We need access to the underlying raw/physical key in order
to correctly encode in some modes, so we need the full KeyEvent
struct for that.
Move the encoder up so it sits alongside the win32 input mode
encoder.
This should give us better results for both shifted/unshifted
and the "base layout" (US english) representations of a number
of keys.
Note that this is still not 100% technically correct: the unshifted
keys require knowledge of the keyboard layout that we don't have
at this OS-independent layer.
Right now we're assuming a US layout to unshift punctuation, which
is not right if you're not using that layout. To resolve that,
more work is needed on each OS to be able to extract that information
and then to store it in the KeyEvent.
refs: https://github.com/wez/wezterm/issues/3479
refs: https://github.com/wez/wezterm/issues/2546
- v2.0 no longer derives a bunch of traits (Debug, Clone, Copy, PartialEq, Eq)
by default, so I manually derived them.
- It also changed the snapshot results so I updated them:
An empty bitflags struct is no longer displayed as `None` but as
`BitFlags(0x0)`.
- `bits` is no longer a field but a method so I added the missing
parenthesis.
* Translate from File to EncodedFile as needed
* Adopt blob leases in the mux server
* Fix an issue where the first image sent by the mux server would
be replaced on the client by its background image, if configured.
Removed the ImageData::id field to resolve this: you should use
the hash field instead to identify and disambiguate images.
Bumped the termwiz API version because this is conceptually
a breaking change to the API
refs: https://github.com/wez/wezterm/issues/3343
Adopt the new blob lease layer to storing and referencing
image files.
This reduces the number of open files needed when
images are being displayed in the terminal.
refs: https://github.com/wez/wezterm/issues/3263
Continuing from the previous commit, this shifts:
* In-memory data -> temporary file
* Image decoding -> background thread
The background thread asynchronously decodes frames and
sends them to the render thread via a bounded channel.
While decoding frames, it writes them, uncompressed, to
a scratch file so that when the animation loops, it is
a very cheap operation to rewind and pull that data
from the file, without having to burn CPU to re-decode
the data from the start.
Memory usage is bounded to 4 uncompressed frames while
decoding, then 3 uncompressed frames (triple buffered)
while looping over the rest.
However, disk usage is N uncompressed frames.
refs: https://github.com/wez/wezterm/issues/3263
I noticed from https://github.com/void-linux/void-packages/pull/36903
that 32-bit systems were failing to pass the test suite.
Running `cargo test --target i686-unknown-linux-gnu -- --nocapture
teeny_string` showed that we were faulting in the teenystring code
and digging a bit deeper showed that it was because our assumptions
about the high bits were wrong for 32-bit systems.
Fix this by making TeenyString based around a u64 rather than usize
so that we guarantee its size on all current systems.
According to its benchmarks, it's almost 2x faster than
unicode_segmentation. It doesn't appear to make a visible
difference to `time cat bigfile`, but I'll take anything
that gives more headroom for such little effort of switching.
Without the feature the build fails with:
--> src\escape\apc.rs:377:57
|
377 | let mut memory_info = MEMORY_BASIC_INFORMATION::default();
| ^^^^^^^ function or associated item not found in `MEMORY_BASIC_INFORMATION`
|
When `parse_first_as_vec` is parsing an OSC sequence (e.g.
`SetHyperlink`) that is terminated by the escaped form of ST (`ESC \`),
ensure that the ST sequence is included in the returned vector.
This is achieved by ensuring the VTParser has returned to the "ground"
state: i.e. the stored state after the `ESC` is processed is not enough
for `parse_first_as_vec` to terminate. We must also parse the `\` to
ensure that we return a complete span to the caller.
Fixes https://github.com/markbt/streampager/issues/57
This reduces the resident memory by another ~10% because it avoids
keeping as many runs of whitespace.
Runtime for `time cat enwiki8.wiki` is still ~11-12s, resident: 530K
refs: https://github.com/wez/wezterm/issues/1626
Adds the option to use an alternative clusted line storage for
the cells component of the line.
This structure is not optimal for mutation, but is better structured
for:
* matching/extracting textual content
* using less memory than the prior simple vector
For some contrast: the line "hello" occupies 5 Cells in the cell based
storage; that 5 discrete Cells each with their own tiny string
and a copy of their attributes.
The clustered version of the line stores one copy of the cell
attributes, the string "hello" and some small (almost constant size)
overhead for some metadata. For simple lines of ascii text, the
clustered version is smaller as there are fewer copies of the cell
attributes. Over the span of a large scrollback and typical terminal
display composition, this saving is anticipated to be significant.
The clustered version is also cheaper to search as it doesn't require
building a copy of the search text for each line (provided the line is
already in clustered form).
This commit introduces the capability: none of the internals request the
new form yet, and there are likely a few call sites that need to be
tweaked to avoid coersion from clustered to vector form.
Avoid using serde for mapping between Lua and Rust for the `Config`
struct.
This improves the build speed of the config crate by 2x; it goes down
from 30 seconds to 9 seconds on my 5950x.
Go directly to the underlying env_logger crate, as pretty_env_logger
hasn't been updated in some time, and I'd like to be able to redirect
the log output to a file more directly, and that feature is in a newer
version of the env logger than pretty_env_logger was pulling in.
* termwiz: add support for kitty image using shm mode
* termwiz: kitty image shm cleanup error handling
* termwiz: kitty image shm create wrapper for HANDLE and impl Drop for it
* termwiz: kitty image shm refactor windows implementation
Signed-off-by: Shreesh Adiga <16567adigashreesh@gmail.com>
This commit allows the following configuration:
```
wezterm -n --config 'colors = { selection_fg = "clear", selection_bg = "rgba:50% 50% 50% 50%" }'
```
which sets the selection_bg to fully transparent, and selection_bg to
50% transparent gray.
When selection_fg is fully transparent we'll use the normal fg color.
When selection_bg is partially (or fully!) transparent, it will be
alpha blended over the current cell background color.
To support this, the config file will now accept rgba colors specified
as 4 whitespace delimited numeric values. If a value ends with `%` it
is interpreted as a number in the range 0-100. Otherwise, it is
interpreted as a number in the range 0-255. The 4 values are
red, green, blue, alpha.
At this time, only the selection_fg and selection_bg settings accept
alpha values.
refs: #1615
Resolves a little bit of the awkward duplication of color types
between some of the crates by factoring them a little bit better.
This is prep for allowing specifying alpha for some colors
in the config.
This commit is larger than it appears to due fanout from threading
through bidi parameters. The main changes are:
* When clustering cells, add an additional phase to resolve embedding
levels and further sub-divide a cluster based on the resolved bidi
runs; this is where we get the direction for a run and this needs
to be passed through to the shaper.
* When doing bidi, the forced cluster boundary hack that we use to
de-ligature when cursoring through text needs to be disabled,
otherwise the cursor appears to push/rotate the text in that
cluster when moving through it! We'll need to find a different
way to handle shading the cursor that eliminates the original
cursor/ligature/black issue.
* In the shaper, the logic for coalescing unresolved runs for font
fallback assumed LTR and needed to be adjusted to cluster RTL.
That meant also computing a little index of codepoint lengths.
* Added `experimental_bidi` boolean option that defaults to false.
When enabled, it activates the bidi processing phase in clustering
with a strong hint that the paragraph is LTR.
This implementation is incomplete and/or wrong for a number of cases:
* The config option should probably allow specifying the paragraph
direction hint to use by default.
* https://terminal-wg.pages.freedesktop.org/bidi/recommendation/paragraphs.html
recommends that bidi be applied to logical lines, not physical
lines (or really: ranges within physical lines) that we're doing
at the moment
* The paragraph direction hint should be overridden by cell attributes
and other escapes; see 85a6b178cf
and probably others.
However, as of this commit, if you `experimental_bidi=true` then
```
echo This is RTL -> عربي فارسی bidi
```
(that text was sourced from:
https://github.com/microsoft/terminal/issues/538#issuecomment-677017322)
then wezterm will display the text in the same order as the text
renders in Chrome for that github comment.
```
; ./target/debug/wezterm --config experimental_bidi=false ls-fonts --text "عربي فارسی ->"
LeftToRight
0 ع \u{639} x_adv=8 glyph=300 wezterm.font(".Geeza Pro Interface", {weight="Regular", stretch="Normal", italic=false})
/System/Library/Fonts/GeezaPro.ttc index=2 variation=0, CoreText
2 ر \u{631} x_adv=3.78125 glyph=273 wezterm.font(".Geeza Pro Interface", {weight="Regular", stretch="Normal", italic=false})
/System/Library/Fonts/GeezaPro.ttc index=2 variation=0, CoreText
4 ب \u{628} x_adv=4 glyph=244 wezterm.font(".Geeza Pro Interface", {weight="Regular", stretch="Normal", italic=false})
/System/Library/Fonts/GeezaPro.ttc index=2 variation=0, CoreText
6 ي \u{64a} x_adv=4 glyph=363 wezterm.font(".Geeza Pro Interface", {weight="Regular", stretch="Normal", italic=false})
/System/Library/Fonts/GeezaPro.ttc index=2 variation=0, CoreText
8 \u{20} x_adv=8 glyph=2 wezterm.font("Operator Mono SSm Lig", {weight="DemiLight", stretch="Normal", italic=false})
/Users/wez/.fonts/OperatorMonoSSmLig-Medium.otf, FontDirs
9 ف \u{641} x_adv=11 glyph=328 wezterm.font(".Geeza Pro Interface", {weight="Regular", stretch="Normal", italic=false})
/System/Library/Fonts/GeezaPro.ttc index=2 variation=0, CoreText
11 ا \u{627} x_adv=4 glyph=240 wezterm.font(".Geeza Pro Interface", {weight="Regular", stretch="Normal", italic=false})
/System/Library/Fonts/GeezaPro.ttc index=2 variation=0, CoreText
13 ر \u{631} x_adv=3.78125 glyph=273 wezterm.font(".Geeza Pro Interface", {weight="Regular", stretch="Normal", italic=false})
/System/Library/Fonts/GeezaPro.ttc index=2 variation=0, CoreText
15 س \u{633} x_adv=10 glyph=278 wezterm.font(".Geeza Pro Interface", {weight="Regular", stretch="Normal", italic=false})
/System/Library/Fonts/GeezaPro.ttc index=2 variation=0, CoreText
17 ی \u{6cc} x_adv=4 glyph=664 wezterm.font(".Geeza Pro Interface", {weight="Regular", stretch="Normal", italic=false})
/System/Library/Fonts/GeezaPro.ttc index=2 variation=0, CoreText
19 \u{20} x_adv=8 glyph=2 wezterm.font("Operator Mono SSm Lig", {weight="DemiLight", stretch="Normal", italic=false})
/Users/wez/.fonts/OperatorMonoSSmLig-Medium.otf, FontDirs
20 - \u{2d} x_adv=8 glyph=276 wezterm.font("Operator Mono SSm Lig", {weight="DemiLight", stretch="Normal", italic=false})
/Users/wez/.fonts/OperatorMonoSSmLig-Medium.otf, FontDirs
21 > \u{3e} x_adv=8 glyph=338 wezterm.font("Operator Mono SSm Lig", {weight="DemiLight", stretch="Normal", italic=false})
/Users/wez/.fonts/OperatorMonoSSmLig-Medium.otf, FontDirs
```
```
; ./target/debug/wezterm --config experimental_bidi=true ls-fonts --text "عربي فارسی ->"
RightToLeft
17 ی \u{6cc} x_adv=9 glyph=906 wezterm.font(".Geeza Pro Interface", {weight="Regular", stretch="Normal", italic=false})
/System/Library/Fonts/GeezaPro.ttc index=2 variation=0, CoreText
15 س \u{633} x_adv=10 glyph=277 wezterm.font(".Geeza Pro Interface", {weight="Regular", stretch="Normal", italic=false})
/System/Library/Fonts/GeezaPro.ttc index=2 variation=0, CoreText
13 ر \u{631} x_adv=4.78125 glyph=272 wezterm.font(".Geeza Pro Interface", {weight="Regular", stretch="Normal", italic=false})
/System/Library/Fonts/GeezaPro.ttc index=2 variation=0, CoreText
11 ا \u{627} x_adv=4 glyph=241 wezterm.font(".Geeza Pro Interface", {weight="Regular", stretch="Normal", italic=false})
/System/Library/Fonts/GeezaPro.ttc index=2 variation=0, CoreText
9 ف \u{641} x_adv=5 glyph=329 wezterm.font(".Geeza Pro Interface", {weight="Regular", stretch="Normal", italic=false})
/System/Library/Fonts/GeezaPro.ttc index=2 variation=0, CoreText
8 \u{20} x_adv=8 glyph=2 wezterm.font("Operator Mono SSm Lig", {weight="DemiLight", stretch="Normal", italic=false})
/Users/wez/.fonts/OperatorMonoSSmLig-Medium.otf, FontDirs
6 ي \u{64a} x_adv=9 glyph=904 wezterm.font(".Geeza Pro Interface", {weight="Regular", stretch="Normal", italic=false})
/System/Library/Fonts/GeezaPro.ttc index=2 variation=0, CoreText
4 ب \u{628} x_adv=4 glyph=243 wezterm.font(".Geeza Pro Interface", {weight="Regular", stretch="Normal", italic=false})
/System/Library/Fonts/GeezaPro.ttc index=2 variation=0, CoreText
2 ر \u{631} x_adv=5 glyph=273 wezterm.font(".Geeza Pro Interface", {weight="Regular", stretch="Normal", italic=false})
/System/Library/Fonts/GeezaPro.ttc index=2 variation=0, CoreText
0 ع \u{639} x_adv=6 glyph=301 wezterm.font(".Geeza Pro Interface", {weight="Regular", stretch="Normal", italic=false})
/System/Library/Fonts/GeezaPro.ttc index=2 variation=0, CoreText
LeftToRight
0 \u{20} x_adv=8 glyph=2 wezterm.font("Operator Mono SSm Lig", {weight="DemiLight", stretch="Normal", italic=false})
/Users/wez/.fonts/OperatorMonoSSmLig-Medium.otf, FontDirs
1 - \u{2d} x_adv=8 glyph=480 wezterm.font("Operator Mono SSm Lig", {weight="DemiLight", stretch="Normal", italic=false})
/Users/wez/.fonts/OperatorMonoSSmLig-Medium.otf, FontDirs
2 > \u{3e} x_adv=8 glyph=470 wezterm.font("Operator Mono SSm Lig", {weight="DemiLight", stretch="Normal", italic=false})
/Users/wez/.fonts/OperatorMonoSSmLig-Medium.otf, FontDirs
;
```
refs: https://github.com/wez/wezterm/issues/784