gpt4free/g4f/Provider/deprecated/Equing.py

81 lines
3.0 KiB
Python
Raw Normal View History

from __future__ import annotations
import json
from abc import ABC, abstractmethod
import requests
2023-10-04 08:20:51 +03:00
from ...typing import Any, CreateResult
from ..base_provider import BaseProvider
class Equing(BaseProvider):
2023-08-27 18:37:44 +03:00
url: str = 'https://next.eqing.tech/'
working = False
2023-08-27 18:37:44 +03:00
supports_stream = True
supports_gpt_35_turbo = True
2023-08-27 18:37:44 +03:00
supports_gpt_4 = False
@staticmethod
@abstractmethod
def create_completion(
model: str,
messages: list[dict[str, str]],
2023-08-27 18:37:44 +03:00
stream: bool, **kwargs: Any) -> CreateResult:
headers = {
2023-08-27 18:37:44 +03:00
'authority' : 'next.eqing.tech',
'accept' : 'text/event-stream',
'accept-language' : 'en,fr-FR;q=0.9,fr;q=0.8,es-ES;q=0.7,es;q=0.6,en-US;q=0.5,am;q=0.4,de;q=0.3',
'cache-control' : 'no-cache',
'content-type' : 'application/json',
'origin' : 'https://next.eqing.tech',
'plugins' : '0',
'pragma' : 'no-cache',
'referer' : 'https://next.eqing.tech/',
'sec-ch-ua' : '"Not/A)Brand";v="99", "Google Chrome";v="115", "Chromium";v="115"',
'sec-ch-ua-mobile' : '?0',
'sec-ch-ua-platform': '"macOS"',
2023-08-27 18:37:44 +03:00
'sec-fetch-dest' : 'empty',
'sec-fetch-mode' : 'cors',
'sec-fetch-site' : 'same-origin',
'user-agent' : 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/115.0.0.0 Safari/537.36',
'usesearch' : 'false',
'x-requested-with' : 'XMLHttpRequest'
}
json_data = {
2023-08-27 18:37:44 +03:00
'messages' : messages,
'stream' : stream,
'model' : model,
'temperature' : kwargs.get('temperature', 0.5),
'presence_penalty' : kwargs.get('presence_penalty', 0),
'frequency_penalty' : kwargs.get('frequency_penalty', 0),
'top_p' : kwargs.get('top_p', 1),
}
response = requests.post('https://next.eqing.tech/api/openai/v1/chat/completions',
headers=headers, json=json_data, stream=stream)
2023-08-27 18:37:44 +03:00
if not stream:
yield response.json()["choices"][0]["message"]["content"]
return
for line in response.iter_content(chunk_size=1024):
if line:
if b'content' in line:
line_json = json.loads(line.decode('utf-8').split('data: ')[1])
token = line_json['choices'][0]['delta'].get('content')
if token:
yield token
@classmethod
@property
def params(cls):
params = [
("model", "str"),
("messages", "list[dict[str, str]]"),
("stream", "bool"),
]
param = ", ".join([": ".join(p) for p in params])
2023-09-18 00:23:54 +03:00
return f"g4f.provider.{cls.__name__} supports: ({param})"