gpt4free/g4f/Provider/DfeHub.py

78 lines
2.9 KiB
Python
Raw Normal View History

from __future__ import annotations
2023-07-28 13:07:17 +03:00
import json
import re
import time
import requests
from ..typing import Any, CreateResult
2023-07-28 13:07:17 +03:00
from .base_provider import BaseProvider
class DfeHub(BaseProvider):
2023-08-27 18:37:44 +03:00
url = "https://chat.dfehub.com/"
supports_stream = True
2023-07-28 13:07:17 +03:00
supports_gpt_35_turbo = True
@staticmethod
def create_completion(
model: str,
messages: list[dict[str, str]],
2023-08-27 18:37:44 +03:00
stream: bool, **kwargs: Any) -> CreateResult:
2023-07-28 13:07:17 +03:00
headers = {
2023-08-27 18:37:44 +03:00
"authority" : "chat.dfehub.com",
"accept" : "*/*",
"accept-language" : "en,fr-FR;q=0.9,fr;q=0.8,es-ES;q=0.7,es;q=0.6,en-US;q=0.5,am;q=0.4,de;q=0.3",
"content-type" : "application/json",
"origin" : "https://chat.dfehub.com",
"referer" : "https://chat.dfehub.com/",
"sec-ch-ua" : '"Not.A/Brand";v="8", "Chromium";v="114", "Google Chrome";v="114"',
"sec-ch-ua-mobile" : "?0",
2023-07-28 13:07:17 +03:00
"sec-ch-ua-platform": '"macOS"',
2023-08-27 18:37:44 +03:00
"sec-fetch-dest" : "empty",
"sec-fetch-mode" : "cors",
"sec-fetch-site" : "same-origin",
"user-agent" : "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/114.0.0.0 Safari/537.36",
"x-requested-with" : "XMLHttpRequest",
2023-07-28 13:07:17 +03:00
}
json_data = {
2023-08-27 18:37:44 +03:00
"messages" : messages,
"model" : "gpt-3.5-turbo",
"temperature" : kwargs.get("temperature", 0.5),
"presence_penalty" : kwargs.get("presence_penalty", 0),
"frequency_penalty" : kwargs.get("frequency_penalty", 0),
"top_p" : kwargs.get("top_p", 1),
"stream" : True
2023-07-28 13:07:17 +03:00
}
2023-08-27 18:37:44 +03:00
response = requests.post("https://chat.dfehub.com/api/openai/v1/chat/completions",
headers=headers, json=json_data, timeout=3)
2023-07-28 13:07:17 +03:00
for chunk in response.iter_lines():
if b"detail" in chunk:
delay = re.findall(r"\d+\.\d+", chunk.decode())
delay = float(delay[-1])
time.sleep(delay)
yield from DfeHub.create_completion(model, messages, stream, **kwargs)
if b"content" in chunk:
data = json.loads(chunk.decode().split("data: ")[1])
yield (data["choices"][0]["delta"]["content"])
@classmethod
@property
def params(cls):
params = [
("model", "str"),
("messages", "list[dict[str, str]]"),
("stream", "bool"),
("temperature", "float"),
("presence_penalty", "int"),
("frequency_penalty", "int"),
("top_p", "int"),
]
param = ", ".join([": ".join(p) for p in params])
return f"g4f.provider.{cls.__name__} supports: ({param})"