Add an update indicator to the top right of client tabs; this is
overlaid on top of the surface when the last update from the server was
more than ~3s ago and if we expected it sooner than that.
While making this work, I noticed that the exponential poll backoff
had gotten broken in an earlier refactor; instead of a series of polls
backing off slowly, we were aggressively running the backoff up to the
max 30 second interval over the span of a few ms. This commit fixes
up the backoff computation to only happen when we are ready to send
a poll.
refs: https://github.com/wez/wezterm/issues/127
derive_builder has some extra dependencies that take a while to compile.
The builder feature can be expressed via a 30-line macro. So let's do
that to make termwiz compile faster.
The palette crate has a codegen step that translates svg_colors.txt to named.rs.
That makes it hard to build using buck.
Remove the palette dependency so termwiz is easier to build using buck.
I made sure the following code:
fn main() {
use termwiz::color::RgbColor;
let r = RgbColor::from_rgb_str("#02abcd").unwrap();
let r1 = r.to_tuple_rgba();
let r2 = r.to_linear_tuple_rgba();
println!("r1 = {:?}", r1);
println!("r2 = {:?}", r2);
}
prints
r1 = (0.007843138, 0.67058825, 0.8039216, 1.0)
r2 = (0.000607054, 0.4072403, 0.6104956, 1.0)
before and after the change.
Embed rgb.txt and parse it on the fly to produce the list of colors.
This list is a superset of palette's SVG color list.
refs: https://github.com/wez/wezterm/pull/144
This makes the input behavior consistent with posix: if SHIFT is held
and a letter key is pressed, make sure that we treat that as the ascii
uppercase version of that key and that the SHIFT modifier is cleared.
Adds logic to resize handling that will consider the original logical
line length when the width of the terminal is changed.
The intent is that this will cause the text to be re-flowed as if it had
been printed into the terminal at the new width. Lines that were
wrapped due to hittin the margin will be un-wrapped and made into a
single logical line, and then split into chunks of the new width.
This can cause new lines to be generated in the scrollback when
making the terminal narrower. To avoid losing the top of the buffer
in that case, the rewrapping logic will prune blank lines off the
bottom.
This is a pretty simplistic brute force algorithm: each of the lines
will be visited and split, and for large scrollback buffers this could
be relatively costly with a busy live resize. We don't have much choice
in the current implementation.
refs: https://github.com/wez/wezterm/issues/14
`cargo run --example widgets_basic --features widgets` changes the
cursor style but wasn't changing it back when exiting.
In addition, setting the cursor to Default was only restoring visibility
and not restoring the style.
I was running `hg log --config pager.pager=sp` and pressing space without
releasing it. After about 10k lines sp appears to deadlock. It seems sp uses a
single thread for both reading terminal events and sending wake events and it
sends too many wake events without reading the events.
Failing to write to the wake pipe due to EWOULDBLOCK does not seem to be a
problem - there are enough events in the pipe to wake up the other side.
Therefore let's just make wake_pipe_write nonblocking and treat EWOULDBLOCK as
a success.
Context: The stuck thread looks like:
#0 0x00007f32671ee237 in write () from /usr/lib/libc.so.6
#1 0x000055c466022823 in std::sys::unix::fd::FileDesc::write () at src/libstd/sys/unix/fd.rs:96
#2 std::sys::unix::net::Socket::write () at src/libstd/sys/unix/net.rs:276
#3 <&std::sys::unix::ext::net::UnixStream as std::io::Write>::write ()
at src/libstd/sys/unix/ext/net.rs:597
#4 <std::sys::unix::ext::net::UnixStream as std::io::Write>::write ()
at src/libstd/sys/unix/ext/net.rs:582
#5 0x000055c465d010a6 in termwiz::terminal::unix::UnixTerminalWaker::wake (self=0x7ffe6bd32de0)
at /home/quark/.cargo/git/checkouts/wezterm-6425bab852909cc8/ef1b836/termwiz/src/terminal/unix.rs:278
#6 0x000055c465a6c64b in streampager::event::EventSender::send_unique (self=0x7ffe6bd32dd0, event=...,
unique=0x7ffe6bd32de8) at src/event.rs:66
#7 0x000055c465a7e65a in streampager::display::start (term=..., term_caps=..., events=..., files=...,
error_files=..., progress=..., mode=streampager::config::FullScreenMode::Auto) at src/display.rs:295
#8 0x000055c465a453a7 in streampager::Pager::run (self=...) at src/lib.rs:171
#9 0x000055c465a0aced in sp::open_files (args=...) at src/bin/sp/main.rs:170
#10 0x000055c465a08e4f in sp::main () at src/bin/sp/main.rs:25
This commit adds some plumbing for describing the cursor shape
(block, line, blinking etc) and visibility, and feeds that through
the mux and render layers.
The renderer now knows to omit the cursor when it is not visible.
This isn't complete but begins the process of extracting
the embedding application configuration into a trait provided
by the application rather than passing the values in at
construction.
This allows the application to change configuration at
runtime.
The first option to handle this is the scrollback size.
The defaults are pretty neutral. You can get a little more fancy
with something like this:
```
[colors.tab_bar]
background = "#0b0022"
[colors.tab_bar.active_tab]
bg_color = "#2b2042"
fg_color = "#c0c0c0"
[colors.tab_bar.inactive_tab]
bg_color = "#1b1032"
fg_color = "#808080"
[colors.tab_bar.inactive_tab_hover]
bg_color = "#3b3052"
fg_color = "#909090"
italic = true
```
This is a bit of a large commit because it needed some plumbing:
* Change mux creation to allow deferring associating any domains,
and to change the default domain later in the lifetime of the
program
* De-bounce the empty mux detection to allow for transient windows
during early startup
* Implement a bridge between the termwiz client Surface and the
frontend gui renderer so that we can render from termwiz to
the gui.
* Adjust the line editor logic so that the highlight_line method
can change the length of the output. This enables replacing
the input text with placeholders so that we can obscure password
input
I noticed while scrolling `emoji-test.txt` that some of the combined
emoji sequences rendered very poorly. This was due to the unicode
width being reported as up to 4 in some cases.
Digging into it, I discovered that the unicode width crate uses a
standard calculation that doesn't take emoji combination sequences
into account (see https://github.com/unicode-rs/unicode-width/issues/4).
This commit takes a dep on the xi-unicode crate as a lightweight way
to gain access to emoji tables and test whether a given grapheme is
part of a combining sequence of emoji.
I've noticed this off and on for a while, and thought it was something
fishy with my shell dotfiles.
Tracing through I found that the final byte in the "Face with head
bandage" emoji 🤕 U+1F915 was being interpreted as the MW control
code and causing the vt parser to jump out of the OSC state.
The solution for this is to hook up proper UTF-8 processing in the
same way that it is applied in the ground state.
Since we don't have enough bits to introduce new state values (we're
pretty tightly packed in the 16 bits available), I've introduced a
memory of the state to which the utf8 parser needs to return once
a complete sequence is detected.