that we can't guarantee which batch will be submitted first
::
:: next-nonce `+(u.next-nonce)
::
sending
%^ put:orm sending
[get-address nonce]
[0 | (turn pending (cork tail (cork tail tail)))]
::
finding
%+ roll pending
|= [pend-tx finding=_finding]
=/ key [(hash-raw-tx:lib raw-tx) `nonce]
=/ val [time address]
%+ ~(put by finding) key
:- 0
?~ send-txs=(~(get by finding) key)
(~(put by *(map @ud l2-status)) 0 val)
(~(put by txs.u.send-txs) ~(wyt by txs.u.send-txs) val)
==
:_ state
;: welp
(emit updates-1)
(emit updates-2)
(send-roll get-address nonce)
==
=^ card next-batch set-timer
[[card cards] state]
::
++ update-history
%+ roll pending
|= [pend-tx ups=(list update) his=_history]
=/ =roll-tx
:* ship.from.tx.raw-tx
%pending
(hash-raw-tx:lib raw-tx)
time
(l2-tx +<.tx.raw-tx)
==
=+ tx=[address roll-tx(status %sending)]
:- (snoc ups tx+tx)
%. tx
~(put ju (~(del ju his) address roll-tx))
:: +get-nonce: retrieves the latest nonce
::
++ get-nonce
|= [pk=@ =wire]
^- (list card)
?~ endpoint ~?(lverb [dap.bowl %no-endpoint] ~)
(start-thread:spider wire [%roller-nonce !>([u.endpoint pk])])
:: +out-of-sync: checks if the previous nonce has been sent
::
++ out-of-sync
^- ?
?~ latest-nonce=(ram:orm sending) |
!=(sent.val.u.latest-nonce &)
:: +send-roll: start thread to submit roll from :sending to l1
::
++ send-roll
|= [=address:ethereum =nonce:naive]
^- (list card)
:: if this nonce isn't in the sending queue anymore, it's done
::
?. (has:orm sending [address nonce])
~? lverb [dap.bowl %done-sending [address nonce]]
~
:: start the thread, passing in the l2 txs to use
::
?~ endpoint
~? lverb [dap.bowl %no-endpoint]
~
::TODO should go ahead and set resend timer in case thread hangs, or nah?
%+ start-thread:spider
/send/(scot %ux address)/(scot %ud nonce)
:- %roller-send
!> ^- rpc-send-roll
:* u.endpoint
contract
chain-id
pk
nonce
::
=< [next-gas-price txs]
(got:orm sending [address nonce])
==
:: +on-batch-result: await resend after thread success or failure
::
++ on-batch-result
|= [=address:ethereum nonce=@ud result=(each @ud [term @t])]
^- (quip card _state)
:: print error if there was one
::
~? ?=(%| -.result) [dap.bowl %send-error +.p.result]
=/ =send-tx (got:orm sending [address nonce])
:: update gas price for this tx in state
::
=? sending ?=(%& -.result)
%^ put:orm sending
[address nonce]
send-tx(next-gas-price p.result, sent &)
:: we only increment nonce the first time the send thread finishes
::
=? next-nonce &(?=(%& -.result) !=(sent.send-tx &))
`+(nonce)
?: ?| ?=(%& -.result)
:: a general error shouldn't innitiate
:: the out-of-sync nonce thread
::
?=([%| %error *] result)
:: this accounts for a resend with higher gas
:: for a previous nonce, so we shouldn't start
:: the out-of-sync nonce thread
::
?& sent.send-tx
?=([%| %not-sent *] result)
== ==
:_ state
:_ ~
:: resend the l1 tx in five minutes
::
%+ wait:b:sys
/resend/(scot %ux address)/(scot %ud nonce)
(add resend-time now.bowl)
:: TODO: this only accounts for the case where the nonce is out of sync,
:: reaching this because of lower funds needs to be addressed manually
::
?> ?=(%not-sent -.p.result)
:: new txs that come in will remain in pending
:: until the newest nonce is retrieved
::
:_ state(next-nonce ~)
(get-nonce pk.state /refresh-nonce/(scot %ud nonce))
:: +on-naive-diff: process l2 tx confirmations
::
++ on-naive-diff
|= =diff:naive
^- (quip card _state)
?. |(?=(%point -.diff) ?=(%tx -.diff))
[~ state]
=; [cards=(list card) =_state]
:_ state(derive ?:(derive | derive))
%+ weld cards
?. derive ~
:: derive predicted/ownership state in 1m.
::
[(wait:b:sys /predict (add ~m1 now.bowl))]~
::
?: ?=(%point -.diff) [~ state]
?> ?=(%tx -.diff)
=/ =keccak (hash-raw-tx:lib raw-tx.diff)
:: assumes that l2 txs come in order, belonging to the oldest nonce awaiting confirmation
::
?~ head=(pry:orm sending)
~? lverb [dap.bowl %no-nonce-in-sending keccak]
[~ state]
=* nonce nonce.key.u.head
?~ wer=(~(get by finding) [keccak `nonce])
:: tx not submitted by this roller
::
[~ state]
?~ txs.u.wer
~? lverb [dap.bowl %empty-finding-for keccak nonce+nonce]
[~ state]
=/ [index=@ud l2-txs=(map @ud l2-status)] u.wer
:: if we had already seen all l2-tx, no-op
::
?: =(index ~(wyt by l2-txs))
~? lverb [dap.bowl %all-l2-txs-seen keccak nonce+nonce]
[~ state]
=/ current-tx=l2-status (~(got by l2-txs) index)
:: if we had already seen the tx, no-op
::
?@ current-tx
~? &(?=(%confirmed current-tx) ?=(~ err.diff))
[dap.bowl %weird-double-confirm from.tx.raw-tx.diff]
[~ state]
=* address address.current-tx
=* time time.current-tx
=* ship ship.from.tx.raw-tx.diff
=* tx tx.raw-tx.diff
=/ l2-tx (l2-tx +<.tx)
:: remove the tx from the sending map
::
=. sending
?~ sen=(get:orm sending [get-address nonce])
~? lverb [dap.bowl %weird-double-remove nonce+nonce]
sending
?~ nin=(find [raw-tx.diff]~ txs.u.sen)
~? lverb [dap.bowl %weird-unknown nonce+nonce]
sending
=. txs.u.sen (oust [u.nin 1] txs.u.sen)
?~ txs.u.sen
~? lverb [dap.bowl %done-with-nonce [get-address nonce]]
=^ * sending
(del:orm sending [get-address nonce])
sending
^+ sending
(put:orm sending [get-address nonce] u.sen)
:: update the finding map with the new status
::
=. finding
%+ ~(put by finding) [keccak `nonce]
:- +(index)
%+ ~(put by l2-txs) index
?~ err.diff %confirmed
:: if we kept the forced flag around for longer, we could notify of
:: unexpected tx failures here. would that be useful? probably not?
:: ~? !forced [dap.bowl %aggregated-tx-failed-anyway err.diff]
%failed
::
=^ updates history
=/ =roll-tx [ship %sending keccak time l2-tx]
=. history
(~(del ju history) address roll-tx)
=. status.roll-tx
?~(err.diff %confirmed %failed)
:- [%tx address roll-tx]~
(~(put ju history) [address roll-tx])
[(emit updates) state]
::
--