mirror of
https://github.com/xtekky/gpt4free.git
synced 2024-12-27 21:21:41 +03:00
99 lines
3.0 KiB
Python
99 lines
3.0 KiB
Python
|
import json
|
||
|
import uuid
|
||
|
|
||
|
import requests
|
||
|
|
||
|
from ..typing import Any, CreateResult
|
||
|
from .base_provider import BaseProvider
|
||
|
|
||
|
|
||
|
class H2o(BaseProvider):
|
||
|
url = "https://gpt-gm.h2o.ai"
|
||
|
working = True
|
||
|
supports_stream = True
|
||
|
|
||
|
@staticmethod
|
||
|
def create_completion(
|
||
|
model: str,
|
||
|
messages: list[dict[str, str]],
|
||
|
stream: bool,
|
||
|
**kwargs: Any,
|
||
|
) -> CreateResult:
|
||
|
conversation = ""
|
||
|
for message in messages:
|
||
|
conversation += "%s: %s\n" % (message["role"], message["content"])
|
||
|
conversation += "assistant: "
|
||
|
|
||
|
session = requests.Session()
|
||
|
|
||
|
headers = {"Referer": "https://gpt-gm.h2o.ai/r/jGfKSwU"}
|
||
|
data = {
|
||
|
"ethicsModalAccepted": "true",
|
||
|
"shareConversationsWithModelAuthors": "true",
|
||
|
"ethicsModalAcceptedAt": "",
|
||
|
"activeModel": model,
|
||
|
"searchEnabled": "true",
|
||
|
}
|
||
|
session.post(
|
||
|
"https://gpt-gm.h2o.ai/settings",
|
||
|
headers=headers,
|
||
|
data=data,
|
||
|
)
|
||
|
|
||
|
headers = {"Referer": "https://gpt-gm.h2o.ai/"}
|
||
|
data = {"model": model}
|
||
|
|
||
|
response = session.post(
|
||
|
"https://gpt-gm.h2o.ai/conversation",
|
||
|
headers=headers,
|
||
|
json=data,
|
||
|
)
|
||
|
conversation_id = response.json()["conversationId"]
|
||
|
|
||
|
data = {
|
||
|
"inputs": conversation,
|
||
|
"parameters": {
|
||
|
"temperature": kwargs.get("temperature", 0.4),
|
||
|
"truncate": kwargs.get("truncate", 2048),
|
||
|
"max_new_tokens": kwargs.get("max_new_tokens", 1024),
|
||
|
"do_sample": kwargs.get("do_sample", True),
|
||
|
"repetition_penalty": kwargs.get("repetition_penalty", 1.2),
|
||
|
"return_full_text": kwargs.get("return_full_text", False),
|
||
|
},
|
||
|
"stream": True,
|
||
|
"options": {
|
||
|
"id": kwargs.get("id", str(uuid.uuid4())),
|
||
|
"response_id": kwargs.get("response_id", str(uuid.uuid4())),
|
||
|
"is_retry": False,
|
||
|
"use_cache": False,
|
||
|
"web_search_id": "",
|
||
|
},
|
||
|
}
|
||
|
|
||
|
response = session.post(
|
||
|
f"https://gpt-gm.h2o.ai/conversation/{conversation_id}",
|
||
|
headers=headers,
|
||
|
json=data,
|
||
|
)
|
||
|
generated_text = response.text.replace("\n", "").split("data:")
|
||
|
generated_text = json.loads(generated_text[-1])
|
||
|
|
||
|
yield generated_text["generated_text"]
|
||
|
|
||
|
@classmethod
|
||
|
@property
|
||
|
def params(cls):
|
||
|
params = [
|
||
|
("model", "str"),
|
||
|
("messages", "list[dict[str, str]]"),
|
||
|
("stream", "bool"),
|
||
|
("temperature", "float"),
|
||
|
("truncate", "int"),
|
||
|
("max_new_tokens", "int"),
|
||
|
("do_sample", "bool"),
|
||
|
("repetition_penalty", "float"),
|
||
|
("return_full_text", "bool"),
|
||
|
]
|
||
|
param = ", ".join([": ".join(p) for p in params])
|
||
|
return f"g4f.provider.{cls.__name__} supports: ({param})"
|